1
|
Wang B, Stevenson EL, Dunlap JC. Functional analysis of 110 phosphorylation sites on the circadian clock protein FRQ identifies clusters determining period length and temperature compensation. G3 (BETHESDA, MD.) 2023; 13:jkac334. [PMID: 36537198 PMCID: PMC9911066 DOI: 10.1093/g3journal/jkac334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In the negative feedback loop driving the Neurospora circadian oscillator, the negative element, FREQUENCY (FRQ), inhibits its own expression by promoting phosphorylation of its heterodimeric transcriptional activators, White Collar-1 (WC-1) and WC-2. FRQ itself also undergoes extensive time-of-day-specific phosphorylation with over 100 phosphosites previously documented. Although disrupting individual or certain clusters of phosphorylation sites has been shown to alter circadian period lengths to some extent, it is still elusive how all the phosphorylations on FRQ control its activity. In this study, we systematically investigated the role in period determination of all 110 reported FRQ phosphorylation sites, using mutagenesis and luciferase reporter assays. Surprisingly, robust FRQ phosphorylation is still detected even when 84 phosphosites were eliminated altogether; further mutating another 26 phosphoresidues completely abolished FRQ phosphorylation. To identify phosphoresidue(s) on FRQ impacting circadian period length, a series of clustered frq phosphomutants covering all the 110 phosphosites were generated and examined for period changes. When phosphosites in the N-terminal and middle regions of FRQ were eliminated, longer periods were typically seen while removal of phosphorylation in the C-terminal tail resulted in extremely short periods, among the shortest reported. Interestingly, abolishing the 11 phosphosites in the C-terminal tail of FRQ not only results in an extremely short period, but also impacts temperature compensation (TC), yielding an overcompensated circadian oscillator. In addition, the few phosphosites in the middle of FRQ are also found to be crucial for TC. When different groups of FRQ phosphomutations were combined intramolecularly, expected additive effects were generally observed except for one novel case of intramolecular epistasis, where arrhythmicity resulting from one cluster of phosphorylation site mutants was restored by eliminating phosphorylation at another group of sites.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Elizabeth-Lauren Stevenson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin Oncol (R Coll Radiol) 2019; 31:326-335. [DOI: 10.1016/j.clon.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
|
3
|
Loros JJ. Principles of the animal molecular clock learned from Neurospora. Eur J Neurosci 2019; 51:19-33. [PMID: 30687965 DOI: 10.1111/ejn.14354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
Study of Neurospora, a model system evolutionarily related to animals and sharing a circadian system having nearly identical regulatory architecture to that of animals, has advanced our understanding of all circadian rhythms. Work on the molecular bases of the Oscillator began in Neurospora before any clock genes were cloned and provided the second example of a clock gene, frq, as well as the first direct experimental proof that the core of the Oscillator was built around a transcriptional translational negative feedback loop (TTFL). Proof that FRQ was a clock component provided the basis for understanding how light resets the clock, and this in turn provided the generally accepted understanding for how light resets all animal and fungal clocks. Experiments probing the mechanism of light resetting led to the first identification of a heterodimeric transcriptional activator as the positive element in a circadian feedback loop, and to the general description of the fungal/animal clock as a single step TTFL. The common means through which DNA damage impacts the Oscillator in fungi and animals was first described in Neurospora. Lastly, the systematic study of Output was pioneered in Neurospora, providing the vocabulary and conceptual framework for understanding how Output works in all cells. This model system has contributed to the current appreciation of the role of Intrinsic Disorder in clock proteins and to the documentation of the essential roles of protein post-translational modification, as distinct from turnover, in building a circadian clock.
Collapse
Affiliation(s)
- Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
4
|
Green CB. Circadian Posttranscriptional Regulatory Mechanisms in Mammals. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030692. [PMID: 28778869 DOI: 10.1101/cshperspect.a030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The circadian clock drives rhythms in the levels of thousands of proteins in the mammalian cell, arising in part from rhythmic transcriptional regulation of the genes that encode them. However, recent evidence has shown that posttranscriptional processes also play a major role in generating the rhythmic protein makeup and ultimately the rhythmic physiology of the cell. Regulation of steps throughout the life of the messenger RNA (mRNA), ranging from initial mRNA processing and export from the nucleus to extensive control of translation and degradation in the cytosol have been shown to be important for producing the final rhythms in protein levels critical for proper circadian rhythmicity. These findings will be reviewed here.
Collapse
Affiliation(s)
- Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
5
|
Bian SS, Zheng XL, Sun HQ, Chen JH, Lu YL, Liu YQ, Tao DC, Ma YX. Clock1a affects mesoderm development and primitive hematopoiesis by regulating Nodal-Smad3 signaling in the zebrafish embryo. J Biol Chem 2017; 292:14165-14175. [PMID: 28687631 DOI: 10.1074/jbc.m117.794289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Indexed: 02/05/2023] Open
Abstract
Circadian clock and Smad2/3/4-mediated Nodal signaling regulate multiple physiological and pathological processes. However, it remains unknown whether Clock directly cross-talks with Nodal signaling and how this would regulate embryonic development. Here we show that Clock1a coordinated mesoderm development and primitive hematopoiesis in zebrafish embryos by directly up-regulating Nodal-Smad3 signaling. We found that Clock1a is expressed both maternally and zygotically throughout early zebrafish development. We also noted that Clock1a alterations produce embryonic defects with shortened body length, lack of the ventral tail fin, or partial defect of the eyes. Clock1a regulates the expression of the mesodermal markers ntl, gsc, and eve1 and of the hematopoietic markers scl, lmo2, and fli1a Biochemical analyses revealed that Clock1a stimulates Nodal signaling by increasing expression of Smad2/3/4. Mechanistically, Clock1a activates the smad3a promoter via its E-box1 element (CAGATG). Taken together, these findings provide mechanistic insight into the role of Clock1a in the regulation of mesoderm development and primitive hematopoiesis via modulation of Nodal-Smad3 signaling and indicate that Smad3a is directly controlled by the circadian clock in zebrafish.
Collapse
Affiliation(s)
- Sha-Sha Bian
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Xu-Lei Zheng
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Hua-Qin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Hui Chen
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yi-Lu Lu
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yun-Qiang Liu
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Da-Chang Tao
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yong-Xin Ma
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China.
| |
Collapse
|
6
|
Nolte C, Staiger D. RNA around the clock - regulation at the RNA level in biological timing. FRONTIERS IN PLANT SCIENCE 2015; 6:311. [PMID: 25999975 PMCID: PMC4419606 DOI: 10.3389/fpls.2015.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/19/2015] [Indexed: 05/21/2023]
Abstract
The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms.
Collapse
Affiliation(s)
| | - Dorothee Staiger
- *Correspondence: Dorothee Staiger, Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Universitaetsstrasse 25, Bielefeld D-33615, Germany
| |
Collapse
|
7
|
Ribonucleoprotein complexes that control circadian clocks. Int J Mol Sci 2013; 14:9018-36. [PMID: 23698761 PMCID: PMC3676770 DOI: 10.3390/ijms14059018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/07/2013] [Accepted: 04/15/2013] [Indexed: 12/03/2022] Open
Abstract
Circadian clocks are internal molecular time-keeping mechanisms that enable organisms to adjust their physiology and behavior to the daily surroundings. Misalignment of circadian clocks leads to both physiological and health impairment. Post-transcriptional regulation and translational regulation of circadian clocks have been extensively investigated. In addition, accumulating evidence has shed new light on the involvement of ribonucleoprotein complexes (RNPs) in the post-transcriptional regulation of circadian clocks. Numerous RNA-binding proteins (RBPs) and RNPs have been implicated in the post-transcriptional modification of circadian clock proteins in different model organisms. Herein, we summarize the advances in the current knowledge on the role of RNP complexes in circadian clock regulation.
Collapse
|
8
|
McClung CR. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 2013; 24:430-6. [PMID: 23466287 DOI: 10.1016/j.semcdb.2013.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, Hanover, NH 03755, USA.
| |
Collapse
|
9
|
Gotic I, Schibler U. The ticking tail: daily oscillations in mRNA poly(A) tail length drive circadian cycles in protein synthesis. Genes Dev 2013; 26:2669-72. [PMID: 23249731 DOI: 10.1101/gad.210690.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Genes & Development, Kojima and colleagues (pp. 2724-2736) examined the impact of mRNA poly(A) tail length on circadian gene expression. Their study demonstrates how dynamic changes in transcript poly(A) tail length can lead to rhythmic protein expression, irrespective of whether mRNA accumulation is circadian or constitutive.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Molecular Biology, National Centre of Competence in Research "Frontiers in Genetics," University of Geneva, CH-1211 Geneva-4, Switzerland.
| | | |
Collapse
|
10
|
Chauton MS, Winge P, Brembu T, Vadstein O, Bones AM. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. PLANT PHYSIOLOGY 2013; 161:1034-48. [PMID: 23209127 PMCID: PMC3561001 DOI: 10.1104/pp.112.206177] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The regulation of carbon metabolism in the diatom Phaeodactylum tricornutum at the cell, metabolite, and gene expression levels in exponential fed-batch cultures is reported. Transcriptional profiles and cell chemistry sampled simultaneously at all time points provide a comprehensive data set on carbon incorporation, fate, and regulation. An increase in Nile Red fluorescence (a proxy for cellular neutral lipids) was observed throughout the light period, and water-soluble glucans increased rapidly in the light period. A near-linear decline in both glucans and lipids was observed during the dark period, and transcription profile data indicated that this decline was associated with the onset of mitosis. More than 4,500 transcripts that were differentially regulated during the light/dark cycle are identified, many of which were associated with carbohydrate and lipid metabolism. Genes not previously described in algae and their regulation in response to light were integrated in this analysis together with proposed roles in metabolic processes. Some very fast light-responding genes in, for example, fatty acid biosynthesis were identified and allocated to biosynthetic processes. Transcripts and cell chemistry data reflect the link between light energy availability and light energy-consuming metabolic processes. Our data confirm the spatial localization of processes in carbon metabolism to either plastids or mitochondria or to glycolysis/gluconeogenesis, which are localized to the cytosol, chloroplast, and mitochondria. Localization and diel expression pattern may be of help to determine the roles of different isoenzymes and the mining of genes involved in light responses and circadian rhythms.
Collapse
|
11
|
Perez-Santangelo S, Schlaen RG, Yanovsky MJ. Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks. Brief Funct Genomics 2012; 12:13-24. [DOI: 10.1093/bfgp/els052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012; 1:e00011. [PMID: 23150795 PMCID: PMC3492862 DOI: 10.7554/elife.00011] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues.DOI:http://dx.doi.org/10.7554/eLife.00011.001.
Collapse
Affiliation(s)
- Jerome S Menet
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| | - Joseph Rodriguez
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| | - Katharine C Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| |
Collapse
|
13
|
Liang X, Zhang L, Wan Y, Yu X, Guo Y, Chen X, Tan C, Huang T, Shen H, Chen X, Li H, Lv K, Sun F, Chen S, Guo J. Changes in the diurnal rhythms during a 45-day head-down bed rest. PLoS One 2012; 7:e47984. [PMID: 23110150 PMCID: PMC3480480 DOI: 10.1371/journal.pone.0047984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/19/2012] [Indexed: 01/20/2023] Open
Abstract
In spaceflight human circadian rhythms and sleep patterns are likely subject to change, which consequently disturbs human physiology, cognitive abilities and performance efficiency. However, the influence of microgravity on sleep and circadian clock as well as the underlying mechanisms remain largely unknown. Placing volunteers in a prone position, whereby their heads rest at an angle of -6° below horizontal, mimics the microgravity environment in orbital flight. Such positioning is termed head-down bed rest (HDBR). In this work, we analysed the influence of a 45-day HDBR on physiological diurnal rhythms. We examined urinary electrolyte and hormone excretion, and the results show a dramatic elevation of cortisol levels during HDBR and recovery. Increased diuresis, melatonin and testosterone were observed at certain periods during HDBR. In addition, we investigated the changes in urination and defecation frequencies and found that the rhythmicity of urinary frequency during lights-off during and after HDBR was higher than control. The grouped defecation frequency data exhibits rhythmicity before and during HDBR but not after HDBR. Together, these data demonstrate that HDBR can alter a number of physiological processes associated with diurnal rhythms.
Collapse
Affiliation(s)
- Xiaodi Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Wan
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyang Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| | - Cheng Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| | - Tianle Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hanjie Shen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianyun Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongying Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| | - Fei Sun
- School of Life Sciences, University of Science and Technology of China, and Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Shanguang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| | - Jinhu Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|