1
|
Kim JH, Patel R. Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:427-436. [PMID: 37641805 PMCID: PMC10466067 DOI: 10.4196/kjpp.2023.27.5.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Rajnikant Patel
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
2
|
Argunhan B, Iwasaki H, Tsubouchi H. Post-translational modification of factors involved in homologous recombination. DNA Repair (Amst) 2021; 104:103114. [PMID: 34111757 DOI: 10.1016/j.dnarep.2021.103114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023]
Abstract
DNA is the molecule that stores the chemical instructions necessary for life and its stability is therefore of the utmost importance. Despite this, DNA is damaged by both exogenous and endogenous factors at an alarming frequency. The most severe type of DNA damage is a double-strand break (DSB), in which a scission occurs in both strands of the double helix, effectively dividing a single normal chromosome into two pathological chromosomes. Homologous recombination (HR) is a universal DSB repair mechanism that solves this problem by identifying another region of the genome that shares high sequence similarity with the DSB site and using it as a template for repair. Rad51 possess the enzymatic activity that is essential for this repair but several auxiliary factors are required for Rad51 to fulfil its function. It is becoming increasingly clear that many HR factors are subjected to post-translational modification. Here, we review what is known about how these modifications affect HR. We first focus on cases where there is experimental evidence to support a function for the modification, then discuss speculative cases where a function can be inferred. Finally, we contemplate why such modifications might be necessary.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
3
|
Extracorporeal Shock Waves Increase Markers of Cellular Proliferation in Bronchial Epithelium and in Primary Bronchial Fibroblasts of COPD Patients. Can Respir J 2020; 2020:1524716. [PMID: 32831979 PMCID: PMC7429777 DOI: 10.1155/2020/1524716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is due to structural changes and narrowing of small airways and parenchymal destruction (loss of the alveolar attachment as a result of pulmonary emphysema), which all lead to airflow limitation. Extracorporeal shock waves (ESW) increase cell proliferation and differentiation of connective tissue fibroblasts. To date no studies are available on ESW treatment of human bronchial fibroblasts and epithelial cells from COPD and control subjects. We obtained primary bronchial fibroblasts from bronchial biopsies of 3 patients with mild/moderate COPD and 3 control smokers with normal lung function. 16HBE cells were also studied. Cells were treated with a piezoelectric shock wave generator at low energy (0.3 mJ/mm2, 500 pulses). After treatment, viability was evaluated and cells were recultured and followed up for 4, 24, 48, and 72 h. Cell growth (WST-1 test) was assessed, and proliferation markers were analyzed by qRT-PCR in cell lysates and by ELISA tests in cell supernatants and cell lysates. After ESW treatment, we observed a significant increase of cell proliferation in all cell types. C-Kit (CD117) mRNA was significantly increased in 16HBE cells at 4 h. Protein levels were significantly increased for c-Kit (CD117) at 4 h in 16HBE (p < 0.0001) and at 24 h in COPD-fibroblasts (p = 0.037); for PCNA at 4 h in 16HBE (p = 0.046); for Thy1 (CD90) at 24 and 72 h in CS-fibroblasts (p = 0.031 and p = 0.041); for TGFβ1 at 72 h in CS-fibroblasts (p = 0.038); for procollagen-1 at 4 h in COPD-fibroblasts (p = 0.020); and for NF-κB-p65 at 4 and 24 h in 16HBE (p = 0.015 and p = 0.0002). In the peripheral lung tissue of a representative COPD patient, alveolar type II epithelial cells (TTF‐1+) coexpressing c-Kit (CD117) and PCNA were occasionally observed. These data show an increase of cell proliferation induced by a low dosage of extracorporeal shock waves in 16HBE cells and primary bronchial fibroblasts of COPD and control smoking subjects.
Collapse
|
4
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
5
|
Shao Z, Niwa S, Higashitani A, Daigaku Y. Vital roles of PCNA K165 modification during C. elegans gametogenesis and embryogenesis. DNA Repair (Amst) 2019; 82:102688. [PMID: 31450086 DOI: 10.1016/j.dnarep.2019.102688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/19/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
In eukaryotes, the DNA damage bypass pathway is promoted by ubiquitylation of PCNA at the conserved lysine 164. Using CRISPR-Cas9 system, we introduced amino acid substitution at K165 of C. elegans PCNA that corresponds to K164 in other characterised organisms and examined the contribution of this residue at a variety of stages during development. In the presence of UV-induced DNA lesions, PCNA-K165 is crucial for not only the early embryonic stages but also during larval development, implicating its functions for a broad time period during animal development. We also show that, without induction of DNA damage, concomitant inhibition of PCNA ubiquitylation and checkpoint activation causes abnormal gametogenesis events and severely impairs reproduction of worms. Our findings suggest a conserved function of PCNA ubiquitylation in tolerance of UV-induced damage and also propose that PCNA ubiquitylation contributes to gametogenesis during unperturbed C. elegans development.
Collapse
Affiliation(s)
- Zhenhua Shao
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | | | - Yasukazu Daigaku
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
6
|
Huang M, Zhou B, Gong J, Xing L, Ma X, Wang F, Wu W, Shen H, Sun C, Zhu X, Yang Y, Sun Y, Liu Y, Tang TS, Guo C. RNA-splicing factor SART3 regulates translesion DNA synthesis. Nucleic Acids Res 2019; 46:4560-4574. [PMID: 29590477 PMCID: PMC5961147 DOI: 10.1093/nar/gky220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Translesion DNA synthesis (TLS) is one mode of DNA damage tolerance that uses specialized DNA polymerases to replicate damaged DNA. DNA polymerase η (Polη) is well known to facilitate TLS across ultraviolet (UV) irradiation and mutations in POLH are implicated in skin carcinogenesis. However, the basis for recruitment of Polη to stalled replication forks is not completely understood. In this study, we used an affinity purification approach to isolate a Polη-containing complex and have identified SART3, a pre-mRNA splicing factor, as a critical regulator to modulate the recruitment of Polη and its partner RAD18 after UV exposure. We show that SART3 interacts with Polη and RAD18 via its C-terminus. Moreover, SART3 can form homodimers to promote the Polη/RAD18 interaction and PCNA monoubiquitination, a key event in TLS. Depletion of SART3 also impairs UV-induced single-stranded DNA (ssDNA) generation and RPA focus formation, resulting in an impaired Polη recruitment and a higher mutation frequency and hypersensitivity after UV treatment. Notably, we found that several SART3 missense mutations in cancer samples lessen its stimulatory effect on PCNA monoubiquitination. Collectively, our findings establish SART3 as a novel Polη/RAD18 association regulator that protects cells from UV-induced DNA damage, which functions in a RNA binding-independent fashion.
Collapse
Affiliation(s)
- Min Huang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhou
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanjuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyu Xing
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolu Ma
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengli Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wu
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyan Shen
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyi Sun
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefei Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeran Yang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yazhou Sun
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Abstract
Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.
Collapse
Affiliation(s)
- William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| |
Collapse
|
8
|
Maneuvers on PCNA Rings during DNA Replication and Repair. Genes (Basel) 2018; 9:genes9080416. [PMID: 30126151 PMCID: PMC6116012 DOI: 10.3390/genes9080416] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
DNA replication and repair are essential cellular processes that ensure genome duplication and safeguard the genome from deleterious mutations. Both processes utilize an abundance of enzymatic functions that need to be tightly regulated to ensure dynamic exchange of DNA replication and repair factors. Proliferating cell nuclear antigen (PCNA) is the major coordinator of faithful and processive replication and DNA repair at replication forks. Post-translational modifications of PCNA, ubiquitination and acetylation in particular, regulate the dynamics of PCNA-protein interactions. Proliferating cell nuclear antigen (PCNA) monoubiquitination elicits ‘polymerase switching’, whereby stalled replicative polymerase is replaced with a specialized polymerase, while PCNA acetylation may reduce the processivity of replicative polymerases to promote homologous recombination-dependent repair. While regulatory functions of PCNA ubiquitination and acetylation have been well established, the regulation of PCNA-binding proteins remains underexplored. Considering the vast number of PCNA-binding proteins, many of which have similar PCNA binding affinities, the question arises as to the regulation of the strength and sequence of their binding to PCNA. Here I provide an overview of post-translational modifications on both PCNA and PCNA-interacting proteins and discuss their relevance for the regulation of the dynamic processes of DNA replication and repair.
Collapse
|
9
|
Kumar A, Priya A, Ahmed T, Grundström C, Negi N, Grundström T. Regulation of the DNA Repair Complex during Somatic Hypermutation and Class-Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2018; 200:4146-4156. [PMID: 29728513 DOI: 10.4049/jimmunol.1701586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
B lymphocytes optimize Ab responses by somatic hypermutation (SH), which introduces point mutations in the variable regions of the Ab genes and by class-switch recombination (CSR), which changes the expressed C region exon of the IgH. These Ab diversification processes are initiated by the deaminating enzyme activation-induced cytidine deaminase followed by many DNA repair enzymes, ultimately leading to deletions and a high mutation rate in the Ab genes, whereas DNA lesions made by activation-induced cytidine deaminase are repaired with low error rate on most other genes. This indicates an advanced regulation of DNA repair. In this study, we show that initiation of Ab diversification in B lymphocytes of mouse spleen leads to formation of a complex between many proteins in DNA repair. We show also that BCR activation, which signals the end of successful SH, reduces interactions between some proteins in the complex and increases other interactions in the complex with varying kinetics. Furthermore, we show increased localization of SH- and CSR-coupled proteins on switch regions of the Igh locus upon initiation of SH/CSR and differential changes in the localization upon BCR signaling, which terminates SH. These findings provide early evidence for a DNA repair complex or complexes that may be of functional significance for carrying out essential roles in SH and/or CSR in B cells.
Collapse
Affiliation(s)
- Anjani Kumar
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Anshu Priya
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Tanzeel Ahmed
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Neema Negi
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Grundström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
10
|
Daigaku Y, Etheridge TJ, Nakazawa Y, Nakayama M, Watson AT, Miyabe I, Ogi T, Osborne MA, Carr AM. PCNA ubiquitylation ensures timely completion of unperturbed DNA replication in fission yeast. PLoS Genet 2017; 13:e1006789. [PMID: 28481910 PMCID: PMC5440044 DOI: 10.1371/journal.pgen.1006789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/22/2017] [Accepted: 05/01/2017] [Indexed: 11/18/2022] Open
Abstract
PCNA ubiquitylation on lysine 164 is required for DNA damage tolerance. In many organisms PCNA is also ubiquitylated in unchallenged S phase but the significance of this has not been established. Using Schizosaccharomyces pombe, we demonstrate that lysine 164 ubiquitylation of PCNA contributes to efficient DNA replication in the absence of DNA damage. Loss of PCNA ubiquitylation manifests most strongly at late replicating regions and increases the frequency of replication gaps. We show that PCNA ubiquitylation increases the proportion of chromatin associated PCNA and the co-immunoprecipitation of Polymerase δ with PCNA during unperturbed replication and propose that ubiquitylation acts to prolong the chromatin association of these replication proteins to allow the efficient completion of Okazaki fragment synthesis by mediating gap filling. PCNA is a homotrimeric complex that clamps around the DNA to provide a sliding platform for DNA polymerases and other replication and repair enzymes. The covalent modification of PCNA by ubiquitin on lysine reside 164 has been extensively studied in the context of DNA repair: it is required to mediate the bypass of damaged template bases during DNA replication. Previous work has shown that PCNA is modified by ubiquitin during normal S phase in the absence of DNA damage, but the significance of this modification has not been explored. Here we show that, in addition to regulating bypass of damaged bases, lysine 164 ubiquitylation plays a role in ensuring the completion of unperturbed DNA replication.
Collapse
Affiliation(s)
- Yasukazu Daigaku
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- * E-mail: (AMC); (YD)
| | - Thomas J. Etheridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Yuka Nakazawa
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Mayumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Adam T. Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Izumi Miyabe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Tomoo Ogi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mark A. Osborne
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- * E-mail: (AMC); (YD)
| |
Collapse
|
11
|
Wilson RHC, Biasutto AJ, Wang L, Fischer R, Baple EL, Crosby AH, Mancini EJ, Green CM. PCNA dependent cellular activities tolerate dramatic perturbations in PCNA client interactions. DNA Repair (Amst) 2016; 50:22-35. [PMID: 28073635 PMCID: PMC5264654 DOI: 10.1016/j.dnarep.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/04/2023]
Abstract
We assess the cellular effects of the mutation that causes PARD (PCNAS228I). Cells from affected individuals are sensitive to T2AA and T3. PCNAS228I impairs interactions between PCNA and Cdt1, DNMT1, PolD3 and PolD4. The PIP-box of p21 retains binding to PCNAS228I. PCNA-dependent degradation and the cell cycle are only subtly altered by PCNAS228I.
Proliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNAS228I mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells. Analysis of the binding between PCNA and PCNA-interacting proteins (PIPs) shows that the S228I change dramatically impairs the majority of these interactions, including that of Cdt1, DNMT1, PolD3p66 and PolD4p12. In contrast p21 largely retains the ability to bind PCNAS228I. This property is conferred by the p21 PIP box sequence itself, which is both necessary and sufficient for PCNAS228I binding. Ubiquitination of PCNA is unaffected by the S228I change, which indirectly alters the structure of the inter-domain connecting loop. Despite the dramatic in vitro effects of the PARD mutation on PIP-degron binding, there are only minor alterations to the stability of p21 and Cdt1 in cells from affected individuals. Overall our data suggests that reduced affinity of PCNAS228I for specific clients causes subtle cellular defects in undamaged cells which likely contribute to the etiology of PARD.
Collapse
Affiliation(s)
- Rosemary H C Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Antonio J Biasutto
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lihao Wang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Emma L Baple
- University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Erika J Mancini
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK; School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Catherine M Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
12
|
Lecona E, Fernandez-Capetillo O. A SUMO and ubiquitin code coordinates protein traffic at replication factories. Bioessays 2016; 38:1209-1217. [DOI: 10.1002/bies.201600129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Emilio Lecona
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
13
|
USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 2016; 23:270-7. [PMID: 26950370 DOI: 10.1038/nsmb.3185] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
Abstract
Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7 inhibitors as anticancer agents.
Collapse
|
14
|
Regulation of mismatch repair by histone code and posttranslational modifications in eukaryotic cells. DNA Repair (Amst) 2015; 38:68-74. [PMID: 26719139 DOI: 10.1016/j.dnarep.2015.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
DNA mismatch repair (MMR) protects genome integrity by correcting DNA replication-associated mispairs, modulating DNA damage-induced cell cycle checkpoints and regulating homeologous recombination. Loss of MMR function leads to cancer development. This review describes progress in understanding how MMR is carried out in the context of chromatin and how chromatin organization/compaction, epigenetic mechanisms and posttranslational modifications of MMR proteins influence and regulate MMR in eukaryotic cells.
Collapse
|
15
|
Niimi A, Hopkins SR, Downs JA, Masutani C. The BAH domain of BAF180 is required for PCNA ubiquitination. Mutat Res 2015; 779:16-23. [PMID: 26117423 DOI: 10.1016/j.mrfmmm.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.
Collapse
Affiliation(s)
- Atsuko Niimi
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Suzanna R Hopkins
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
16
|
Bub1 in Complex with LANA Recruits PCNA To Regulate Kaposi's Sarcoma-Associated Herpesvirus Latent Replication and DNA Translesion Synthesis. J Virol 2015. [PMID: 26223641 DOI: 10.1128/jvi.01524-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Latent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requires trans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells. IMPORTANCE During latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.
Collapse
|
17
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis. Proc Natl Acad Sci U S A 2015; 112:5667-72. [PMID: 25825764 DOI: 10.1073/pnas.1417711112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays essential roles in eukaryotic cells during DNA replication, DNA mismatch repair (MMR), and other events at the replication fork. Earlier studies show that PCNA is regulated by posttranslational modifications, including phosphorylation of tyrosine 211 (Y211) by the epidermal growth factor receptor (EGFR). However, the functional significance of Y211-phosphorylated PCNA remains unknown. Here, we show that PCNA phosphorylation by EGFR alters its interaction with mismatch-recognition proteins MutSα and MutSβ and interferes with PCNA-dependent activation of MutLα endonuclease, thereby inhibiting MMR at the initiation step. Evidence is also provided that Y211-phosphorylated PCNA induces nucleotide misincorporation during DNA synthesis. These findings reveal a novel mechanism by which Y211-phosphorylated PCNA promotes cancer development and progression via facilitating error-prone DNA replication and suppressing the MMR function.
Collapse
|
19
|
Relevance of simultaneous mono-ubiquitinations of multiple units of PCNA homo-trimers in DNA damage tolerance. PLoS One 2015; 10:e0118775. [PMID: 25692884 PMCID: PMC4332867 DOI: 10.1371/journal.pone.0118775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 01/06/2015] [Indexed: 11/29/2022] Open
Abstract
DNA damage tolerance (DDT) pathways, including translesion synthesis (TLS) and additional unknown mechanisms, enable recovery from replication arrest at DNA lesions. DDT pathways are regulated by post-translational modifications of proliferating cell nuclear antigen (PCNA) at its K164 residue. In particular, mono-ubiquitination by the ubiquitin ligase RAD18 is crucial for Polη-mediated TLS. Although the importance of modifications of PCNA to DDT pathways is well known, the relevance of its homo-trimer form, in which three K164 residues are present in a single ring, remains to be elucidated. Here, we show that multiple units of a PCNA homo-trimer are simultaneously mono-ubiquitinated in vitro and in vivo. RAD18 catalyzed sequential mono-ubiquitinations of multiple units of a PCNA homo-trimer in a reconstituted system. Exogenous PCNA formed hetero-trimers with endogenous PCNA in WI38VA13 cell transformants. When K164R-mutated PCNA was expressed in these cells at levels that depleted endogenous PCNA homo-trimers, multiple modifications of PCNA complexes were reduced and the cells showed defects in DDT after UV irradiation. Notably, ectopic expression of mutant PCNA increased the UV sensitivities of Polη-proficient, Polη-deficient, and REV1-depleted cells, suggesting the disruption of a DDT pathway distinct from the Polη- and REV1-mediated pathways. These results suggest that simultaneous modifications of multiple units of a PCNA homo-trimer are required for a certain DDT pathway in human cells.
Collapse
|
20
|
Han J, Liu T, Huen MSY, Hu L, Chen Z, Huang J. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination. ACTA ACUST UNITED AC 2014; 205:811-27. [PMID: 24958773 PMCID: PMC4068132 DOI: 10.1083/jcb.201311007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translesion DNA synthesis (TLS) is a universal DNA damage tolerance mechanism conserved from yeast to mammals. A key event in the regulation of TLS is the monoubiquitination of proliferating cell nuclear antigen (PCNA). Extensive evidence indicates that the RAD6-RAD18 ubiquitin-conjugating/ligase complex specifically monoubiquitinates PCNA and regulates TLS repair. However, the mechanism by which the RAD6-RAD18 complex is targeted to PCNA has remained elusive. In this study, we used an affinity purification approach to isolate the PCNA-containing complex and have identified SIVA1 as a critical regulator of PCNA monoubiquitination. We show that SIVA1 constitutively interacts with PCNA via a highly conserved PCNA-interacting peptide motif. Knockdown of SIVA1 compromised RAD18-dependent PCNA monoubiquitination and Polη focus formation, leading to elevated ultraviolet sensitivity and mutation. Furthermore, we demonstrate that SIVA1 interacts with RAD18 and serves as a molecular bridge between RAD18 and PCNA, thus targeting the E3 ligase activity of RAD18 onto PCNA. Collectively, our results provide evidence that the RAD18 E3 ligase requires an accessory protein for binding to its substrate PCNA.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael S Y Huen
- Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Lin Hu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiqiu Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
21
|
Abstract
DNA mismatch repair (MMR) maintains genome stability primarily by repairing DNA replication-associated mispairs. Because loss of MMR function increases the mutation frequency genome-wide, defects in this pathway predispose affected individuals to cancer. The genes encoding essential eukaryotic MMR activities have been identified, as the recombinant proteins repair 'naked' heteroduplex DNA in vitro. However, the reconstituted system is inactive on nucleosome-containing heteroduplex DNA, and it is not understood how MMR occurs in vivo. Recent studies suggest that chromatin organization, nucleosome assembly/disassembly factors and histone modifications regulate MMR in eukaryotic cells, but the complexity and importance of the interaction between MMR and chromatin remodeling has only recently begun to be appreciated. This article reviews recent progress in understanding the mechanism of eukaryotic MMR in the context of chromatin structure and dynamics, considers the implications of these recent findings and discusses unresolved questions and challenges in understanding eukaryotic MMR.
Collapse
Affiliation(s)
- Guo-Min Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
Yang W. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Biochemistry 2014; 53:2793-803. [PMID: 24716551 PMCID: PMC4018060 DOI: 10.1021/bi500019s] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Y-Family
DNA polymerases specialize in translesion synthesis, bypassing
damaged bases that would otherwise block the normal progression of
replication forks. Y-Family polymerases have unique structural features
that allow them to bind damaged DNA and use a modified template base
to direct nucleotide incorporation. Each Y-Family polymerase is unique
and has different preferences for lesions to bypass and for dNTPs
to incorporate. Y-Family polymerases are also characterized by a low
catalytic efficiency, a low processivity, and a low fidelity on normal
DNA. Recruitment of these specialized polymerases to replication forks
is therefore regulated. The catalytic center of the Y-Family polymerases
is highly conserved and homologous to that of high-fidelity and high-processivity
DNA replicases. In this review, structural differences between Y-Family
and A- and B-Family polymerases are compared and correlated with their
functional differences. A time-resolved X-ray crystallographic study
of the DNA synthesis reaction catalyzed by the Y-Family DNA polymerase
human polymerase η revealed transient elements that led to the
nucleotidyl-transfer reaction.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Sebesta M, Burkovics P, Juhasz S, Zhang S, Szabo JE, Lee MYWT, Haracska L, Krejci L. Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair (Amst) 2013; 12:691-8. [PMID: 23731732 PMCID: PMC3744802 DOI: 10.1016/j.dnarep.2013.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Vaz B, Halder S, Ramadan K. Role of p97/VCP (Cdc48) in genome stability. Front Genet 2013; 4:60. [PMID: 23641252 PMCID: PMC3639377 DOI: 10.3389/fgene.2013.00060] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-dependent molecular chaperone p97, also known as valosin-containing protein (VCP) or Cdc48, is an AAA ATPase involved in protein turnover and degradation. p97 converts its own ATPase hydrolysis into remodeling activity on a myriad of ubiquitinated substrates from different cellular locations and pathways. In this way, p97 mediates extraction of targeted protein from cellular compartments or protein complexes. p97-dependent protein extraction from various cellular environments maintains cellular protein homeostasis. In recent years, p97-dependent protein extraction from chromatin has emerged as an essential evolutionarily conserved process for maintaining genome stability. Inactivation of p97 segregase activity leads to accumulation of ubiquitinated substrates on chromatin, consequently leading to protein-induced chromatin stress (PICHROS). PICHROS directly and negatively affects multiple DNA metabolic processes, including replication, damage responses, mitosis, and transcription, leading to genotoxic stress and genome instability. By summarizing and critically evaluating recent data on p97 function in various chromatin-associated protein degradation processes, we propose establishing p97 as a genome caretaker.
Collapse
Affiliation(s)
- Bruno Vaz
- Institute of Pharmacology and Toxicology, University Zürich-Vetsuisse Zürich, Switzerland ; Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford Oxford, UK
| | | | | |
Collapse
|
25
|
Abstract
Ubiquitylation and sumoylation, the covalent attachment of the polypeptides ubiquitin and SUMO, respectively, to target proteins, are pervasive mechanisms for controlling cellular functions. Here, we summarize the key steps and enzymes involved in ubiquitin and SUMO conjugation and provide an overview of how they are crucial for maintaining genome stability. Specifically, we review research that has revealed how ubiquitylation and sumoylation regulate and coordinate various pathways of DNA damage recognition, signaling, and repair at the biochemical, cellular, and whole-organism levels. In addition to providing key insights into the control and importance of DNA repair and associated processes, such work has established paradigms for regulatory control that are likely to extend to other cellular processes and that may provide opportunities for better understanding and treatment of human disease.
Collapse
Affiliation(s)
- Stephen P Jackson
- The Gurdon Institute and the Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
26
|
Chatterjee N, Pabla R, Siede W. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae. Biochem Biophys Res Commun 2013; 431:270-3. [PMID: 23313845 DOI: 10.1016/j.bbrc.2012.12.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022]
Abstract
DNA polymerase η mostly catalyzes an error-free bypass of the most frequent UV lesions, pyrimidine dimers of the cyclobutane-type. In addition to its nuclear localization, we show here for the first time its mitochondrial localization in budding yeast. In mitochondria, this polymerase improves bypass replication fidelity opposite UV damage as shown in base pair substitution and frameshift assays. For base pair substitutions, polymerase η appears to be related in function and epistatic to DNA polymerase ζ which, however, plays the opposite role in the nucleus.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
27
|
Lee MYWT, Zhang S, Lin SHS, Chea J, Wang X, LeRoy C, Wong A, Zhang Z, Lee EYC. Regulation of human DNA polymerase delta in the cellular responses to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:683-698. [PMID: 23047826 DOI: 10.1002/em.21743] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
The p12 subunit of polymerase delta (Pol δ) is degraded in response to DNA damage induced by UV, alkylating agents, oxidative, and replication stresses. This leads to the conversion of the Pol δ4 holoenzyme to the heterotrimer, Pol δ3. We review studies that establish that Pol δ3 formation is an event that could have a major impact on cellular processes in genomic surveillance, DNA replication, and DNA repair. p12 degradation is dependent on the apical ataxia telangiectasia and Rad3 related (ATR) kinase and is mediated by the ubiquitin-proteasome system. Pol δ3 exhibits properties of an "antimutator" polymerase, suggesting that it could contribute to an increased surveillance against mutagenesis, for example, when Pol δ carries out bypass synthesis past small base lesions that engage in spurious base pairing. Chromatin immunoprecipitation analysis and examination of the spatiotemporal recruitment of Pol δ to sites of DNA damage show that Pol δ3 is the primary form of Pol δ associated with cyclobutane pyrimidine dimer lesions and therefore should be considered as the operative form of Pol δ engaged in DNA repair. We propose a model for the switching of Pol δ with translesion polymerases, incorporating the salient features of the recently determined structure of monoubiquitinated proliferating cell nuclear antigen and emphasizing the role of Pol δ3. Because of the critical role of Pol δ activity in DNA replication and repair, the formation of Pol δ3 in response to DNA damage opens the prospect that pleiotropic effects may ensue. This opens the horizons for future exploration of how this novel response to DNA damage contributes to genomic stability.
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Davis EJ, Lachaud C, Appleton P, Macartney TJ, Näthke I, Rouse J. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nat Struct Mol Biol 2012; 19:1093-100. [PMID: 23042607 DOI: 10.1038/nsmb.2394] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 02/07/2023]
Abstract
Ubiquitin-binding domains (UBDs) are crucial for recruiting many proteins to sites of DNA damage. Here we characterize C1orf124 (Spartan; referred to as DVC1), which has an UBZ4-type UBD found predominantly in DNA repair proteins. DVC1 associates with DNA replication factories and localizes to sites of DNA damage in human cells, in a manner that requires the ability of the DVC1 UBZ domain to bind to ubiquitin polymers in vitro and a conserved PCNA-interacting motif. DVC1 interacts with the p97 protein 'segregase'. We show that DVC1 recruits p97 to sites of DNA damage, where we propose that p97 facilitates the extraction of the translesion synthesis (TLS) polymerase (Pol) η during DNA repair to prevent excessive TLS and limit the incidence of mutations induced by DNA damage. We introduce DVC1 as a regulator of cellular responses to DNA damage that prevents mutations when DNA damage occurs.
Collapse
Affiliation(s)
- Emily J Davis
- Medical Research Council Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | |
Collapse
|
29
|
Centore RC, Yazinski SA, Tse A, Zou L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol Cell 2012; 46:625-35. [PMID: 22681887 DOI: 10.1016/j.molcel.2012.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.
Collapse
Affiliation(s)
- Richard C Centore
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
30
|
Panier S, Ichijima Y, Fradet-Turcotte A, Leung C, Kaustov L, Arrowsmith C, Durocher D. Tandem Protein Interaction Modules Organize the Ubiquitin-Dependent Response to DNA Double-Strand Breaks. Mol Cell 2012; 47:383-95. [DOI: 10.1016/j.molcel.2012.05.045] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/18/2012] [Accepted: 05/23/2012] [Indexed: 11/28/2022]
|
31
|
Chea J, Zhang S, Zhao H, Zhang Z, Lee EYC, Darzynkiewicz Z, Lee MYWT. Spatiotemporal recruitment of human DNA polymerase delta to sites of UV damage. Cell Cycle 2012; 11:2885-95. [PMID: 22801543 DOI: 10.4161/cc.21280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human DNA polymerase δ (Pol δ) is involved in various DNA damage responses in addition to its central role in DNA replication. The Pol δ4 holoenzyme consists of four subunits, p125, p50, p68 and p12. It has been established that the p12 subunit is rapidly degraded in response to DNA damage by UV leading to the in vivo conversion of Pol δ4 to Pol δ3, a trimeric form lacking the p12 subunit. We provide the first analysis of the time-dependent recruitment of the individual Pol δ subunits to sites of DNA damage produced by UV irradiation through 5 μm polycarbonate filters by immunofluorescence microscopy and laser scanning cytometry (LSC). Quantitative analysis demonstrates that the recruitments of the three large subunits was near complete by 2 h and did not change significantly up to 4 h after UV exposure. However, the recruitment of p12 was incomplete even at 4 h, with about 70% of the Pol δ lacking the p12 subunit. ChIP analysis of Pol δ after global UV irradiation further demonstrates that only p125, p50 and p68 were present. Thus, Pol δ3 is the predominant form of Pol δ at sites of UV damage as a result of p12 degradation. Using LSC, we have further confirmed that Pol δ was recruited to CPD damage sites in all phases of the cell cycle. Collectively, our results show that Pol δ at the DNA damage site is the Pol δ trimer lacking p12 regardless of the cell cycle phase.
Collapse
Affiliation(s)
- Jennifer Chea
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Z, Zhang S, Lin SHS, Wang X, Wu L, Lee EYC, Lee MYWT. Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation. Cell Cycle 2012; 11:2128-36. [PMID: 22592530 DOI: 10.4161/cc.20595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) to ub-PCNA is essential for DNA replication across bulky template lesions caused by UV radiation and alkylating agents, as ub-PCNA orchestrates the recruitment and switching of translesion synthesis (TLS) polymerases with replication polymerases. This allows replication to proceed, leaving the DNA to be repaired subsequently. Defects in a TLS polymerase, Pol η, lead to a form of Xeroderma pigmentosum, a disease characterized by severe skin sensitivity to sunlight damage and an increased incidence of skin cancer. Structurally, however, information on how ub-PCNA orchestrates the switching of these two classes of polymerases is lacking. We have solved the structure of ub-PCNA and demonstrate that the ubiquitin molecules in ub-PCNA are radially extended away from the PCNA without structural contact aside from the isopeptide bond linkage. This unique orientation provides an open platform for the recruitment of TLS polymerases through ubiquitin-interacting domains. However, the ubiquitin moieties, to the side of the equatorial PCNA plane, can place spatial constraints on the conformational flexibility of proteins bound to ub-PCNA. We show that ub-PCNA is impaired in its ability to support the coordinated actions of Fen1 and Pol δ in assays mimicking Okazaki fragment processing. This provides evidence for the novel concept that ub-PCNA may modulate additional DNA transactions other than TLS polymerase recruitment and switching.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Peña-Diaz J, Jiricny J. Mammalian mismatch repair: error-free or error-prone? Trends Biochem Sci 2012; 37:206-14. [PMID: 22475811 DOI: 10.1016/j.tibs.2012.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/15/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
Abstract
A considerable surge of interest in the mismatch repair (MMR) system has been brought about by the discovery of a link between Lynch syndrome, an inherited predisposition to cancer of the colon and other organs, and malfunction of this key DNA metabolic pathway. This review focuses on recent advances in our understanding of the molecular mechanisms of canonical MMR, which improves replication fidelity by removing misincorporated nucleotides from the nascent DNA strand. We also discuss the involvement of MMR proteins in two other processes: trinucleotide repeat expansion and antibody maturation, in which MMR proteins are required for mutagenesis rather than for its prevention.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland
| | | |
Collapse
|
34
|
Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:123-53. [PMID: 22749145 DOI: 10.1016/b978-0-12-387665-2.00006-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|