1
|
Guo F, Wang H. Potential of histone deacetylase inhibitors for the therapy of ovarian cancer. Front Oncol 2022; 12:1057186. [PMID: 36505774 PMCID: PMC9732372 DOI: 10.3389/fonc.2022.1057186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemotherapy increase patient mortality. Accumulating evidence demonstrates that histone modifications play a key role in cancerization and progression. Histone deacetylases is associated with chromatin condensed structure and transcriptional repression and play a role in chromatin remodeling and epigenetics. Histone deacetylases are promising targets for therapeutic interventions intended to reverse aberrant epigenetic associated with cancer. Therefore, histone deacetylases inhibitors could be used as anti-cancer drugs. Preclinical studies have shown promising outcomes of histone deacetylases inhibitors in ovarian cancer while clinical trials have had mixed results and limited success as monotherapy. Therefore, combination therapy with different anticancer drugs for synergistic effects and newly selective histone deacetylases inhibitors development for lower toxicity are hot issues now. In this review, we summarize the latest studies on the classification and mechanisms of action of histone deacetylase and the clinical application of their inhibitors as monotherapy or combination therapy in ovarian cancer.
Collapse
Affiliation(s)
- Fengyi Guo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongjing Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China,*Correspondence: Hongjing Wang,
| |
Collapse
|
2
|
Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166390. [PMID: 35296416 DOI: 10.1016/j.bbadis.2022.166390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Toward the discovery of novel reliable biomarkers, epigenetic alterations have been repeatedly proposed for the diagnosis and the development of therapeutic strategies against cancer. Indeed, for promoter methylation to actively become a tumor marker for clinical use, it must be combined with a highly informative technology evaluated in an appropriate biospecimen. Methodological standardization related to epigenetic research is, in fact, one of the most challenging tasks. Moreover, tissue-based biopsy is being complemented and, in some cases, replaced by liquid biopsy. This review will highlight the advancements made for both pre-analytical and analytical implementation for the prospective use of methylation biomarkers in clinical settings, with particular emphasis on liquid biopsy.
Collapse
|
3
|
Al-Zahrani MH, Yahya FM, Assidi M, Dallol A, Buhmeida A. Klotho promoter methylation status and its prognostic value in ovarian cancer. Mol Clin Oncol 2021; 15:181. [PMID: 34277000 PMCID: PMC8278383 DOI: 10.3892/mco.2021.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023] Open
Abstract
Among all gynecological cancers, ovarian cancer (OC) is one of the deadliest types of cancer worldwide. Epigenetic silencing of some genes has been reported to be associated with OC. In this context, Klotho (KL) gene methylation is a promising biomarker for OC. The present study aimed to investigate the methylation profiles of KL and assess its prognostic value. A total of 63 formalin-fixed paraffin-embedded tissue samples from patients with primary OC were collected and analyzed in the present study. The methylation profiles of KL were assessed by performing DNA bisulfate treatment followed by DNA promoter methylation analysis using the MethyLight assay. The results revealed KL promoter hypermethylation in 62% of the OC cohort. Additionally, significant associations were observed between KL methylation profiles and tumor subtype (P<0.0001) and tumor site (P=0.039). Furthermore, Kaplan-Meier analysis revealed that a worse disease-specific survival was significantly associated with hypermethylated KL (P=0.03, log-rank; hazard ration, 0.58; 95% confidence interval (CI), 0.26-0.90). Cox regression multivariate analysis indicated that KL promoter methylation was an independent OC prognostic indicator (P=0.029). The current study suggested that KL may be a novel biomarker to predict prognosis in patients with OC, since patients with higher KL promoter methylation were more likely to have a poor prognosis and would therefore require frequent follow-up and integrative personalized therapeutic approaches.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatimah M. Yahya
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf Dallol
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
5
|
Circulating Cell-Free DNA Methylation Profiles in the Early Detection of Ovarian Cancer: A Scoping Review of the Literature. Cancers (Basel) 2021; 13:cancers13040838. [PMID: 33671298 PMCID: PMC7923044 DOI: 10.3390/cancers13040838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary There are limited non-invasive methods for detecting epithelial ovarian cancer despite early detection and treatment dramatically increasing survival. As alterations in serum or plasma cell-free (cf)DNA methylation occur early in cancer development, they are promising biomarkers for ovarian cancer. Our literature review includes 18 studies depicting a wide array of gene targets and techniques. The data suggest a good performance of these cfDNA methylation tests, with accuracies up to 91% in detecting ovarian cancer in serum or plasma. Abstract Epithelial ovarian cancer is the most lethal gynecologic malignancy and has few reliable non-invasive tests for early detection or diagnosis. Recent advances in genomic techniques have bolstered the utility of cell-free DNA (cfDNA) evaluation from peripheral blood as a viable cancer biomarker. For multiple reasons, comparing alterations in DNA methylation is particularly advantageous over other molecular assays. We performed a literature review for studies exploring cfDNA methylation in serum and plasma for the early diagnosis of ovarian cancer. The data suggest that serum/plasma cfDNA methylation tests have strong diagnostic accuracies for ovarian cancer (median 85%, range 40–91%). Moreover, there is improved diagnostic performance if multiple genes are used and if the assays are designed to compare detection of ovarian cancer with benign pelvic masses. We further highlight the vast array of possible gene targets and techniques, and a need to include more earlier-stage ovarian cancer samples in test development. Overall, we show the promise of cfDNA methylation analysis in the development of a viable diagnostic biomarker for ovarian cancer.
Collapse
|
6
|
Al-Alem LF, Baker AT, Pandya UM, Eisenhauer EL, Rueda BR. Understanding and Targeting Apoptotic Pathways in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11111631. [PMID: 31652965 PMCID: PMC6893837 DOI: 10.3390/cancers11111631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer cells evade the immune system as well as chemotherapeutic and/or biologic treatments through inherent or acquired mechanisms of survival and drug resistance. Depending on the cell type and the stimuli, this threshold can range from external forces such as blunt trauma to programmed processes such as apoptosis, autophagy, or necroptosis. This review focuses on apoptosis, which is one form of programmed cell death. It highlights the multiple signaling pathways that promote or inhibit apoptosis and reviews current clinical therapies that target apoptotic pathways in ovarian cancer.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
| | - Eric L Eisenhauer
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
- Gynecology and Oncology Division, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
- Gynecology and Oncology Division, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, Wang X, Yi T, Zhao X, Wei Y, Wang H, Zhao L, Zhou S. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 2018; 17:109. [PMID: 30064416 PMCID: PMC6069741 DOI: 10.1186/s12943-018-0855-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Qilian Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuqing Yang
- Nanchang University, Nanchang, People's Republic of China
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Kexin Tang
- Sichuan Normal University Affiliated Middle School, Chengdu, People's Republic of China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, USA
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Shuang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Hongjing Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
8
|
El Bairi K, Amrani M, Kandhro AH, Afqir S. Prediction of therapy response in ovarian cancer: Where are we now? Crit Rev Clin Lab Sci 2017; 54:233-266. [PMID: 28443762 DOI: 10.1080/10408363.2017.1313190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Therapy resistance is a major challenge in the management of ovarian cancer (OC). Advances in detection and new technology validation have led to the emergence of biomarkers that can predict responses to available therapies. It is important to identify predictive biomarkers to select resistant and sensitive patients in order to reduce important toxicities, to reduce costs and to increase survival. The discovery of predictive and prognostic biomarkers for monitoring therapy is a developing field and provides promising perspectives in the era of personalized medicine. This review article will discuss the biology of OC with a focus on targetable pathways; current therapies; mechanisms of resistance; predictive biomarkers for chemotherapy, antiangiogenic and DNA-targeted therapies, and optimal cytoreductive surgery; and the emergence of liquid biopsy using recent studies from the Medline database and ClinicalTrials.gov.
Collapse
Affiliation(s)
- Khalid El Bairi
- a Faculty of Medicine and Pharmacy , Mohamed Ist University , Oujda , Morocco
| | - Mariam Amrani
- b Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department , National Institute of Oncology, Université Mohamed V , Rabat , Morocco
| | - Abdul Hafeez Kandhro
- c Department of Biochemistry , Healthcare Molecular and Diagnostic Laboratory , Hyderabad , Pakistan
| | - Said Afqir
- d Department of Medical Oncology , Mohamed VI University Hospital , Oujda , Morocco
| |
Collapse
|
9
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell Oncol (Dordr) 2017; 40:105-118. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco.
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
10
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
11
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
12
|
Garrett LA, Growdon WB, Rueda BR, Foster R. Influence of a novel histone deacetylase inhibitor panobinostat (LBH589) on the growth of ovarian cancer. J Ovarian Res 2016; 9:58. [PMID: 27633667 PMCID: PMC5025559 DOI: 10.1186/s13048-016-0267-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background Pre-clinical studies have demonstrated that natural and synthetic histone deacetylase (HDAC) inhibitors can impede the in vitro and in vivo growth of cell lines from a variety of gynecologic and other malignancies. We investigated the anti-tumor activity of panobinostat (LBH589) both in vitro and in vivo as either a single agent or in combination with conventional cytotoxic chemotherapy using patient-derived xenograft (PDX) models of primary serous ovarian tumors. Methods The ovarian cancer cell lines OVCAR8, SKOV3 and their paclitaxel-resistant derivatives OVCAR8-TR and SKOV3-TR were treated with increasing doses of LBH589. The effect of LBH589 on cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Serially transplanted primary human high-grade serous ovarian adenocarcinoma tissue was utilized to generate xenografts in 6-week old female NOD/SCID mice. The mice were then randomized into one of 4 treatment groups: (1) vehicle control; (2) paclitaxel and carboplatin (P/C); (3) LBH589; or (4) P/C + LBH589. Mice were treated for 21 days and tumor volumes and mouse weights were obtained every 3 days. These experiments were performed in triplicate with three different patient derived tumors. Wilcoxan rank-sum testing was utilized to assess tumor volume differences. Results In vitro treatment with LBH589 significantly reduced the viability of both taxol-sensitive and taxol-resistant ovarian cancer cell lines (p < 0.01). In vivo treatment with LBH589 alone appeared tumorstatic and reduced tumor growth when compared to vehicle treatment (p < 0.007) after 21 days. This single agent activity was confirmed in two additional experiments with other PDX tumors (p < 0.03, p < 0.05). A potential additive effect of LBH589 and P/C, manifested as enhanced tumor regression with the addition of LBH589 compared to vehicle (p < 0.02), in one of the three analyzed serous PDX models. Conclusions Our findings suggest that pan-HDAC inhibition with panobinostat precludes the growth of ovarian cancer cell lines in vitro and PDXs in vivo. Added benefit of LBH589 to standard P/C therapy was observed in one of three PDX models suggesting improved response in a subset of serous ovarian cancers.
Collapse
Affiliation(s)
- Leslie A Garrett
- Division of Gynecologic Oncology, Department of OB/GYN, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Kirstein 3rd Floor, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02114, USA
| | - Whitfield B Growdon
- Division of Gynecologic Oncology, Department of OB/GYN, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9, Boston, MA, 02114-2696, USA.,Vincent Center for Reproductive Biology, Department of OB/GYN, Massachusetts General Hospital, 55 Fruit Street, Their 9, Boston, 02114-2696, USA.,Harvard Medical School, Boston, MA, 02114, USA
| | - Bo R Rueda
- Division of Gynecologic Oncology, Department of OB/GYN, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9, Boston, MA, 02114-2696, USA.,Vincent Center for Reproductive Biology, Department of OB/GYN, Massachusetts General Hospital, 55 Fruit Street, Their 9, Boston, 02114-2696, USA.,Harvard Medical School, Boston, MA, 02114, USA
| | - Rosemary Foster
- Division of Gynecologic Oncology, Department of OB/GYN, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9, Boston, MA, 02114-2696, USA. .,Vincent Center for Reproductive Biology, Department of OB/GYN, Massachusetts General Hospital, 55 Fruit Street, Their 9, Boston, 02114-2696, USA. .,Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Bai H, Cao D, Yang J, Li M, Zhang Z, Shen K. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy. J Cell Mol Med 2016; 20:581-93. [PMID: 26800494 PMCID: PMC5125785 DOI: 10.1111/jcmm.12771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghui Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Niskakoski A, Kaur S, Staff S, Renkonen-Sinisalo L, Lassus H, Järvinen HJ, Mecklin JP, Bützow R, Peltomäki P. Epigenetic analysis of sporadic and Lynch-associated ovarian cancers reveals histology-specific patterns of DNA methylation. Epigenetics 2015; 9:1577-87. [PMID: 25625843 PMCID: PMC4622692 DOI: 10.4161/15592294.2014.983374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to epigenetic inactivation of growth regulatory genes. Gene candidates for epigenetic regulation were identified from the literature and by expression profiling of ovarian and endometrial cancer cell lines treated with demethylating agents. Thirteen genes were chosen for methylation-specific multiplex ligation-dependent probe amplification assays on 104 (85 sporadic and 19 Lynch syndrome-associated) ovarian carcinomas. Increased methylation (i.e., hypermethylation) of variable degree was characteristic of ovarian carcinomas relative to the corresponding normal tissues, and hypermethylation was consistently more prominent in non-serous than serous tumors for individual genes and gene sets investigated. Lynch syndrome-associated clear cell carcinomas showed the highest frequencies of hypermethylation. Among endometrioid ovarian carcinomas, lower levels of promoter methylation of RSK4, SPARC, and HOXA9 were significantly associated with higher tumor grade; thus, the methylation patterns showed a shift to the direction of high-grade serous tumors. In conclusion, we provide evidence of a frequent epigenetic inactivation of RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, SFRP5, OPCML, and MIR34B in the development of non-serous ovarian carcinomas of Lynch and sporadic origin, as compared to serous tumors. Our findings shed light on the role of epigenetic mechanisms in ovarian tumorigenesis and identify potential targets for translational applications.
Collapse
Affiliation(s)
- Anni Niskakoski
- a Department of Medical Genetics; Biomedicum Helsinki ; University of Helsinki ; Helsinki , Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Saldanha SN, Tollefsbol TO. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis. J Cell Physiol 2014; 229:393-406. [PMID: 24105793 DOI: 10.1002/jcp.24466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell, and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review.
Collapse
Affiliation(s)
- Sabita N Saldanha
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biological Sciences, Alabama State University, Montgomery, Alabama
| | | |
Collapse
|
16
|
Niskakoski A, Kaur S, Renkonen-Sinisalo L, Lassus H, Järvinen HJ, Mecklin JP, Bützow R, Peltomäki P. Distinct molecular profiles in Lynch syndrome-associated and sporadic ovarian carcinomas. Int J Cancer 2013; 133:2596-608. [PMID: 23716351 DOI: 10.1002/ijc.28287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
Ovarian carcinoma in Lynch syndrome (LS) is associated with unexpectedly high survival; yet, beyond DNA mismatch repair (MMR) defects, the developmental mechanisms are unknown. We used established (genetic) and new (epigenetic) classifiers of ovarian cancer to explore similarities and differences between LS-associated and sporadic diseases. To this end, all available ovarian carcinomas (n = 20) from MMR gene mutation carriers ascertained through a nation-wide registry and 87 sporadic ovarian carcinomas of the main histological types were molecularly profiled. LS-ovarian carcinomas were mostly of nonserous histology (12 endometrioid, seven clear cell and one serous), diagnosed at a mean age of 45.7 years, and associated with a 10-year survival of 87%. Among LS-ovarian carcinomas, 19/20 (95%) were MMR-deficient vs. 11/87 (13%) among sporadic cases (p < 0.0001). In a striking contrast to the sporadic cases, the expression of p53 was normal and KRAS/BRAF mutations absent in all LS-ovarian carcinomas. PIK3CA mutations, suggested to be a favorable prognostic factor, occurred with a frequency of 6/20 (30%), which was comparable to sporadic tumors of endometrioid or clear cell type. Tumor suppressor genes were more frequently methylated and LINE-1 hypomethylation less common in LS-ovarian carcinomas compared to their sporadic counterparts. The patterns of genetic and epigenetic alterations reflected the origin as LS vs. sporadic cases on one hand and the histological type on the other hand. In conclusion, the significant molecular differences observed between LS-associated and sporadic ovarian carcinomas help explain the different behavior of these tumors and emphasize the need for tailored clinical management.
Collapse
Affiliation(s)
- Anni Niskakoski
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ibragimova I, Maradeo ME, Dulaimi E, Cairns P. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics 2013; 8:486-93. [PMID: 23644518 PMCID: PMC3741218 DOI: 10.4161/epi.24552] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC.
Collapse
Affiliation(s)
- Ilsiya Ibragimova
- Cancer Epigenetics Program and Kidney Keystone Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
18
|
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A. Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br J Pharmacol 2013; 167:279-97. [PMID: 22536923 DOI: 10.1111/j.1476-5381.2012.02002.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy.
Collapse
Affiliation(s)
- B Stefanska
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
19
|
Ovarian cancer: in search of better marker systems based on DNA repair defects. Int J Mol Sci 2013; 14:640-73. [PMID: 23344037 PMCID: PMC3565287 DOI: 10.3390/ijms14010640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/14/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the fifth most common female cancer in the Western world, and the deadliest gynecological malignancy. The overall poor prognosis for ovarian cancer patients is a consequence of aggressive biological behavior and a lack of adequate diagnostic tools for early detection. In fact, approximately 70% of all patients with epithelial ovarian cancer are diagnosed at advanced tumor stages. These facts highlight a significant clinical need for reliable and accurate detection methods for ovarian cancer, especially for patients at high risk. Because CA125 has not achieved satisfactory sensitivity and specificity in detecting ovarian cancer, numerous efforts, including those based on single and combined molecule detection and “omics” approaches, have been made to identify new biomarkers. Intriguingly, more than 10% of all ovarian cancer cases are of familial origin. BRCA1 and BRCA2 germline mutations are the most common genetic defects underlying hereditary ovarian cancer, which is why ovarian cancer risk assessment in developed countries, aside from pedigree analysis, relies on genetic testing of BRCA1 and BRCA2. Because not only BRCA1 and BRCA2 but also other susceptibility genes are tightly linked with ovarian cancer-specific DNA repair defects, another possible approach for defining susceptibility might be patient cell-based functional testing, a concept for which support came from a recent case-control study. This principle would be applicable to risk assessment and the prediction of responsiveness to conventional regimens involving platinum-based drugs and targeted therapies involving poly (ADP-ribose) polymerase (PARP) inhibitors.
Collapse
|
20
|
Samudio-Ruiz SL, Hudson LG. Increased DNA methyltransferase activity and DNA methylation following Epidermal Growth Factor stimulation in ovarian cancer cells. Epigenetics 2012; 7:216-24. [PMID: 22430797 DOI: 10.4161/epi.7.3.19273] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer progression is correlated with accumulation of aberrant CpG island methylation. In ovarian cancer, ascites fluid contains numerous Epidermal-Growth-Factor-Receptor (EGFR) activators, which could result in a tumor microenvironment of constant EGFR activation. Signaling pathways downstream of EGFR, such as Ras, regulate DNA methylation. We hypothesized that chronic EGFR activation could alter DNA methylation. We found that EGFR activation increased DNA methyltransferase (DNMT) activity acutely, as well as after long-term EGF treatment or expression of a mutationally activated EGFR. Furthermore, this increase in DNMT activity was dependent on EGFR catalytic activity and resulted in increased global DNA methylation. Additionally, treatment with the DNMT inhibitor/hypomethylating agent 5-Aza-2'-deoxycytidine (AZA) inhibited the EGF induced increase of both DNMT activity and global methylation. These data support a role for EGFR in the process of accumulated DNA methylation during ovarian cancer progression and suggest that epigenetic therapy may be beneficial for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sabrina L Samudio-Ruiz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | | |
Collapse
|
21
|
Boyd ME, Heimer BW, Sikes HD. Functional heterologous expression and purification of a mammalian methyl-CpG binding domain in suitable yield for DNA methylation profiling assays. Protein Expr Purif 2012; 82:332-8. [PMID: 22326799 DOI: 10.1016/j.pep.2012.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
DNA methylation is a major epigenetic modification in mammalian cells, and patterns involving methylation of cytosine bases, known as CpG methylation, have been implicated in the development of many types of cancer. Methyl binding domains (MBDs) excised from larger mammalian methyl-CpG-binding proteins specifically recognize methyl-cytosine bases of CpG dinucleotides in duplex DNA. Previous molecular diagnostic studies involving MBDs have employed Escherichia coli for protein expression with either low soluble yields or the use of time-consuming denaturation-renaturation purification procedures to improve yields. Efficient MBD-based diagnostics require expression and purification methods that maximize protein yield and minimize time and resource expenditure. This study is a systematic optimization analysis of MBD expression using both SDS-PAGE and microscopy and it provides a comparison of protein yield from published procedures to that from the conditions found to be optimal in these experiments. Protein binding activity and specificity were verified using a DNA electrophoretic mobility shift assay, and final protein yield was improved from the starting conditions by a factor of 65 with a simple, single-step purification.
Collapse
Affiliation(s)
- Mary E Boyd
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Päivi Peltomäki
- Department of Medical Genetics, Haartman Institute, PO Box 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Ralf Bützow
- Departments of Obstetrics, Gynecology & Pathology, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Affiliation(s)
- Jean-Pierre Issa
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|