1
|
Melnikova D, Ranjan VV, Nesmelov YE, Skirda VD, Nesmelova IV. Translational Diffusion and Self-Association of an Intrinsically Disordered Protein κ-Casein Using NMR with Ultra-High Pulsed-Field Gradient and Time-Resolved FRET. J Phys Chem B 2024; 128:7781-7791. [PMID: 39106061 PMCID: PMC11331516 DOI: 10.1021/acs.jpcb.4c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Much attention has been given to studying the translational diffusion of globular proteins, whereas the translational diffusion of intrinsically disordered proteins (IDPs) is less studied. In this study, we investigate the translational diffusion and how it is affected by the self-association of an IDP, κ-casein, using pulsed-field gradient nuclear magnetic resonance and time-resolved Förster resonance energy transfer. Using the analysis of the shape of diffusion attenuation and the concentration dependence of κ-casein diffusion coefficients and intermolecular interactions, we demonstrate that κ-casein exhibits continuous self-association. When the volume fraction of κ-casein is below 0.08, we observe that κ-casein self-association results in a macroscopic phase separation upon storage at 4 °C. At κ-casein volume fractions above 0.08, self-association leads to the formation of labile gel-like networks without subsequent macroscopic phase separation. Unlike α-casein, which shows a strong concentration dependence and extensive gel-like network formation, only one-third of κ-casein molecules participate in the gel network at a time, resulting in a more dynamic and less extensive structure. These findings highlight the unique association properties of κ-casein, contributing to a better understanding of its behavior under various conditions and its potential role in casein micelle formation.
Collapse
Affiliation(s)
- Daria
L. Melnikova
- Department
of Physics of Molecular Systems, Kazan Federal
University, Kazan 420011, Russia
| | - Venkatesh V. Ranjan
- Department
of Chemistry, University of North Carolina, Charlotte, North Carolina 28223, United States
- Department
of Physics and Optical Sciences, University
of North Carolina, Charlotte, North Carolina 28223, United States
| | - Yuri E. Nesmelov
- Department
of Physics and Optical Sciences, University
of North Carolina, Charlotte, North Carolina 28223, United States
| | - Vladimir D. Skirda
- Department
of Physics of Molecular Systems, Kazan Federal
University, Kazan 420011, Russia
| | - Irina V. Nesmelova
- Department
of Physics and Optical Sciences, University
of North Carolina, Charlotte, North Carolina 28223, United States
- School
of Data Science, University of North Carolina, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
3
|
Kulkarni P, Brocca S, Dunker AK, Longhi S. Per Aspera ad Chaos: Vladimir Uversky's Odyssey through the Strange World of Intrinsically Disordered Proteins. Biomolecules 2023; 13:1015. [PMID: 37371595 DOI: 10.3390/biom13061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Until the late 1990s, we believed that protein function required a unique, well-defined 3D structure encrypted in the amino acid sequence [...].
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy
| | - A Keith Dunker
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonia Longhi
- Architecture and Function of Biological Macromolecules (AFMB), UMR 7257, Aix Marseille University and CNRS, 13288 Marseille, France
| |
Collapse
|
4
|
Whitehead RD, Teschke CM, Alexandrescu AT. Pulse-field gradient nuclear magnetic resonance of protein translational diffusion from native to non-native states. Protein Sci 2022; 31:e4321. [PMID: 35481638 PMCID: PMC9047038 DOI: 10.1002/pro.4321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/31/2023]
Abstract
Hydrodynamic radii (Rh -values) calculated from diffusion coefficients measured by pulse-field-gradient nuclear magnetic resonance are compared for folded and unfolded proteins. For native globular proteins, the Rh -values increase as a power of 0.35 with molecular size, close to the scaling factor of 0.33 predicted from polymer theory. Unfolded proteins were studied under four sets of conditions: in the absence of denaturants, in the presence of 6 M urea, in 95% dimethyl sulfoxide (DMSO), and in 40% hexafluoroisopropanol (HFIP). Scaling factors under all four unfolding conditions are similar (0.49-0.53) approaching the theoretical value of 0.60 for a fully unfolded random coil. Persistence lengths are also similar, except smaller in 95% DMSO, suggesting that the polypeptides are more disordered on a local scale with this solvent. Three of the proteins in our unfolded set have an asymmetric sequence-distribution of charged residues. While these proteins behave normally in water and 6 M urea, they give atypically low Rh -values in 40% HFIP and 95% DMSO suggesting they are forming electrostatic hairpins, favored by their asymmetric sequence charge distribution and the low dielectric constants of DMSO and HFIP. While diffusion-ordered NMR spectroscopy can separate small molecules, we show a number of factors combine to make protein-sized molecules much more difficult to resolve in mixtures. Finally, we look at the temperature dependence of apparent diffusion coefficients. Small molecules show a linear temperature response, while large proteins show abnormally large apparent diffusion coefficients at high temperatures due to convection, suggesting diffusion reference standards are only useful near 25°C.
Collapse
Affiliation(s)
- Richard D Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
5
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
6
|
Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto P, Schreiner C, Hollerl E, Mateos B, Geist L, Faulkner G, Kozminski W, Svergun DI, Warscheid B, Zagrovic B, Gautel M, Konrat R, Djinović-Carugo K. Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. SCIENCE ADVANCES 2021; 7:eabg7653. [PMID: 34049882 PMCID: PMC8163081 DOI: 10.1126/sciadv.abg7653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α-actinin-2 and propose an interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organize interaction partners and stabilize α-actinin-2 preferential orientation in Z-disk. Last, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α-actinin-2, raising the question whether FATZ proteins can create an interaction hub for Z-disk proteins through membraneless compartmentalization during myofibrillogenesis.
Collapse
Affiliation(s)
- Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Joan L Arolas
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Ariadna Rodriguez Chamorro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Andrea Ghisleni
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anton Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Euripedes De Almeida Ribeiro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Miriam Pedron
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas Peterbauer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. BohrGasse 9, A-1030 Vienna, Austria
| | - Pierantonio Doto
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Eneda Hollerl
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Leonhard Geist
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | | | - Wiktor Kozminski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dmitri I Svergun
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Mathias Gautel
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Cardone C, Caseau CM, Pereira N, Sizun C. Pneumoviral Phosphoprotein, a Multidomain Adaptor-Like Protein of Apparent Low Structural Complexity and High Conformational Versatility. Int J Mol Sci 2021; 22:ijms22041537. [PMID: 33546457 PMCID: PMC7913705 DOI: 10.3390/ijms22041537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mononegavirales phosphoproteins (P) are essential co-factors of the viral polymerase by serving as a linchpin between the catalytic subunit and the ribonucleoprotein template. They have highly diverged, but their overall architecture is conserved. They are multidomain proteins, which all possess an oligomerization domain that separates N- and C-terminal domains. Large intrinsically disordered regions constitute their hallmark. Here, we exemplify their structural features and interaction potential, based on the Pneumoviridae P proteins. These P proteins are rather small, and their oligomerization domain is the only part with a defined 3D structure, owing to a quaternary arrangement. All other parts are either flexible or form short-lived secondary structure elements that transiently associate with the rest of the protein. Pneumoviridae P proteins interact with several viral and cellular proteins that are essential for viral transcription and replication. The combination of intrinsic disorder and tetrameric organization enables them to structurally adapt to different partners and to act as adaptor-like platforms to bring the latter close in space. Transient structures are stabilized in complex with protein partners. This class of proteins gives an insight into the structural versatility of non-globular intrinsically disordered protein domains.
Collapse
|
8
|
Alves de Souza SM, Fernandes TVA, Kalume DE, T R Lima LM, Pascutti PG, de Souza TLF. Physicochemical and structural properties of lunasin revealed by spectroscopic, chromatographic and molecular dynamics approaches. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2020; 1868:140440. [PMID: 32376479 DOI: 10.1016/j.bbapap.2020.140440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Lunasin is a 43-amino acid peptide from seeds and grains with bioavailability in humans and potent chemotherapeutic action against several cancer cell lines. Here, we investigate new information about the physicochemical and structural properties of lunasin using circular dichroism (CD), fluorescence spectroscopy, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS), size exclusion chromatography (SEC), molecular dynamics (MD), and bioinformatics. CD analysis and disorder prediction obtained by PONDR indicate that lunasin has a mostly unordered structure. Double wavelength [θ]222nm x [θ]200nm plot data suggests that lunasin is an intrinsically disordered peptide (IDP) in a pre-molten globule-like (PMG-like) state, while CD spectrum deconvolution and MD simulation indicate small β-strand content. The presence of residual structure was supported by loss of CD signal at 222 nm after treatment with urea and by increasing fluorescence emission upon bis-ANS binding. Lunasin also demonstrated stability to heating up to the temperature of 100 °C, as verified by CD. MD and CD analyses in the presence of TFE and MoRFpred prediction indicated the helix propensity of lunasin. ESI-IMS-MS data revealed that lunasin shows a propensity to form disulfide bonds at the conditions used. MD data also indicated that disulfide bond formation affects the adopted structure, showing a possible role of aspartyl-end in structure stabilization and compaction. In conclusion, our data support a characterization of lunasin as a peptide with an intrinsic disorder in a PMG-like state and reveal new aspects about its structural stability and plasticity, as well as the effects of disulfide bond formation and electrostatic attractions.
Collapse
Affiliation(s)
- Stephanny Miranda Alves de Souza
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Nanobiossistemas (PPGIM-NANOBIOS), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tácio Vinício Amorim Fernandes
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ 25250-020, Brazil
| | - Dário Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ 25250-020, Brazil
| | - Pedro Geraldo Pascutti
- Programa de Pós-Graduação em Nanobiossistemas (PPGIM-NANOBIOS), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Theo Luiz Ferraz de Souza
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Nanobiossistemas (PPGIM-NANOBIOS), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Drake JA, Pettitt BM. Physical Chemistry of the Protein Backbone: Enabling the Mechanisms of Intrinsic Protein Disorder. J Phys Chem B 2020; 124:4379-4390. [PMID: 32349480 PMCID: PMC7384255 DOI: 10.1021/acs.jpcb.0c02489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last two decades it has become clear that well-defined structure is not a requisite for proteins to properly function. Rather, spectra of functionally competent, structurally disordered states have been uncovered requiring canonical paradigms in molecular biology to be revisited or reimagined. It is enticing and oftentimes practical to divide the proteome into structured and unstructured, or disordered, proteins. While function, composition, and structural properties largely differ, these two classes of protein are built upon the same scaffold, namely, the protein backbone. The versatile physicochemical properties of the protein backbone must accommodate structural disorder, order, and transitions between these states. In this review, we survey these properties through the conceptual lenses of solubility and conformational populations and in the context of protein-disorder mediated phenomena (e.g., phase separation, order-disorder transitions, allostery). Particular attention is paid to the results of computational studies, which, through thermodynamic decomposition and dissection of molecular interactions, can provide valuable mechanistic insight and testable hypotheses to guide further solution experiments. Lastly, we discuss changes in the dynamics of side chains and order-disorder transitions of the protein backbone as two modes or realizations of "entropic reservoirs" capable of tuning coupled thermodynamic processes.
Collapse
Affiliation(s)
- Justin A Drake
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston 77555, Texas, United States
- Texas Advanced Computing Center, University of Texas at Austin, Austin 78712, Texas, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston 77555, Texas, United States
| |
Collapse
|
10
|
Nesmelova IV, Melnikova DL, Ranjan V, Skirda VD. Translational diffusion of unfolded and intrinsically disordered proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:85-108. [PMID: 31521238 DOI: 10.1016/bs.pmbts.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Translational (or self-diffusion) coefficient in dilute solution is inversely proportional to the size of a diffusing molecule, and hence self-diffusion coefficient measurements have been applied to determine the effective hydrodynamic radii for a range of native and nonnative protein conformations. In particular, translational diffusion coefficient measurements are useful to estimate the hydrodynamic radius of natively (or intrinsically) disordered proteins in solution, and, thereby, probe the compactness of a protein as well as its change when environmental parameters such as temperature, solution pH, or protein concentration are varied. The situation becomes more complicated in concentrated solutions. In this review, we discuss the translational diffusion of disordered proteins in dilute and crowded solutions, focusing primarily on the information provided by pulsed-field gradient NMR technique, and draw analogies to well-structured globular proteins and synthetic polymers.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC, United States; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, United States.
| | | | - Venkatesh Ranjan
- Department of Chemistry, University of North Carolina, Charlotte, NC, United States
| | | |
Collapse
|
11
|
Baliova M, Jursky F. Similarity of Coomassie Dye Spectral Absorbance Dynamic of Sequentially Distant Polymeric N‐Terminal Segments of Glycine and GABA Transporters. ChemistrySelect 2019. [DOI: 10.1002/slct.201901000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology Institute of Molecular BiologySlovak Academy of Sciences Dubravska cesta 21 84551 Bratislava
| | - Frantisek Jursky
- Laboratory of Neurobiology Institute of Molecular BiologySlovak Academy of Sciences Dubravska cesta 21 84551 Bratislava
| |
Collapse
|
12
|
Walter J, Barra A, Doublet B, Céré N, Charon J, Michon T. Hydrodynamic Behavior of the Intrinsically Disordered Potyvirus Protein VPg, of the Translation Initiation Factor eIF4E and of their Binary Complex. Int J Mol Sci 2019; 20:E1794. [PMID: 30978975 PMCID: PMC6479716 DOI: 10.3390/ijms20071794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/12/2023] Open
Abstract
Protein intrinsic disorder is involved in many biological processes and good experimental models are valuable to investigate its functions. The potyvirus genome-linked protein, VPg, displays many features of an intrinsically disordered protein. The virus cycle requires the formation of a complex between VPg and eIF4E, one of the host translation initiation factors. An in-depth characterization of the hydrodynamic properties of VPg, eIF4E, and of their binary complex VPg-eIF4E was carried out. Two complementary experimental approaches, size-exclusion chromatography and fluorescence anisotropy, which is more resolving and revealed especially suitable when protein concentration is the limiting factor, allowed to estimate monomers compaction upon complex formation. VPg possesses a high degree of hydration which is in agreement with its classification as a partially folded protein in between a molten and pre-molten globule. The natively disordered first 46 amino acids of eIF4E contribute to modulate the protein hydrodynamic properties. The addition of an N-ter His tag decreased the conformational entropy of this intrinsically disordered region. A comparative study between the two tagged and untagged proteins revealed the His tag contribution to proteins hydrodynamic behavior.
Collapse
Affiliation(s)
- Jocelyne Walter
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Amandine Barra
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Bénédicte Doublet
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Nicolas Céré
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Justine Charon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| |
Collapse
|
13
|
Dudás EF, Bodor A. Quantitative, Diffusion NMR Based Analytical Tool To Distinguish Folded, Disordered, and Denatured Biomolecules. Anal Chem 2019; 91:4929-4933. [DOI: 10.1021/acs.analchem.8b05617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Erika F. Dudás
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| |
Collapse
|
14
|
Arai S, Shibazaki C, Adachi M, Maeda Y, Tahara T, Kato T, Miyazaki H, Kuroki R. The non-glycosylated N-terminal domain of human thrombopoietin is a molten globule under native conditions. FEBS J 2019; 286:1717-1733. [PMID: 30675759 DOI: 10.1111/febs.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
Human thrombopoietin (hTPO) is a primary hematopoietic growth factor that regulates megakaryocytopoiesis and platelet production. The non-glycosylated form of 1-163 residues of hTPO (hTPO163 ) including the N-terminal active site domain (1-153 residues) is a candidate for treating thrombocytopenia. However, the autoantigenicity level of hTPO163 is higher than that of the full-length glycosylated hTPO (ghTPO332 ). In order to clarify the structural and physicochemical properties of hTPO163 , circular dichroism (CD) and differential scanning calorimetry (DSC) analyses were performed. CD analysis indicated that hTPO163 undergoes an induced-fit conformational change (+19.0% for helix and -16.7% for β-strand) upon binding to the neutralizing antibody TN1 in a manner similar to the coupled folding and binding mechanism. Moreover, DSC analysis showed that the thermal transition process of hTPO163 is a multistate transition; hTPO163 is thermally stabilized upon receptor (c-Mpl) binding, as indicated with raising the midpoint (Tm ) temperature of the transition by at least +9.5 K. The conformational variability and stability of hTPO163 indicate that hTPO163 exists as a molten globule under native conditions, which may enable the induced-fit conformational change according to the type of ligands (antibodies and receptor). Additionally, CD and computational analyses indicated that the C-terminal domain (154-332 residues) and glycosylation assists the folding of the N-terminal domain. These observations suggest that the antibody affinity and autoantigenicity of hTPO163 might be reduced, if the conformational variability of hTPO163 is restricted by mutation and/or by the addition of C-terminal domain with glycosylation to keep its conformation suitable for the c-Mpl recognition.
Collapse
Affiliation(s)
- Shigeki Arai
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Japan
| | - Chie Shibazaki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Japan
| | - Motoyasu Adachi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Japan
| | | | | | - Takashi Kato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | | | - Ryota Kuroki
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Japan
| |
Collapse
|
15
|
Landreh M, Andersson M, Marklund EG, Jia Q, Meng Q, Johansson J, Robinson CV, Rising A. Mass spectrometry captures structural intermediates in protein fiber self-assembly. Chem Commun (Camb) 2018; 53:3319-3322. [PMID: 28184384 PMCID: PMC5530726 DOI: 10.1039/c7cc00307b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Integrating ion mobility mass spectrometry and molecular dynamics simulations provides insights into intermediates in spider silk formation. The resulting structural models reveal how soluble spidroin proteins use their terminal domains to assemble into silk fibers.
Self-assembling proteins, the basis for a broad range of biological scaffolds, are challenging to study using most structural biology approaches. Here we show that mass spectrometry (MS) in combination with MD simulations captures structural features of short-lived oligomeric intermediates in spider silk formation, providing direct insights into its complex assembly process.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Marlene Andersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| | - Qiupin Jia
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jan Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden and Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Huddinge, 14157, Stockholm, Sweden.
| | - Carol V Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden and Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Huddinge, 14157, Stockholm, Sweden.
| |
Collapse
|
16
|
Tedeschi G, Salladini E, Santambrogio C, Grandori R, Longhi S, Brocca S. Conformational response to charge clustering in synthetic intrinsically disordered proteins. Biochim Biophys Acta Gen Subj 2018; 1862:2204-2214. [PMID: 30025858 DOI: 10.1016/j.bbagen.2018.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent theoretical and computational studies have shown that the charge content and, most importantly, the linear distribution of opposite charges are major determinants of conformational properties of intrinsically disordered proteins (IDPs). Charge segregation in a sequence can be measured through κ, which represents a normalized measure of charge asymmetry. A strong inverse correlation between κ and radius of gyration has been previously demonstrated for two independent sets of permutated IDP sequences. METHODS We used two well-characterized IDPs, namely measles virus NTAIL and Hendra virus PNT4, sharing a very similar fraction of charged residues and net charge per residue, but differing in proline (Pro) content. For each protein, we have rationally designed a low- and a high-κ variant endowed with the highest and the lowest κ values compatible with their natural amino acid composition. Then, the conformational properties of wild-type and κ-variants have been assessed by biochemical and biophysical techniques. RESULTS We confirmed a direct correlation between κ and protein compaction. The analysis of our original data along with those available from the literature suggests that Pro content may affects the responsiveness to charge clustering. CONCLUSIONS Charge clustering promotes IDP compaction, but the extent of its effects depends on the sequence context. Proline residues seem to play a role contrasting compaction. GENERAL SIGNIFICANCE These results contribute to the identification of sequence determinants of IDP conformational properties. They may also serve as an asset for rational design of non-natural IDPs with tunable degree of compactness.
Collapse
Affiliation(s)
- Giulia Tedeschi
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Edoardo Salladini
- CNRS, Aix Marseille Univ, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Marseille 13288, France
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Sonia Longhi
- CNRS, Aix Marseille Univ, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Marseille 13288, France.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| |
Collapse
|
17
|
Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. Biochim Biophys Acta Gen Subj 2018; 1862:1556-1564. [DOI: 10.1016/j.bbagen.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023]
|
18
|
Majumdar A, Mukhopadhyay S. Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:347-381. [DOI: 10.1016/bs.mie.2018.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Johnson CL, Solovyova AS, Hecht O, Macdonald C, Waller H, Grossmann JG, Moore GR, Lakey JH. The Two-State Prehensile Tail of the Antibacterial Toxin Colicin N. Biophys J 2017; 113:1673-1684. [PMID: 29045862 PMCID: PMC5647543 DOI: 10.1016/j.bpj.2017.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered regions within proteins are critical elements in many biomolecular interactions and signaling pathways. Antibacterial toxins of the colicin family, which could provide new antibiotic functions against resistant bacteria, contain disordered N-terminal translocation domains (T-domains) that are essential for receptor binding and the penetration of the Escherichia coli outer membrane. Here we investigate the conformational behavior of the T-domain of colicin N (ColN-T) to understand why such domains are widespread in toxins that target Gram-negative bacteria. Like some other intrinsically disordered proteins in the solution state of the protein, ColN-T shows dual recognition, initially interacting with other domains of the same colicin N molecule and later, during cell killing, binding to two different receptors, OmpF and TolA, in the target bacterium. ColN-T is invisible in the high-resolution x-ray model and yet accounts for 90 of the toxin's 387 amino acid residues. To reveal its solution structure that underlies such a dynamic and complex system, we carried out mutagenic, biochemical, hydrodynamic and structural studies using analytical ultracentrifugation, NMR, and small-angle x-ray scattering on full-length ColN and its fragments. The structure was accurately modeled from small-angle x-ray scattering data by treating ColN as a flexible system, namely by the ensemble optimization method, which enables a distribution of conformations to be included in the final model. The results reveal, to our knowledge, for the first time the dynamic structure of a colicin T-domain. ColN-T is in dynamic equilibrium between a compact form, showing specific self-recognition and resistance to proteolysis, and an extended form, which most likely allows for effective receptor binding.
Collapse
Affiliation(s)
- Christopher L Johnson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandra S Solovyova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Olli Hecht
- Centre for Structural and Molecular Biology, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Colin Macdonald
- Centre for Structural and Molecular Biology, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Helen Waller
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J Günter Grossmann
- Institute of Integrative Biology, Structural and Chemical Biology, Liverpool, United Kingdom
| | - Geoffrey R Moore
- Centre for Structural and Molecular Biology, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Jeremy H Lakey
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Drake JA, Harris RC, Pettitt BM. Solvation Thermodynamics of Oligoglycine with Respect to Chain Length and Flexibility. Biophys J 2017; 111:756-767. [PMID: 27558719 DOI: 10.1016/j.bpj.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023] Open
Abstract
Oligoglycine is a backbone mimic for all proteins and is prevalent in the sequences of intrinsically disordered proteins. We have computed the absolute chemical potential of glycine oligomers at infinite dilution by simulation with the CHARMM36 and Amber ff12SB force fields. We performed a thermodynamic decomposition of the solvation free energy (ΔG(sol)) of Gly2-5 into enthalpic (ΔH(sol)) and entropic (ΔS(sol)) components as well as their van der Waals and electrostatic contributions. Gly2-5 was either constrained to a rigid/extended conformation or allowed to be completely flexible during simulations to assess the effects of flexibility on these thermodynamic quantities. For both rigid and flexible oligoglycine models, the decrease in ΔG(sol) with chain length is enthalpically driven with only weak entropic compensation. However, the apparent rates of decrease of ΔG(sol), ΔH(sol), ΔS(sol), and their elec and vdw components differ for the rigid and flexible models. Thus, we find solvation entropy does not drive aggregation for this system and may not explain the collapse of long oligoglycines. Additionally, both force fields yield very similar thermodynamic scaling relationships with respect to chain length despite both force fields generating different conformational ensembles of various oligoglycine chains.
Collapse
Affiliation(s)
- Justin A Drake
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Robert C Harris
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
21
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
22
|
Bey H, Gtari W, Aschi A, Othman T. Structure and properties of native and unfolded lysing enzyme from T. harzianum: Chemical and pH denaturation. Int J Biol Macromol 2016; 92:860-866. [DOI: 10.1016/j.ijbiomac.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/12/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
23
|
Travers T, Shao H, Joughin BA, Lauffenburger DA, Wells A, Camacho CJ. Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function. Sci Signal 2015; 8:ra51. [PMID: 26012634 PMCID: PMC4522051 DOI: 10.1126/scisignal.aaa1977] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphorylated residues occur preferentially in the intrinsically disordered regions of eukaryotic proteins. In the disordered amino-terminal region of human α-actinin-4 (ACTN4), Tyr(4) and Tyr(31) are phosphorylated in cells stimulated with epidermal growth factor (EGF), and a mutant with phosphorylation-mimicking mutations of both tyrosines exhibits reduced interaction with actin in vitro. Cleavage of ACTN4 by m-calpain, a protease that in motile cells is predominantly activated at the rear, removes the Tyr(4) site. We found that introducing a phosphomimetic mutation at only Tyr(31) was sufficient to inhibit the interaction with actin in vitro. However, molecular dynamics simulations predicted that Tyr(31) is mostly buried and that phosphorylation of Tyr(4) would increase the solvent exposure and thus kinase accessibility of Tyr(31). In fibroblast cells, EGF stimulation increased tyrosine phosphorylation of a mutant form of ACTN4 with a phosphorylation-mimicking residue at Tyr(4), whereas a truncated mutant representing the product of m-calpain cleavage exhibited EGF-stimulated tyrosine phosphorylation at a background amount similar to that observed for a double phosphomimetic mutant of Tyr(4) and Tyr(31). We also found that inhibition of the receptor tyrosine kinases of the TAM family, such as AXL, blocked EGF-stimulated tyrosine phosphorylation of ACTN4. Mathematical modeling predicted that the kinetics of phosphorylation at Tyr(31) can be dictated by the kinase affinity for Tyr(4). This study suggests that tandem-site phosphorylation within intrinsically disordered regions provides a mechanism for a site to function as a switch to reveal a nearby function-regulating site.
Collapse
Affiliation(s)
- Timothy Travers
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
24
|
D'Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R. Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:472-481. [PMID: 25510932 DOI: 10.1007/s13361-014-1048-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered N(TAIL) domain and the phosphoprotein X domain (P(XD)) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire N(TAIL) domain bound to P(XD) at atomic resolution.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
26
|
Kurzbach D, Platzer G, Schwarz T, Henen MA, Konrat R, Hinderberger D. Cooperative unfolding of compact conformations of the intrinsically disordered protein osteopontin. Biochemistry 2013; 52:5167-75. [PMID: 23848319 PMCID: PMC3737600 DOI: 10.1021/bi400502c] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Intrinsically disordered proteins (IDPs) constitute a class of biologically active proteins that lack defined tertiary and often secondary structure. The IDP Osteopontin (OPN), a cytokine involved in metastasis of several types of cancer, is shown to simultaneously sample extended, random coil-like conformations and stable, cooperatively folded conformations. By a combination of two magnetic resonance methods, electron paramagnetic resonance and nuclear magnetic resonance spectroscopy, we demonstrate that the OPN ensemble exhibits not only characteristics of an extended and flexible polypeptide, as expected for an IDP, but also simultaneously those of globular proteins, in particular sigmoidal structural denaturation profiles. Both types of states, extended and cooperatively folded, are populated simultaneously by OPN in its apo state. The heterogeneity of the structural properties of IDPs is thus shown to even involve cooperative folding and unfolding events.
Collapse
Affiliation(s)
- Dennis Kurzbach
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Gerald Platzer
- Max
F. Perutz Laboratories, Dr. Bohr-Gasse 9 (VBC 5), 1030
Vienna, Austria
| | - Thomas
C. Schwarz
- Max
F. Perutz Laboratories, Dr. Bohr-Gasse 9 (VBC 5), 1030
Vienna, Austria
| | - Morkos A. Henen
- Max
F. Perutz Laboratories, Dr. Bohr-Gasse 9 (VBC 5), 1030
Vienna, Austria
- Faculty of
Pharmacy, Mansoura University, Mansoura,
Egypt
| | - Robert Konrat
- Max
F. Perutz Laboratories, Dr. Bohr-Gasse 9 (VBC 5), 1030
Vienna, Austria
| | - Dariush Hinderberger
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| |
Collapse
|