1
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
4
|
Alemu M, Lulekal E, Asfaw Z, Warkineh B, Debella A, Abebe A, Degu S, Debebe E. Antibacterial activity and phytochemical screening of traditional medicinal plants most preferred for treating infectious diseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia. PLoS One 2024; 19:e0300060. [PMID: 38442129 PMCID: PMC10914283 DOI: 10.1371/journal.pone.0300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Ethiopia's healthcare system relies on traditional medicinal practices that use medicinal plants to treat human and livestock ailments. However, the lack of empirical validation regarding the efficacy of these treatments against specific infectious diseases necessitates rigorous scientific investigations. The objective of this study was to investigate the antibacterial activity and phytochemical screening on five selected medicinal plant species, namely Solanum somalense Franchet., Verbascum sinaiticum Benth., Rumex nervosus Vahl, Withania somnifera (L.) Dunal and Calpurnia aurea (Ait.) Benth. The plants were first identified jointly with local informants and later considering mainly their high informant consensus and fidelity level values for their efficacy in treating infectious diseases in the area. Ethanol and aqueous extracts were prepared from the plant materials, and their antibacterial activities were evaluated against standard bacterial strains, representing both gram-positive and gram-negative types. To assess the antibacterial activity of the extracts, the minimum inhibitory concentration (MIC) was determined using the broth dilution method. Additionally, phytochemical screening was performed using standard qualitative tests to identify various secondary metabolites. The results indicated antibacterial efficacy in the ethanol extracts of S. somalense, W. somnifera, and C. aurea against particular bacterial strains (S. somalense against S. agalactiae with MIC of 1.5 mg/mL; W. somnifera against S. aureus and E. coli, with MIC of 2 mg/mL; C. aurea against E. coli and K. pneumoniae, with MICs of 3 mg/mL and 3.5 mg/mL, respectively). The results of the phytochemical screening indicated the presence of steroids, alkaloids, flavonoids, saponins, and terpenoids. The selected medicinal plants demonstrated promising antibacterial activity against certain bacterial strains. The current findings support the long-standing claim of the traditional medical system of the study area for their continued use of these plants in their treatment of infectious diseases. Further investigation is required to isolate the responsible active compounds and characterize the constituents and description of their antibacterial effect for possible use in areas where these infectious diseases are major health problems.
Collapse
Affiliation(s)
- Mulugeta Alemu
- College of Natural and Computational Sciences, Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
- Nefas Silk Polytechnic College, Department of Urban Agriculture, Addis Ababa, Ethiopia
| | - Ermias Lulekal
- College of Natural and Computational Sciences, Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zemede Asfaw
- College of Natural and Computational Sciences, Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bikila Warkineh
- College of Natural and Computational Sciences, Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asfaw Debella
- Armauer Hansen Research Institute, Traditional and Modern Medicine Research and Development Directorate, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Armauer Hansen Research Institute, Traditional and Modern Medicine Research and Development Directorate, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Armauer Hansen Research Institute, Traditional and Modern Medicine Research and Development Directorate, Addis Ababa, Ethiopia
| | - Eyob Debebe
- Armauer Hansen Research Institute, Traditional and Modern Medicine Research and Development Directorate, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Bera A, Roy RK, Joshi P, Patra N. Machine Learning-Guided Discovery of AcrB and MexB Efflux Pump Inhibitors. J Phys Chem B 2024; 128:648-663. [PMID: 38198225 DOI: 10.1021/acs.jpcb.3c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Multidrug efflux pump is one of the reasons behind the antimicrobial inactivity related to infection caused by Gram-negative pathogens. The inner membrane resistance-nodulation-cell division transporter proteins, AcrB and MexB, in association with outer membrane proteins, TolC and OprM, are responsible for the extrusion of a broad range of substrates, followed by recognizing them. Although various inhibitors were proposed to stop the efflux activity of the transporter protein, none of them had been approved clinically. Our study aims to identify potent inhibitor-like molecules employing supervised classification models trained upon the molecular descriptors of previously known inhibitors. Based on the intrinsic minimum inhibitory concentration (MIC) values of the reported inhibitors, they were classified into highly potent and less potent categories. A total of 10 different classification models were built using various molecular descriptors; among them, support vector machine, Random Forest, AdaBoost, and LightGBM models appeared to deliver promising results with >80% accuracy. These top four models were implemented on a library of 5043 to obtain 8 hit molecules after the multistep filtering process. To assess their activity toward AcrB and MexB, several molecular dynamics simulations of their ligand-bound structures were performed. We also calculated the binding free-energy values and analyzed other structural properties. Mol.3488 of the unknown molecules showed higher binding affinities for both AcrB and MexB. Also, the presence of "pyridopyrimidone" and "benzothiazole" moieties in the molecules and "V"-shaped orientation of ligands inside the deep binding pocket increase the binding affinity, thereby higher inhibitory properties.
Collapse
Affiliation(s)
- Abhishek Bera
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Rakesh Kumar Roy
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Pritish Joshi
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
6
|
Vieira Da Cruz A, Jiménez-Castellanos JC, Börnsen C, Van Maele L, Compagne N, Pradel E, Müller RT, Meurillon V, Soulard D, Piveteau C, Biela A, Dumont J, Leroux F, Deprez B, Willand N, Pos KM, Frangakis AS, Hartkoorn RC, Flipo M. Pyridylpiperazine efflux pump inhibitor boosts in vivo antibiotic efficacy against K. pneumoniae. EMBO Mol Med 2024; 16:93-111. [PMID: 38177534 PMCID: PMC10897476 DOI: 10.1038/s44321-023-00007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.
Collapse
Affiliation(s)
- Anais Vieira Da Cruz
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Juan-Carlos Jiménez-Castellanos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Clara Börnsen
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Laurye Van Maele
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Elizabeth Pradel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Reinke T Müller
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
| | - Virginie Meurillon
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Daphnée Soulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Julie Dumont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, US 41-UAR 2014-PLBS, F-59000, Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany.
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany.
| | - Ruben C Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
7
|
Daoud L, Al-Marzooq F, Ghazawi A, Anes F, Collyns T. High efficacy and enhanced synergistic activity of the novel siderophore-cephalosporin cefiderocol against multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae from inpatients attending a single hospital in the United Arab Emirates. J Infect Public Health 2023; 16 Suppl 1:33-44. [PMID: 37953111 DOI: 10.1016/j.jiph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cefiderocol (CFDC) is a novel siderophore-cephalosporin, which usually penetrates the bacteria through the iron-uptake pathways. Data is limited on the factors affecting CFDC activity and methods for overcoming resistance development. Synergistic approaches are needed to tackle antimicrobial resistance. This study aimed to determine CFDC activity on Klebsiella pneumoniae isolates from patients attending a single hospital in the United Arab Emirates (UAE), to explore the effect of β-lactamases on CFDC activity and to enhance CFDC susceptibility in both iron-depleted and iron-enriched conditions. METHODS We investigated 238 K. pneumoniae strains from diverse clinical sources. β-lactamase genes were detected by PCR. Susceptibility to CFDC and 12 comparator antibiotics were tested. Combinations of CFDC with β-lactamase inhibitors (BLIs) and/or an outer membrane (OM) permeabilizer (polymyxin B nonapeptide) were tested in iron-depleted and iron-enriched conditions. RESULTS CFDC exhibited efficacy of 97.9%, against multidrug-resistant (MDR), and extensively drug-resistant (XDR) strains, in addition to strains resistant to the last resort drugs such as colistin and tigecycline, including dual carbapenemase-producers (blaNDM and blaOXA-48-like) with MIC ≤ 0.06-8 µg/ml. It was effective in killing strains with single and multiple β-lactamases; however, it lost activity in iron-enriched conditions. Synergy was achieved with dual combination of CFDC and BLIs, especially avibactam, which caused a significant reduction in MICs even in iron-enriched conditions. A significant reduction was seen with the triple combination including an OM permeabilizer plus avibactam. Killing-kinetic studies proved that the combination therapy caused dose reduction and faster killing by CFDC than the monotherapy. CONCLUSIONS CFDC was deemed effective against MDR and XDR K. pneumoniae. Synergistic combination of CFDC with BLIs and OM permeabilizers could be effective to treat infections in iron-rich sites, but this should be investigated in vivo.
Collapse
Affiliation(s)
- Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Febin Anes
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
8
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
9
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
10
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565 DOI: 10.5483/bmbrep.2023-0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
11
|
Pun M, Khazanov N, Galsurker O, Kerem Z, Senderowitz H, Yedidia I. Inhibition of AcrAB-TolC enhances antimicrobial activity of phytochemicals in Pectobacterium brasiliense. FRONTIERS IN PLANT SCIENCE 2023; 14:1161702. [PMID: 37229130 PMCID: PMC10203483 DOI: 10.3389/fpls.2023.1161702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Introduction The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.
Collapse
Affiliation(s)
- Manoj Pun
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ortal Galsurker
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Iris Yedidia
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| |
Collapse
|
12
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
13
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
14
|
Chemical profile and in vitro Antibacterial potential of Essential Oils and Hydrolat Extracts from Aerial Parts of Three Wild species of Moroccan Thymus. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Afeke I, Adu-Amankwaah J, Nyarko M, Bushi A, Ablordey AS, Duah PA, I Wowui P, Orish VN. Acinetobacter baumannii-induced infective endocarditis: new insights into pathophysiology and antibiotic resistance mechanisms. Future Microbiol 2022; 17:1335-1344. [DOI: 10.2217/fmb-2021-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infective endocarditis (IE), characterized by inflammation of the endocardial surface of the heart and its valves, results from infections caused by Staphylococcus, Streptococcus and Acinetobacter species and less commonly fungi. Acinetobacter-induced IE is a relatively rare condition with significant morbidity and mortality worldwide. Notably, its mortality rate is greater than that of endocarditis induced by Haemophilus species, Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens and Kingella kingae. Although it is rare, Acinetobacter-induced IE caused by A. baumannii might bring unique therapeutic challenges such as increased antibiotic resistance. Therefore, it is vital to understand perfectly the possible pathophysiologic and antibiotic resistance mechanisms adopted by A. baumannii during IE. This review discusses the probable underlying pathomechanisms involved in A. baumannii-induced IE and highlights the potential antibiotic resistance mechanisms, suggesting therapeutic targets for A. baumannii-induced IE.
Collapse
Affiliation(s)
- Innocent Afeke
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health & Allied Sciences, PM 31, Ho, Volta Region, Ghana
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mary Nyarko
- Department of Nursing & Midwifery, Pentecost University, Sowutuom, Ghana
| | - Aisha Bushi
- Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Anthony S Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Priscilla A Duah
- Department of Pharmacy, Nanjing Technology University, Nanjing, Jiangsu, China
| | - Prosperl I Wowui
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Verner N Orish
- Department of Microbiology & Immunology, School of Medicine, University of Health & Allied Sciences, Ho, Ghana
| |
Collapse
|
16
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Kim M, Sowndhararajan K, Kim S. The Chemical Composition and Biological Activities of Essential Oil from Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Molecules 2022; 27:molecules27134251. [PMID: 35807496 PMCID: PMC9268194 DOI: 10.3390/molecules27134251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Thymus quinquecostatus Celak. (Korean name: bak-ri-hyang) is an important medicinal and aromatic herb in Korea, which is named for the spread of its fragrance over a distance of approximately 40 km. In traditional Korean systems of medicine, T. quinquecostatus has been used to treat cancer, constipation, hepatic disease, arteriosclerosis, poor circulation in women, constipation, and menstrual irregularities. At present, T. quinquecostatus is used only for ornamental and ground cover purposes. A literature search was conducted to retrieve information regarding the essential oil composition and biological properties of T. quinquecostatus from PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Wiley, and other literature databases. T. quinquecostatus can be divided into different chemotypes, such as γ-terpinene, thymol, phenol, carvacrol, and geraniol, according to the presence of major components in its essential oil. Further, the essential oil from T. quinquecostatus has been reported to possess various therapeutic properties such as antioxidant, antimicrobial, anticancer, anti-inflammatory, analgesic, sleep prolonging, soothing, skin protection and whitening, anti-aging, anti-obesity, and anti-acne properties. In conclusion, this review will be helpful for utilizing the T. quinquecostatus plant in different industries including food, pharmaceuticals, pesticides, perfumery, and cosmetics.
Collapse
Affiliation(s)
- Minju Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea;
| | | | - Songmun Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: ; Tel.: +82-33-250-6447
| |
Collapse
|
18
|
Yi K, Liu S, Liu P, Luo X, Zhao J, Yan F, Pan Y, Liu J, Zhai Y, Hu G. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella. Biomed Pharmacother 2022; 149:112873. [PMID: 35349932 DOI: 10.1016/j.biopha.2022.112873] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
It has been recognized that colistin resistance is a growing problem that seriously impairs the clinical efficacy of colistin against bacterial infections. One strategy that has been proven to have therapeutic effect is to overcome the widespread emergence of antibiotic-resistant pathogens by combining existing antibiotics with promising non-antibiotic agents. In this work, antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of the combination. The molecular mechanisms of tetrandrine in combination with colistin were analyzed using fluorometric assay and Real-time PCR. To predict possible interactions between tetrandrine and MCR-1, molecular docking assay was taken. Finally, we evaluated the in vivo efficacy of tetrandrine in combination with colistin against MCR-positive Salmonella. Overall, the combination of tetrandrine and colistin showed significant synergistic activity. In-depth mechanistic analysis showed that the combination of tetrandrine with colistin enhances the membrane-damaging ability of colistin, undermines the functions of proton motive force (PMF) and efflux pumps in MCR-positive bacteria. The results of molecular docking and RT-PCR analyses showed that tetrandrine not only affects the expression of mcr-1 but is also an effective MCR-1 inhibitor. Compared with colistin monotherapy, the combination of tetrandrine with colistin significantly reduced the bacterial load in vivo. Our findings demonstrated that tetrandrine serves as a potential colistin adjuvant against MCR-positive Salmonella.
Collapse
Affiliation(s)
- Kaifang Yi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuobo Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Peiyi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xingwei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinfeng Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jianhua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
19
|
Adhyapak P, Dong W, Dasgupta S, Dutta A, Duan M, Kapoor S. Lipid Clustering in Mycobacterial Cell Envelope Layers Governs Spatially Resolved Solvation Dynamics. Chem Asian J 2022; 17:e202200146. [PMID: 35419975 DOI: 10.1002/asia.202200146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Indexed: 11/06/2022]
Abstract
The mycobacterial cell envelope acts as a multilayered barrier to drugs. However, the role of lipid composition in the properties of different mycobacterial membranes, otherwise dictating their interactions with drugs, is poorly understood. In this study, we found that hydration states, solvation relaxation kinetics, rotational lipid mobility, and lateral lipid diffusion differed between inner and outer mycobacterial membranes. Molecular modeling showed that lipid clustering patterns governed membrane dynamics in the different layers of the cell envelope. By regulating membrane properties, lipid composition and structure modulated water abundance and interactions with lipid head groups. These findings can help deepen our understanding of the physical chemistry underlying membrane structure and function, as well as the interaction of mycobacterial membranes with drugs and host membranes.
Collapse
Affiliation(s)
- Pranav Adhyapak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Wanqian Dong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Anindya Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mojie Duan
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan
| |
Collapse
|
20
|
Lauteri C, Maggio F, Serio A, Festino AR, Paparella A, Vergara A. Overcoming Multidrug Resistance in Salmonella spp. Isolates Obtained From the Swine Food Chain by Using Essential Oils: An in vitro Study. Front Microbiol 2022; 12:808286. [PMID: 35222307 PMCID: PMC8863735 DOI: 10.3389/fmicb.2021.808286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern, and new approaches are needed to circumvent animal and food-borne resistant pathogens. Among the new strategies, the combination of antibiotics with natural compounds such as essential oils (EOs) could be an alternative to challenge bacterial resistance. The present study evaluates the phenotypic and genotypic antibiotic resistance of 36 Salmonella enterica (16 S. Typhimurium, 3 monophasic variant S. Typhimurium, 8 S. Enteritidis, 6 S. Rissen, 1 S. Typhi, and 2 S. Derby) strains, isolated from the swine production chain. The isolates displayed phenotypic resistance to gentamicin, amikacin, tobramycin, and tetracycline, while the resistance genes most commonly detected were parC, catA, nfsB, nfsA, blaTEM, tetA, and tetB. Then 31/36 Salmonella isolates were chosen to evaluate resistance to tetracycline and Thymus vulgaris, Eugenia caryophyllata, and Corydothymus capitatus EOs by determining minimum inhibitory concentrations (MICs). Finally, the synergistic effect between tetracycline and each EOs was evaluated by the checkerboard method, calculating the fractional inhibitory concentration (FIC) index. Among the EOs, C. capitatus displayed the best bioactivity in terms of MICs, with the lowest values (0.31 and 0.625 μl/ml). On the contrary, the strains showed the ability to grow in the presence of the maximum concentration of tetracycline employed (256 μg/ml). While not displaying a real synergism according to the FIC index, the combination of tetracycline compounds and the three EOs resulted in a significant reduction in the MIC values to tetracycline (4 μg/ml), suggesting a restoration of the susceptibility to the antibiotic in Salmonella spp.
Collapse
Affiliation(s)
- Carlotta Lauteri
- Section of Food Inspection, Faculty of Veterinary Medicine, School of Specialization in Inspection of Foods of Animal Origin, “G. Tiecco” University of Teramo, Teramo, Italy
| | - Francesca Maggio
- Section of Food Microbiology, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalisa Serio
- Section of Food Microbiology, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Anna Rita Festino
- Section of Food Inspection, Faculty of Veterinary Medicine, School of Specialization in Inspection of Foods of Animal Origin, “G. Tiecco” University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Section of Food Microbiology, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alberto Vergara
- Section of Food Inspection, Faculty of Veterinary Medicine, School of Specialization in Inspection of Foods of Animal Origin, “G. Tiecco” University of Teramo, Teramo, Italy
| |
Collapse
|
21
|
Riu F, Ruda A, Engström O, Muheim C, Mobarak H, Ståhle J, Kosma P, Carta A, Daley DO, Widmalm G. A Lead-Based Fragment Library Screening of the Glycosyltransferase WaaG from Escherichia coli. Pharmaceuticals (Basel) 2022; 15:ph15020209. [PMID: 35215321 PMCID: PMC8877264 DOI: 10.3390/ph15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Glucosyl transferase I (WaaG) in E. coli catalyzes the transfer of an α-d-glucosyl group to the inner core of the lipopolysaccharide (LPS) and plays an important role in the biogenesis of the outer membrane. If its activity could be inhibited, the integrity of the outer membrane would be compromised and the bacterium would be susceptible to antibiotics that are normally prevented from entering the cell. Herein, three libraries of molecules (A, B and C) were docked in the binding pocket of WaaG, utilizing the docking binding affinity as a filter to select fragment-based compounds for further investigations. From the results of the docking procedure, a selection of compounds was investigated by molecular dynamics (MD) simulations to obtain binding free energy (BFE) and KD values for ligands as an evaluation for the binding to WaaG. Derivatives of 1,3-thiazoles (A7 and A4) from library A and 1,3,4-thiadiazole (B33) from library B displayed a promising profile of BFE, with KD < mM, viz., 0.11, 0.62 and 0.04 mM, respectively. Further root-mean-square-deviation (RMSD), electrostatic/van der Waals contribution to the binding and H-bond interactions displayed a favorable profile for ligands A4 and B33. Mannose and/or heptose-containing disaccharides C1–C4, representing sub-structures of the inner core of the LPS, were also investigated by MD simulations, and compound C42− showed a calculated KD = 0.4 µM. In the presence of UDP-Glc2−, the best-docked pose of disaccharide C42− is proximate to the glucose-binding site of WaaG. A study of the variation in angle and distance was performed on the different portions of WaaG (N-, the C- domains and the hinge region). The Spearman correlation coefficient between the two variables was close to unity, where both variables increase in the same way, suggesting a conformational rearrangement of the protein during the MD simulation, revealing molecular motions of the enzyme that may be part of the catalytic cycle. Selected compounds were also analyzed by Saturation Transfer Difference (STD) NMR experiments. STD effects were notable for the 1,3-thiazole derivatives A4, A8 and A15 with the apo form of the protein as well as in the presence of UDP for A4.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (F.R.); (A.C.)
| | - Alessandro Ruda
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Olof Engström
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Claudio Muheim
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden; (C.M.); (D.O.D.)
| | - Hani Mobarak
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Jonas Ståhle
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences—Vienna, 1190 Vienna, Austria;
| | - Antonio Carta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (F.R.); (A.C.)
| | - Daniel O. Daley
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden; (C.M.); (D.O.D.)
| | - Göran Widmalm
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
- Correspondence:
| |
Collapse
|
22
|
Gan WK, Liew HS, Pua LJW, Ng XY, Fong KW, Cheong SL, Liew YK, Low ML. Novel Cu(II) Schiff Base Complex Combination with Polymyxin B/Phenylalanine-Arginine β-Naphthylamide Against Various Bacterial Strains. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Spesia MB, Durantini EN. Evolution of Phthalocyanine Structures as Photodynamic Agents for Bacteria Inactivation. CHEM REC 2022; 22:e202100292. [PMID: 35018719 DOI: 10.1002/tcr.202100292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Phthalocyanine derivatives have been proposed as photosensitizers for the treatment of several microbial infections. In this review, the progress in the structures of phthalocyanines was analyzed, considering that these compounds can easily functionalize and can form complexes with various metal ions. In this sense, different substituents were used to increase the interaction with the microorganisms, improving their photodynamic inactivation. Furthermore, these photosensitizers absorb strongly at phototherapeutic window, emit red fluorescence, and efficiently produce the formation of reactive oxygen species. Subsequently, the influence of binding, bacteria types, cell density, washing effect, and media on photoinactivation was remarked to elimination of microbes. Finally, photokilling of bacterial biofilm by phthalocyanines and the mechanism of action were discussed. Therefore, this review brings together the main features of phthalocyanines as antimicrobial phototherapeutic agents.
Collapse
Affiliation(s)
- Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
24
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
25
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Bettoni S, Maziarz K, Stone MRL, Blaskovich MAT, Potempa J, Bazzo ML, Unemo M, Ram S, Blom AM. Serum Complement Activation by C4BP-IgM Fusion Protein Can Restore Susceptibility to Antibiotics in Neisseria gonorrhoeae. Front Immunol 2021; 12:726801. [PMID: 34539665 PMCID: PMC8440848 DOI: 10.3389/fimmu.2021.726801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological agent of gonorrhea, the second most common bacterial sexually transmitted infection worldwide. Reproductive sequelae of gonorrhea include infertility, ectopic pregnancy and chronic pelvic pain. Most antibiotics currently in clinical use have been rendered ineffective due to the rapid spread of antimicrobial resistance among gonococci. The developmental pipeline of new antibiotics is sparse and novel therapeutic approaches are urgently needed. Previously, we utilized the ability of N. gonorrhoeae to bind the complement inhibitor C4b-binding protein (C4BP) to evade killing by human complement to design a chimeric protein that linked the two N-terminal gonococcal binding domains of C4BP with the Fc domain of IgM. The resulting molecule, C4BP-IgM, enhanced complement-mediated killing of gonococci. Here we show that C4BP-IgM induced membrane perturbation through complement deposition and membrane attack complex pore insertion facilitates the access of antibiotics to their intracellular targets. Consequently, bacteria become more susceptible to killing by antibiotics. Remarkably, C4BP-IgM restored susceptibility to azithromycin of two azithromycin-resistant clinical gonococcal strains because of overexpression of the MtrC-MtrD-MtrE efflux pump. Our data show that complement activation can potentiate activity of antibiotics and suggest a role for C4BP-IgM as an adjuvant for antibiotic treatment of drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karolina Maziarz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Magnus Unemo
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
27
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
28
|
Interest of Homodialkyl Neamine Derivatives against Resistant P. aeruginosa, E. coli, and β-Lactamases-Producing Bacteria-Effect of Alkyl Chain Length on the Interaction with LPS. Int J Mol Sci 2021; 22:ijms22168707. [PMID: 34445410 PMCID: PMC8396045 DOI: 10.3390/ijms22168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3′,6-dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3′,6-homodialkyl neamine derivatives carrying different alkyl chains (C7–C11) to interact with LPS and alter membrane permeability. 3′,6-Dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3′,6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3′,6-dinonyl- and 3′,6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.
Collapse
|
29
|
Amphiphilic tricationic Zn(II)phthalocyanine provides effective photodynamic action to eradicate broad-spectrum microorganisms. Photochem Photobiol Sci 2021; 20:939-953. [PMID: 34255302 DOI: 10.1007/s43630-021-00074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
A novel tricationic Zn(II)phthalocyanine derivative, (NCH3)3ZnPc3+, was synthesized by ring expansion reaction of boron(III) [2,9(10),16(17)-trinitrosubphthalocyaninato]chloride. First, the reaction of this subphthalocyanine with 2,3-naphthalenedicarbonitrile and Zn(CH3COO)2 catalyzed by 8-diazabicyclo[5.4.0]undec-7-ene was used to obtain the A3B-type nitrophthalocyanine. After reduction of nitro groups with Na2S and exhaustive methylation of amino groups, (NCH3)3ZnPc3+ was formed in good yields. In addition, the tetracationic analog (NCH3)4ZnPc4+ was synthesized to compare their properties. The absorption and fluorescence spectra showed the Q-bands and the red emission, respectively, which are characteristic of the Zn(II)phthalocyanine derivatives in N,N-dimethylformamide. Furthermore, photodynamic activity sensitized by these compounds was studied in the presence of different molecular probes to sense the formation of reactive oxygen species. (NCH3)3ZnPc3+ efficiently produced singlet molecular oxygen and also it sensitized the formation of superoxide anion radical in the presence of NADH, while the photodynamic activity of (NCH3)4ZnPc4+ was very poor, possibly due to the partial formation of aggregates. Furthermore, the decomposition of L-tryptophan induced by (NCH3)3ZnPc3+ was mainly mediated by a type II mechanism. Antimicrobial photodynamic inactivation sensitized by these phthalocyanines was evaluated in Staphylococcus aureus, Escherichia coli, and Candida albicans, as representative microbial cells. In cell suspensions, (NCH3)3ZnPc3+ was rapidly bound to microbial cells, showing bioimages with red fluorescence emission. After 5 min of irradiation with visible light, (NCH3)3ZnPc3+ was able to completely eliminate S. aureus, E. coli and C. albicans, using 1.0, 2.5 and 5.0 μM phthalocyanine, respectively. In contrast, a low photoinactivation activity was found with (NCH3)4ZnPc4+ as a photosensitizer. Therefore, the amphiphilic tricationic phthalocyanine (NCH3)3ZnPc3+ is a promising photosensitizing structure for application as a broad-spectrum antimicrobial phototherapeutic agent.
Collapse
|
30
|
Azargun R, Gholizadeh P, Sadeghi V, Hosainzadegan H, Tarhriz V, Memar MY, Pormohammad A, Eyvazi S. Molecular mechanisms associated with quinolone resistance in Enterobacteriaceae: review and update. Trans R Soc Trop Med Hyg 2021; 114:770-781. [PMID: 32609840 DOI: 10.1093/trstmh/traa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Quinolones are broad-spectrum antibiotics, which are used for the treatment of different infectious diseases associated with Enterobacteriaceae. During recent decades, the wide use as well as overuse of quinolones against diverse infections has led to the emergence of quinolone-resistant bacterial strains. Herein, we present the development of quinolone antibiotics, their function and also the different quinolone resistance mechanisms in Enterobacteriaceae by reviewing recent literature. METHODS All data were extracted from Google Scholar search engine and PubMed site, using keywords; quinolone resistance, Enterobacteriaceae, plasmid-mediated quinolone resistance, etc. RESULTS AND CONCLUSION The acquisition of resistance to quinolones is a complex and multifactorial process. The main resistance mechanisms consist of one or a combination of target-site gene mutations altering the drug-binding affinity of target enzymes. Other mechanisms of quinolone resistance are overexpression of AcrAB-tolC multidrug-resistant efflux pumps and downexpression of porins as well as plasmid-encoded resistance proteins including Qnr protection proteins, aminoglycoside acetyltransferase (AAC(6')-Ib-cr) and plasmid-encoded active efflux pumps such as OqxAB and QepA. The elucidation of resistance mechanisms will help researchers to explore new drugs against the resistant strains.
Collapse
Affiliation(s)
- Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Sadeghi
- Faculty of Veterinary Medicine, Islamic Azad University, Urmia, Iran
| | - Hasan Hosainzadegan
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
32
|
Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 2021; 29:941-959. [PMID: 33703979 DOI: 10.1080/1061186x.2021.1895818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Simab Kanwal
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
33
|
The effect of EDTA in combination with some antibiotics against clinical isolates of gram negative bacteria in Mansoura, Egypt. Microb Pathog 2021; 154:104840. [PMID: 33691177 DOI: 10.1016/j.micpath.2021.104840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/10/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Extensive use of antibiotics in clinical practice has been associated with increasing frequency of resistant microorganisms. So new strategy is needed to treat the resistant pathogens. Hence this study was conducted to determine the effect of Ethylenediaminetetraacetic acid (EDTA) in increasing the inhibition effect of some antibiotics on multi-drug resistant (MDR) gram-negative bacteria. For this purpose, 40 E. coli isolates, 40 K. pneumoniae isolates and 50 P. aeruginosa isolates were collected from different University's hospitals in Mansoura, Egypt. Antibacterial susceptibility pattern against 9 different antimicrobials were studied by disc diffusion method. Also the effect of two sub-inhibitory concentrations of EDTA (1 and 2 mM) on the inhibition zones of antibiotic discs against the highly multidrug resistant (MDR) isolates was determined. Checkerboard method was used for testing the activity of gentamicin/EDTA and cefotaxime/EDTA combinations on the highly MDR isolates. Additionally, the effect of EDTA on the expression of efflux pump genes was tested by real time-PCR. Most of the clinical isolates were found to be resistant to the tested antibiotics except imipenem and high prevalence of MDR isolates was recorded. 34 isolates were selected as those showed the highest multi-drug resistance and were tested to specify their MIC for EDTA as EDTA showed strong antibacterial activity with MIC ranging 4-8 mM. The addition of sub-MIC of EDTA (1or 2 mM) to the agar plate resulted in changing the 11 tested E. coli isolates from resistant to sensitive to ceftazidime, gentamicin, rifampin, ampicillin, erythromycin and vancomycin, the tested K. pneumoniae isolates were turned also from resistant to sensitive to gentamicin and ceftazidime, additionally the tested P. aeruginosa isolates became sensitive to gentamicin, ceftazidime and ciprofloxacin. Indifference to additive activity was observed for tested combinations and MIC value of cefotaxime or gentamicin in combination with EDTA was less than antibiotic alone in the most tested isolates. Moreover, significant reduction (P < 0.01) in the expression of all tested efflux pump genes in treated E. coli, K. pneumoniae and P. aeruginosa isolates with EDTA compared to untreated isolates was observed. In conclusion, these results suggest that the combination of antibiotic especially gentamicin with EDTA may be fruitful for management of resistant gram negative infections.
Collapse
|
34
|
Wang Y, Pei Z, Lou Z, Wang H. Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans. Infect Drug Resist 2021; 14:435-448. [PMID: 33574683 PMCID: PMC7872900 DOI: 10.2147/idr.s285690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The opportunistic pathogen Candida albicans can form biofilms, resulting in drug resistance with great risk to medical treatment. METHODOLOGY We investigated the ability of C. albicans to form biofilms on different materials, as well as the inhibitory and eradicating effects of cordycepin on biofilm. The action mechanism of cordycepin against biofilm was studied by crystal violet staining, XTT [2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction method, phenol-sulfuric acid method, cellular superficial hydrophobicity (CSH) assay, and confocal laser scanning microscope observation. We also evaluated the acute toxicity of cordycepin in vivo. RESULTS The results showed facile formation of biofilms by C. albicans on polypropylene. The 50% minimum inhibitory concentration (MIC50) of cordycepin was 0.062 mg/mL. A concentration of 0.125 mg/mL significantly decreased biofilm formation, metabolic activity, secretion of extracellular polysaccharides, and relative CSH. Cordycepin could inhibit biofilm formation at low concentration without affecting fungal growth. In addition, cordycepin effectively eradicated 59.14% of mature biofilms of C. albicans at a concentration of 0.5 mg/mL. For acute toxicity, the LD50 (50% of lethal dose) of cordycepin was determined as higher than 500 mg/kg for mice. CONCLUSION The results of this study show that cordycepin significantly inhibited and eradicated biofilms by decreasing metabolic activity, the ratio of living cells, the hydrophobicity, and damaging the extracellular polysaccharides of biofilm. These findings should facilitate more effective application of cordycepin and suggest a new direction for the treatment of fungal infections.
Collapse
Affiliation(s)
- Yu Wang
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zejun Pei
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| |
Collapse
|
35
|
Heesterbeek DAC, Muts RM, van Hensbergen VP, de Saint Aulaire P, Wennekes T, Bardoel BW, van Sorge NM, Rooijakkers SHM. Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes. PLoS Pathog 2021; 17:e1009227. [PMID: 33481964 PMCID: PMC7886145 DOI: 10.1371/journal.ppat.1009227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system. In this paper we identified how different players of the human immune system cooperate to degrade the complex cell envelope of Gram-negative bacteria. The outer membrane of Gram-negative bacteria forms an impermeable barrier for various antimicrobial proteins of the immune system. Here we show that complement-dependent Membrane Attack Complex (MAC) formation permeabilizes this barrier, allowing otherwise impermeable antimicrobial proteins to reach their targets underneath the outer membrane. Specifically, we show that outer membrane damage by the MAC allows lysozyme to degrade the peptidoglycan layer, and secreted phospholipase A2-IIA to hydrolyze the bacterial inner membrane. MAC formation also sensitizes Gram-negative bacteria to more efficient degradation and killing inside human neutrophils. Altogether, this knowledge may guide the development of new antimicrobial strategies to treat infections caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Dani A. C. Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vincent P. van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pieter de Saint Aulaire
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Bart W. Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Di Fermo P, Di Lodovico S, Amoroso R, De Filippis B, D’Ercole S, Di Campli E, Cellini L, Di Giulio M. Searching for New Tools to Counteract the Helicobacter pylori Resistance: The Positive Action of Resveratrol Derivatives. Antibiotics (Basel) 2020; 9:E891. [PMID: 33322025 PMCID: PMC7763357 DOI: 10.3390/antibiotics9120891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023] Open
Abstract
The drug-resistance phenomenon in Helicobacter pylori underlines the need of novel strategies to improve the eradication rate including alternative treatments combining antibiotic and non-antibiotic compounds with synergistic action. In this study, the antibacterial (MIC/MBC) and anti-virulence effects (biofilm reduction and swarming motility inhibition) of resveratrol-RSV and new synthetized RSV-phenol derivatives, with a higher bioavailability, alone and combined with levofloxacin-LVX were evaluated against resistant H. pylori clinical strains. The experiments were confirmed in vivo using the Galleria mellonella model. Among the studied RSV derivatives, RSV-3 and RSV-4 possessed higher antibacterial activity with respect to RSV (MICs from 6.25 to 200 µg/mL and from 3.12 to 200 µg/mL, respectively). RSV, RSV-3, and RSV-4 were able to synergize with LVX restoring its effect in two out of seven clinical resistant strains tested for the study. RSV, RSV-3, and RSV-4, alone and with LVX at sub-MIC and sub-synergistic concentrations, significantly reduced the biofilm formation. Moreover, RSV-3 and RSV-4 reduced the H. pylori swarming motility on soft agar. RSV, RSV-3, and RSV-4 were non-toxic for G. mellonella larvae and displayed a protective effect against H. pylori infection. Overall, RSV-phenol derivatives should be considered interesting candidates for innovative therapeutic schemes to tackle the H. pylori antibiotic resistance.
Collapse
Affiliation(s)
- Paola Di Fermo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Simonetta D’Ercole
- Department of Medical Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Emanuela Di Campli
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| |
Collapse
|
37
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
38
|
Madhi M, Hasani A, Mojarrad JS, Rezaee MA, Zarrini G, Davaran S. Nano-strategies in pursuit of efflux pump activeness in Acinetobacter baumannii and Pseudomonas aeruginosa. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Qiao J, Purro M, Liu Z, Xiong MP. Effects of Polyethyelene Glycol-Desferrioxamine:Gallium Conjugates on Pseudomonas aeruginosa Outer Membrane Permeability and Vancomycin Potentiation. Mol Pharm 2020; 18:735-742. [PMID: 33147036 DOI: 10.1021/acs.molpharmaceut.0c00820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa exhibits a broad spectrum of intrinsic antibiotic resistance because of the limited permeability of its outer membrane. Given this situation, molecules that could make Gram-negative bacteria more permeable and more susceptible to large-scaffold Gram-positive antibiotics may be advantageous. Herein, we evaluate the antimicrobial activity of a series of targeted poly(ethylene glycol)-desferrioxamine/gallium (PEG-DG) conjugates that can improve the sensitivity of P. aeruginosa to the glycopeptide vancomycin (VAN). We observed that single-ended mPEG-DG and double-ended PEG-DG2 conjugates characterized by PEG MW ≥2000 synergistically enhanced the sensitivity of VAN against P. aeruginosa reference strains PAO1 and ATCC 27853 and three clinically isolated carbapenem-resistant strains, but not Escherichia coli strain ATCC 25922. Although the exact mechanism of this phenomenon is currently under investigation, PEG-DG conjugates enhanced nitrocefin (NCF), hexidium iodide (HI), and VAN permeability only when PEG and DG were directly conjugated. The two most important physicochemical factors contributing to the synergistic activity observed with VAN relate to (1) the final concentration of DG ligands conjugated to the polymer and (2) the polymer length, wherein MW ≥2000 yielded a similar fractional inhibitory concentration.
Collapse
Affiliation(s)
- Jing Qiao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Max Purro
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
40
|
Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020; 8:microorganisms8111716. [PMID: 33147701 PMCID: PMC7692639 DOI: 10.3390/microorganisms8111716] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Colistin has been extensively used since the middle of the last century in animals, particularly in swine, for the control of enteric infections. Colistin is presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumanni, and Pseudomonas aeruginosa. Transferable bacterial resistance like mcr-genes was reported in isolates from both humans and animals. Researchers actively seek strategies to reduce colistin resistance. The definition of guidelines for colistin therapy in veterinary and human medicine is thus crucial. The ban of colistin use in swine as a growth promoter and for prophylactic purposes, and the implementation of sustainable measures in farm animals for the prevention of infections, would help to avoid resistance and should be encouraged. Colistin resistance in the human-animal-environment interface stresses the relevance of the One Health approach to achieve its effective control. Such measures should be addressed in a cooperative way, with efforts from multiple disciplines and with consensus among doctors, veterinary surgeons, and environment professionals. A revision of the mechanism of colistin action, resistance, animal and human use, as well as colistin susceptibility evaluation is debated here.
Collapse
|
41
|
Synthesis, biological evaluation and computational studies of acrylohydrazide derivatives as potential Staphylococcus aureus NorA efflux pump inhibitors. Bioorg Chem 2020; 104:104225. [DOI: 10.1016/j.bioorg.2020.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023]
|
42
|
Sohail M, Rahman HMAU, Asghar MN, Shaukat S. Volumetric, acoustic, electrochemical and spectroscopic investigation of norfloxacin–ionic surfactant interactions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Ijaz M, Zafar M, Iqbal T. Green synthesis of silver nanoparticles by using various extracts: a review. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1808680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohsin Ijaz
- Department of Physics, University of Otago, Dunedin, New Zealand
| | - Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
44
|
Muniz DF, Dos Santos Barbosa CR, de Menezes IRA, de Sousa EO, Pereira RLS, Júnior JTC, Pereira PS, de Matos YMLS, da Costa RHS, de Morais Oliveira-Tintino CD, Coutinho HDM, Filho JMB, Ribeiro de Sousa G, Filho JR, Siqueira-Junior JP, Tintino SR. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem 2020; 337:127776. [PMID: 32777574 DOI: 10.1016/j.foodchem.2020.127776] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/04/2020] [Accepted: 08/02/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for a number of diseases and has demonstrated resistance to conventional antibiotics. This study aimed to evaluate the antibacterial activity of eugenol and its derivatives allylbenzene, 4-allylanisole, isoeugenol and 4-allyl-2,6-dimethoxyphenol against the S. aureus NorA efflux pump (EP) in association with norfloxacin and ethidium bromide. The antibacterial activity of the compounds was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC). A reduction in the MIC of ethidium bromide (a substrate for several efflux pumps) or norfloxacin was used as a parameter of EP inhibition. Molecular modeling studies were used to predict the 3D structure and analyze the interaction of selected compounds with the binding pocket of the NorA efflux pump. Except for 4-allylanisole and allylbenzene, the compounds presented clinically effective antibacterial activity. When associated with norfloxacin against the SA 1199B strain, 4-allyl-2,6-dimethoxyphenol eugenol and isoeugenol caused significant reduction in the MIC of the antibiotic, demonstrating synergistic effects. Similar effects were observed when 4-allyl-2,6-dimethoxyphenol, allylbenzene and isoeugenol were associated with ethidium bromide. Together, these findings indicate a potential inhibition of the NorA pump by eugenol and its derivatives. This in vitro evidence was corroborated by docking results demonstrating favorable interactions between 4-allyl-2,6-dimetoxypheno and the NorA pump mediated by hydrogen bonds and hydrophobic interactions. In conclusion, eugenol derivatives have the potential to be used in antibacterial drug development in strains carrying the NorA efflux pump.
Collapse
Affiliation(s)
- Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | | | - Erlânio Oliveira de Sousa
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | - Pedro Silvino Pereira
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Yedda M L S de Matos
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Roger H S da Costa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | | | - José Maria Barbosa Filho
- Laboratory of Phamaceutical Tecnology Federal, University of João Pessoa (UFPB), CCBS/URCA, Brazil
| | | | - Jaime Ribeiro Filho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| |
Collapse
|
45
|
Sullivan GJ, Delgado NN, Maharjan R, Cain AK. How antibiotics work together: molecular mechanisms behind combination therapy. Curr Opin Microbiol 2020; 57:31-40. [PMID: 32619833 DOI: 10.1016/j.mib.2020.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Antibiotics used in combination are an effective strategy for combatting numerous infectious diseases in clinical and veterinary settings, particularly as a last-line therapy for difficult-to-treat cases. Combination therapy can either increase or slow the rate of killing, broaden the antibiotic spectrum, reduce dosage and unwanted side-effects, and even control the emergence of resistance. The administration of antibiotics in combination has been used effectively against bacterial infections for >70 years, first used to treat tuberculosis. However, effective antibiotic combinations and their dosage regimes have been largely determined empirically in the clinic, and the molecular mechanisms underpinning how these combinations work remains surprisingly elusive. This review focuses on studies that have outlined the genetics and molecular mechanisms of action underlying antibiotic combinations, as well as those that examine how resistance develops. We highlight the need for further experimentation and genetic validation to fully realise the potential of combination therapy.
Collapse
Affiliation(s)
- Geraldine J Sullivan
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, North Ryde, 2113, Australia
| | - Natasha N Delgado
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, North Ryde, 2113, Australia
| | - Ram Maharjan
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, North Ryde, 2113, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, North Ryde, 2113, Australia.
| |
Collapse
|
46
|
Acacia senegal Extract Rejuvenates the Activity of Phenicols on Selected Enterobacteriaceae Multi Drug Resistant Strains. Antibiotics (Basel) 2020; 9:antibiotics9060323. [PMID: 32545716 PMCID: PMC7344600 DOI: 10.3390/antibiotics9060323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
This study reported the phytochemical composition of two hydroethanolic extracts of Acacia senegal and Acacia seyal trees from Burkina Faso and their activities, alone or in combination with selected antibiotics, against multidrug resistant bacteria. High performance thin layer chromatography (HPTLC) method was used for phytochemical screening. Total phenolic and total flavonoid ant tannins in leaves extracts contents were assessed by spectrophotometric method. The minimal inhibitory concentrations (MICs) of plant extracts and antibiotics were determined using the microdilution method and p-iodonitrotetrazolium chloride. Combinations of extracts and antibiotics were studied using checkerboard assays. Screening revealed the presence of phenolic compounds, flavonoids, and tannins in the hydroethanolic extract (HE) of the leaves. The HE of A. seyal showed the highest total phenolic (571.30 ± 6.97 mg GAE/g), total flavonoids (140.41 ± 4.01 mg RTE/g), and tannins (24.72 ± 0.14%, condensed; 35.77 ± 0.19%, hydrolysable tannins). However, the HE of A. senegal showed the lowest total phenolic (69.84 ± 3.54 mg GAE/g), total flavonoids (27.32 ± 0.57 mg RTE/g), and tannins (14.60 ± 0.01%, condensed; 3.09 ± 0.02%, hydrolysable). The MICs for HE and antibiotics were in the range of 2–512 and 0.008–1024 mg/L, respectively. All tested HE presented an MIC greater than 512 mg/L except HE of A. senegal. The lowest MIC value (128 mg/L) was obtained with HE of A. senegal against Klebsiella aerogenes EA298 and Escherichia coli AG100A. Interesting restoring effects on chloramphenicol and florphenicol activity were detected with alcoholic extracts of A. senegal against resistant E. coli and K. aerogenes strains that overproduce AcrAB or FloR pumps. The adjuvant effect of HE of A. senegal suggests that the crude extract of leaves could be a potential source of molecules for improving the susceptibility of bacteria to phenicols antibiotics.
Collapse
|
47
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
48
|
Kunal K, Tiwari R, Dhaked HPS, Surolia A, Panda D. Mechanistic insight into the effect of BT‐benzo‐29 on the Z‐ring in
Bacillus subtilis. IUBMB Life 2020; 72:978-990. [DOI: 10.1002/iub.2234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Kishore Kunal
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Rishu Tiwari
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Hemendra P. S. Dhaked
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Avadhesha Surolia
- Molecular Biophysics UnitIndian Institute of Science Bangalore India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| |
Collapse
|
49
|
Vandera KKA, Picconi P, Valero M, González-Gaitano G, Woods A, Zain NMM, Bruce KD, Clifton LA, Skoda MWA, Rahman KM, Harvey RD, Dreiss CA. Antibiotic-in-Cyclodextrin-in-Liposomes: Formulation Development and Interactions with Model Bacterial Membranes. Mol Pharm 2020; 17:2354-2369. [DOI: 10.1021/acs.molpharmaceut.0c00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kalliopi-Kelli A. Vandera
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Pietro Picconi
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, ES E-37007 Salamanca, Spain
| | | | - Arcadia Woods
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Nur Masirah M. Zain
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Kenneth D. Bruce
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Luke A. Clifton
- Rutherford Appleton Laboratory, ISIS, 1-27, R3, Harwell Campus, Didcot OX11 0QX, U.K
| | | | - Khondaker Miraz Rahman
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard D. Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Cécile A. Dreiss
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
50
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|