1
|
Zhang C, Qin Q, Liu Z, Wang Y, Lan M, Zhao D, Zhang J, Wang Z, Li J, Liu Z. Combining multiomics to analyze the molecular mechanism of hair follicle cycle change in cashmere goats from Inner Mongolia. Front Vet Sci 2024; 11:1405355. [PMID: 39036798 PMCID: PMC11257874 DOI: 10.3389/fvets.2024.1405355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep.Inner Mongolia Cashmere Goat is a local excellent breed of cashmere and meat dual-purpose, which is a typical heterogeneous indumentum. The hair follicles cycle through periods of vigorous growth (anagen), a regression caused by apoptosis (catagen), and relative rest (telogen). At present, it is not clear which genes affect the cycle transformation of hair follicles and unclear how proteins impact the creation and expansion of hair follicles.we using multi-omics joint analysis methodologies to investigated the possible pathways of transformation and apoptosis in goat hair follicles. The results showed that 917,1,187, and 716 proteins were specifically expressed in anagen, catagen andtelogen. The result of gene ontology (GO) annotation showed that differentially expressed proteins (DEPs) are in different growth cycle periods, and enriched GO items are mostly related to the transformation of cells and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment result indicated that the apoptosis process has a great impact on hair follicle's growth cycle. The results of the protein interaction network of differential proteins showed that the ribosomal protein family (RPL4, RPL8, RPS16, RPS18, RPS2, RPS27A, RPS3) was the core protein in the network. The results of combined transcriptome and proteomics analysis showed that there were 16,34, and 26 overlapped DEGs and DEPs in the comparison of anagen VS catagen, catagen VS telogen and anagen VS telogen, of which API5 plays an important role in regulating protein and gene expression levels. We focused on API5 and Ribosomal protein and found that API5 affected the apoptosis process of hair follicles, and ribosomal protein was highly expressed in the resting stage of hair follicles. They are both useful as molecular marker candidate genes to study hair follicle growth and apoptosis,and they both have an essential function in the cycle transition process of hair follicles. The results of this study may provide a theoretical basis for further research on the growth and development of hair follicles in Inner Mongolian Cashmere goats.
Collapse
Affiliation(s)
- Chongyan Zhang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Qing Qin
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhichen Liu
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yichuan Wang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Mingxi Lan
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Dan Zhao
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jingwen Zhang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Zhixin Wang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jinquan Li
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhihong Liu
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Northern Agriculture and Livestock Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
2
|
Ramos-Lorente SE, Berzal-Herranz B, Romero-López C, Berzal-Herranz A. Recruitment of the 40S ribosomal subunit by the West Nile virus 3' UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Res 2024; 343:199340. [PMID: 38387694 PMCID: PMC10907855 DOI: 10.1016/j.virusres.2024.199340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.
Collapse
Affiliation(s)
- Sara Esther Ramos-Lorente
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| |
Collapse
|
3
|
Ochkasova A, Arbuzov G, Kabilov M, Tupikin A, Karpova G, Graifer D. AP lyase activity of the human ribosomal protein uS3: The DNA cleavage sequence specificity and the location of the enzyme active center. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140880. [PMID: 36396097 DOI: 10.1016/j.bbapap.2022.140880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
The human protein uS3, a component of the small ribosomal subunit, has a long-known extra-ribosomal activity as an enzyme of base excision DNA repair displayed in its ability to cleave DNA at abasic (AP) sites. It has been found that the efficacy of DNA cleavage by uS3 in vitro depends on the DNA sequence. To clarify the issue on the sequence specificity of uS3 as an AP lyase in general, we applied a combinatorial approach based on the use of a model single-stranded circular DNA with an AP site flanked with random trinucleotides at both sides. The cleavage of this DNA by uS3 under conditions when only its minor portion undergoes the reaction resulted in the formation of the linear DNA with random triplets at the 5' and 3' termini. NGS sequencing of the DNA library derived from this DNA allowed identifying the contexts within which uS3 cleaves DNA the most and the least effectively. Given that the AP lyase reaction occurs via the formation of a covalent intermediate (Schiff base), we determined the region comprising the active center of the uS3 protein. By digesting of uS3 cross-linked to a radiolabeled AP site-containing model DNA with specific proteolytic agents followed by analysis of the resulting modified oligopeptides, the cross-link was mapped to the region 155-192 (likely, to R173/R178). Thus, our results clarified two previously unstudied features of the uS3 AP lyase activity, one related to the recognition of sequences in DNA surrounding the AP site, and the other to the protein region directly contacting this site.
Collapse
Affiliation(s)
- Anastasia Ochkasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Grigory Arbuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Chen L, Gao W, Sha C, Yang M, Lin L, Li T, Wei H, Chen Q, Xing J, Zhang M, Zhao S, Xu W, Li Y, Zhu X. SIAH1-mediated RPS3 ubiquitination contributes to chemosensitivity in epithelial ovarian cancer. Aging (Albany NY) 2022; 14:6202-6226. [PMID: 35951361 PMCID: PMC9417229 DOI: 10.18632/aging.204211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The E3 ligase SIAH1 is deregulated in human cancers and correlated with poor prognosis, but its contributions to chemoresistance in epithelial ovarian cancer (EOC) are not evident. Herein we found that SIAH1 was decreased in EOC tumour tissues and cell lines and negatively correlated with the RPS3 levels. SIAH1 overexpression suppressed tumour cell growth, colony formation, invasion, metastasis, and cisplatin resistance in vivo and in vitro. SIAH1 promoted RPS3 ubiquitination and degradation using the RING-finger domain, and these steps were required for RPS3 localization to the cytoplasm, which led to subsequent NF-κB inactivation and thereby conferred chemosensitivity. Moreover, ectopic expression of RPS3 or depletion of RPS3 ubiquitination mediated by SIAH1 via the K214R mutant significantly impaired cisplatin-induced tumour suppression in cells stably expressing SIAH1. Together, our findings reveal a tumour suppressor function of SIAH1 and provide evidence showing that the SIAH1-RPS3-NF-κB axis may act as an appealing strategy for tackling treatment resistance in EOC.
Collapse
Affiliation(s)
- Lu Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wujiang Gao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunli Sha
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Meiling Yang
- Obstetrics and Gynecology, The First People's Hospital of Nantong City, Nantong, Jiangsu, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Taoqiong Li
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hong Wei
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Chen
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijie Zhao
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenlin Xu
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,International Genome Center of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Elsakrmy N, Aouida M, Hindi N, Moovarkumudalvan B, Mohanty A, Ali R, Ramotar D. C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair (Amst) 2022; 117:103359. [DOI: 10.1016/j.dnarep.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
6
|
Development of Carbazole Derivatives Compounds against Candida albicans: Candidates to Prevent Hyphal Formation via the Ras1-MAPK Pathway. J Fungi (Basel) 2021; 7:jof7090688. [PMID: 34575726 PMCID: PMC8466151 DOI: 10.3390/jof7090688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Morphogenesis contributes to the virulence of the opportunistic human fungal pathogen Candida albicans. Ras1-MAPK pathways play a critical role in the virulence of C. albicans by regulating cell growth, morphogenesis, and biofilm formation. Ume6 acts as a transcription factor, and Nrg1 is a transcriptional repressor for the expression of hyphal-specific genes in morphogenesis. Azoles or echinocandin drugs have been extensively prescribed for C. albicans infections, which has led to the development of drug-resistant strains. Therefore, it is necessary to develop new molecules to effectively treat fungal infections. Here, we showed that Molecule B and Molecule C, which contained a carbazole structure, attenuated the pathogenicity of C. albicans through inhibition of the Ras1/MAPK pathway. We found that Molecule B and Molecule C inhibit morphogenesis through repressing protein and RNA levels of Ras/MAPK-related genes, including UME6 and NRG1. Furthermore, we determined the antifungal effects of Molecule B and Molecule C in vivo using a candidiasis murine model. We anticipate our findings are that Molecule B and Molecule C, which inhibits the Ras1/MAPK pathway, are promising compounds for the development of new antifungal agents for the treatment of systemic candidiasis and possibly for other fungal diseases.
Collapse
|
7
|
Zhu Y, Ren C, Jiang D, Yang L, Chen Y, Li F, Wang B, Zhang Y. RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway. Cancer Sci 2021; 112:1811-1821. [PMID: 33675124 PMCID: PMC8088949 DOI: 10.1111/cas.14874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosomal proteins (RPs) are important components of ribosomes and related to the occurrence and development of tumors. However, little is known about the effects of the RP network on cervical cancer (CC). In this study, we screened differentially expressed RPL34 in CC by high‐throughput quantitative proteome assay. We found that RPL34 acted as a tumor suppressor and was downregulated in CC and inhibited the proliferation, migration, and invasion abilities of CC cells. Next, we verified that RPL34 regulated the CC through the MDM2‐P53 pathway by using Act D medicine, MDM2 inhibitor, and a series of western blotting(WB)assays. Moreover, an antisense lncRNA, RPL34‐AS1, regulated the expression of RPL34 and participated in the tumorigenesis of CC. RPL34 can reverse the effect of RPL34‐AS1 in CC cells. Finally, by RNA‐binding protein immunoprecipitation (RIP) assay we found that eukaryotic initiation factor 4A3 (EIF4A3), which binds to RPL34‐AS1, regulated RPL34‐AS1 expression in CC. Therefore, our findings indicate that RPL34‐AS1–induced RPL34 inhibits CC cell proliferation, invasion, and metastasis through modulation of the MDM2‐P53 signaling pathway, which provides a meaningful target for the early diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Dongyuan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yannan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Feiyan Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Baojin Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yali Zhang
- Department of pathology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
8
|
Graifer D, Karpova G. Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects. Bioessays 2020; 42:e2000124. [PMID: 33179285 DOI: 10.1002/bies.202000124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF-kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding the roles of uS3 in such processes as the assembly and maturation of 40S subunits, ensuring proper structure of 48S pre-initiation complexes, regulation of initiation and ribosome-based RNA quality control pathways. Besides, we summarize novel results on the participation of the protein in processes beyond translation and consider biomedical implications of previously known and recently found extra-ribosomal functions of uS3, primarily, in oncogenesis.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
9
|
Yang HW, Jung Y, Kim HD, Kim J. Ribosomal protein S3-derived repair domain peptides regulate UV-induced matrix metalloproteinase-1. Biochem Biophys Res Commun 2020; 530:149-154. [PMID: 32828277 DOI: 10.1016/j.bbrc.2020.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Ultraviolet (UV) radiation is a major factor that causes wrinkle formation by affecting the collagen level in the skin. Here, we show that a short peptide (A8) derived from the repair domain of the ribosomal protein S3 (rpS3) reduces UV irradiation-induced increase in matrix metalloproteinase-1 (MMP-1) and prevents collagen degradation by reducing the activation of the mitogen-activated protein kinase (MAPK) signaling proteins (extracellular signal-regulated kinase [ERK], p38, and c-Jun N-terminal kinases [JNK]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in cells. Furthermore, A8 also prevents the increase in the levels of inflammatory modulators such as tumor necrosis factor-alpha (TNF-α) or interleukin-6 (IL-6) in UV-irradiated cells. Collectively, our study suggests that the A8 peptide, derived from yeast or human, has anti-photoaging potential as it prevents UV-induced wrinkle formation.
Collapse
Affiliation(s)
- Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Youjin Jung
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea; HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Park YJ, Kim TS, Kim EH, Kim HD, Kim J. Ribosomal protein S3 is a novel negative regulator of non-homologous end joining repair of DNA double-strand breaks. FASEB J 2020; 34:8102-8113. [PMID: 32297663 DOI: 10.1096/fj.201903245r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 11/11/2022]
Abstract
DNA double-strand breaks (DSBs) are one of the most serious types of DNA damage. However, multiple repair pathways are present in cells to ensure rapid and appropriate repair of DSBs. Pathway selection depends on several factors including cell type, cell cycle phase, and damage severity. Ribosomal protein S3 (rpS3), a component of the 40S small ribosomal subunit, is a multi-functional protein primarily involved in protein synthesis. rpS3 is also involved in the mediation of various extra-ribosomal pathways, including DNA damage processing and the stress response. Here, we report that rpS3 is a novel negative regulator of non-homologous end joining (NHEJ)-mediated repair of DSBs. We found that rpS3 interacts with the Ku heterodimers of the DNA-dependent protein kinase (DNA-PK) complex and slows down NHEJ ligation reactions, ultimately triggering p53-dependent cell death following treatment with high-dose ionizing radiation. After DSB formation, DNA-PK phosphorylates rpS3, which consequently reduces the binding of rpS3 to the Ku complex. We hypothesized that rpS3 may play a role in DSB repair by repressing NHEJ, while inducing other repair pathways, and by initiating DSB-induced cell death in response to severe DNA damage.
Collapse
Affiliation(s)
- Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Eun-Ho Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | | | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, Korea University, Seoul, Korea
| |
Collapse
|
11
|
Ochkasova AS, Kabilov MR, Karpova GG, Graifer DM. Exploring the Interaction of Human Ribosomal Protein uS3 with Single-Stranded DNAs Having Different Sequences. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s106816201906030x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Yang HW, Kim HD, Kim J. The DNA repair domain of human rpS3 protects against photoaging by removing cyclobutane pyrimidine dimers. FEBS Lett 2019; 593:2060-2068. [PMID: 31180576 DOI: 10.1002/1873-3468.13479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Ribosomal protein S3 (rpS3) has endonuclease activity for DNA repair. In particular, rpS3 cleaves the phosphodiester bonds of damaged DNA. In this study, we show that the repair domain of rpS3 spans amino acids 144-189. We fused rpS3 with the transactivator of transcription (TAT) sequence to introduce the rpS3 repair domain into cells. We find that the TAT-rpS3 (aa: 144-189) peptide cleaves UV-induced cyclobutane pyrimidine dimers (CPDs) in cells. We also reveal that the TAT-rpS3 peptide reduces matrix metalloproteinase-1 (MMP-1) induction in UV-irradiated fibroblasts and increases cell migration activity. Taken together, our study suggests that penetration of the rpS3 repair domain into cells can cleave UV-induced CPDs and reduce MMP-1 expression induced by UV.
Collapse
Affiliation(s)
- Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea.,HAEL Lab, TechnoComplex Building, Korea University, Seoul, Korea
| |
Collapse
|
13
|
Morales-Amparano MB, Ramos-Clamont Montfort G, Baqueiro-Peña I, Robles-Burgueño MDR, Vázquez-Moreno L, Huerta-Ocampo JÁ. Proteomic response of Saccharomyces boulardii to simulated gastrointestinal conditions and encapsulation. Food Sci Biotechnol 2019; 28:831-840. [PMID: 31093441 PMCID: PMC6484100 DOI: 10.1007/s10068-018-0508-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022] Open
Abstract
Probiotics are live microorganisms conferring health benefits when administered in adequate amounts. However, the passage through the gastrointestinal tract represents a challenge due to pH variations, proteases, and bile salts. This study aimed to evaluate the proteomic response of Saccharomyces boulardii to simulated gastrointestinal digestion and the influence of encapsulation on yeast viability. Different pH values and time periods simulating the passage through different sections of the gastrointestinal tract were applied to unencapsulated and encapsulated yeasts. Encapsulation in 0.5% calcium alginate did not improve yeast survival or induce changes in protein patterns whereas protein extracts from control and digested yeasts showed remarkable differences when separated by SDS-PAGE. Protein bands were analyzed by tandem mass spectrometry. Protein identification revealed unique proteins that changed acutely in abundance after simulated digestion. Carbohydrate metabolism, protein processing, and oxide-reduction were the biological processes most affected by simulated gastrointestinal digestion in S. boulardii.
Collapse
Affiliation(s)
- Martha Beatriz Morales-Amparano
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - Itzamná Baqueiro-Peña
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - María del Refugio Robles-Burgueño
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - Luz Vázquez-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - José Ángel Huerta-Ocampo
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| |
Collapse
|
14
|
Simms CL, Kim KQ, Yan LL, Qiu J, Zaher HS. Interactions between the mRNA and Rps3/uS3 at the entry tunnel of the ribosomal small subunit are important for no-go decay. PLoS Genet 2018; 14:e1007818. [PMID: 30475795 PMCID: PMC6283612 DOI: 10.1371/journal.pgen.1007818] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022] Open
Abstract
No-go Decay (NGD) is a process that has evolved to deal with stalled ribosomes resulting from structural blocks or aberrant mRNAs. The process is distinguished by an endonucleolytic cleavage prior to degradation of the transcript. While many of the details of the pathway have been described, the identity of the endonuclease remains unknown. Here we identify residues of the small subunit ribosomal protein Rps3 that are important for NGD by affecting the cleavage reaction. Mutation of residues within the ribosomal entry tunnel that contact the incoming mRNA leads to significantly reduced accumulation of cleavage products, independent of the type of stall sequence, and renders cells sensitive to damaging agents thought to trigger NGD. These phenotypes are distinct from those seen in combination with other NGD factors, suggesting a separate role for Rps3 in NGD. Conversely, ribosomal proteins ubiquitination is not affected by rps3 mutations, indicating that upstream ribosome quality control (RQC) events are not dependent on these residues. Together, these results suggest that Rps3 is important for quality control on the ribosome and strongly supports the notion that the ribosome itself plays a central role in the endonucleolytic cleavage reaction during NGD. In all organisms, optimum cellular fitness depends on the ability of cells to recognize and degrade aberrant molecules. Messenger RNA is subject to alterations and, as a result, often presents roadblocks for the translating ribosomes. It is not surprising, then, that organisms evolved pathways to resolve these valuable stuck ribosomes. In eukaryotes, this process is called no-go decay (NGD) because it is coupled with decay of mRNAs that are associated with ribosomes that do not ‘go’. This decay process initiates with cleavage of the mRNA near the stall site, but some important details about this reaction are lacking. Here, we show that the ribosome itself is very central to the cleavage reaction. In particular, we identified a pair of residues of a ribosomal protein to be important for cleavage efficiency. These observations are consistent with prior structural studies showing that the residues make intimate contacts with the incoming mRNA in the entry tunnel. Altogether our data provide important clues about this quality-control pathway and suggest that the endonuclease not only recognizes stalled ribosomes but may have coevolved with the translation machinery to take advantage of certain residues of the ribosome to fulfill its function.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Genes, Fungal
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Peptide Chain Elongation, Translational
- Protein Conformation
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small/genetics
- Ribosome Subunits, Small/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Ubiquitination
Collapse
Affiliation(s)
- Carrie L. Simms
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jessica Qiu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Jung Y, Kim HD, Yang HW, Kim HJ, Jang CY, Kim J. Modulating cellular balance of Rps3 mono-ubiquitination by both Hel2 E3 ligase and Ubp3 deubiquitinase regulates protein quality control. Exp Mol Med 2017; 49:e390. [PMID: 29147007 PMCID: PMC5704183 DOI: 10.1038/emm.2017.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.
Collapse
Affiliation(s)
- Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building 603-3, Korea University, Seoul, Republic of Korea
| | - Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chang-Young Jang
- Laboratory of Cell Biology, Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building 603-3, Korea University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Grosheva AS, Zharkov DO, Stahl J, Gopanenko AV, Tupikin AE, Kabilov MR, Graifer DM, Karpova GG. Recognition but no repair of abasic site in single-stranded DNA by human ribosomal uS3 protein residing within intact 40S subunit. Nucleic Acids Res 2017; 45:3833-3843. [PMID: 28334742 PMCID: PMC5397187 DOI: 10.1093/nar/gkx052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/04/2023] Open
Abstract
Isolated human ribosomal protein uS3 has extra-ribosomal functions including those related to base excision DNA repair, e.g. AP lyase activity that nicks double-stranded (ds) DNA 3΄ to the abasic (AP) site. However, the ability of uS3 residing within ribosome to recognize and cleave damaged DNA has never been addressed. Here, we compare interactions of single-stranded (ss) DNA and dsDNA bearing AP site with human ribosome-bound uS3 and with the isolated protein, whose interactions with ssDNA were not yet studied. The AP lyase activity of free uS3 was much higher with ssDNA than with dsDNA, whereas ribosome-bound uS3 was completely deprived of this activity. Nevertheless, an exposed peptide of ribosome-bound uS3 located far away from the putative catalytic center previously suggested for isolated uS3 cross-linked to full-length uncleaved ssDNA, but not to dsDNA. In contrast, free uS3 cross-linked mainly to the 5΄-part of the damaged DNA strand after its cleavage at the AP site. ChIP-seq analysis showed preferential uS3 binding to nucleolus-associated chromatin domains. We conclude that free and ribosome-bound uS3 proteins interact with AP sites differently, exhibiting their non-translational functions in DNA repair in and around the nucleolus and in regulation of DNA damage response in looped DNA structures, respectively.
Collapse
Affiliation(s)
- Anastasia S. Grosheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Joachim Stahl
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Alexander V. Gopanenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M. Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Galina G. Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
17
|
Patil AV, Hsieh TS. Ribosomal Protein S3 Negatively Regulates Unwinding Activity of RecQ-like Helicase 4 through Their Physical Interaction. J Biol Chem 2017; 292:4313-4325. [PMID: 28159839 DOI: 10.1074/jbc.m116.764324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Human RecQ-like helicase 4 (RECQL4) plays crucial roles in replication initiation and DNA repair; however, the contextual regulation of its unwinding activity is not fully described. Mutations in RECQL4 have been linked to three diseases including Rothmund-Thomson syndrome, which is characterized by osteoskeletal deformities, photosensitivity, and increased osteosarcoma susceptibility. Understanding regulation of RECQL4 helicase activity by interaction partners will allow deciphering its role as an enzyme and a signaling cofactor in different cellular contexts. We became interested in studying the interaction of RECQL4 with ribosomal protein S3 (RPS3) because previous studies have shown that RPS3 activity is sometimes associated with phenotypes mimicking those of mutated RECQL4. RPS3 is a small ribosomal protein that also has extraribosomal functions, including apurnic-apyrimidinic endonuclease-like activity suggested to be important during DNA repair. Here, we report a functional and physical interaction between RPS3 and RECQL4 and show that this interaction may be enhanced during cellular stress. We show that RPS3 inhibits ATPase, DNA binding, and helicase activities of RECQL4 through their direct interaction. Further domain analysis shows that N-terminal 1-320 amino acids of RECQL4 directly interact with the C-terminal 94-244 amino acids of RPS3 (C-RPS3). Biochemical analysis of C-RPS3 revealed that it comprises a standalone apurnic-apyrimidinic endonuclease-like domain. We used U2OS cells to show that oxidative stress and UV exposure could enhance the interaction between nuclear RPS3 and RECQL4. Regulation of RECQL4 biochemical activities by RPS3 along with nuclear interaction during UV and oxidative stress may serve to modulate active DNA repair.
Collapse
Affiliation(s)
- Ajay Vitthal Patil
- From the Molecular and Cell Biology, Taiwan International Graduate Program and .,the Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan, and.,the Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Tao-Shih Hsieh
- From the Molecular and Cell Biology, Taiwan International Graduate Program and.,the Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan, and.,the Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan.,the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
18
|
Lu H, Zhu YF, Xiong J, Wang R, Jia Z. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae. Microbiol Res 2015. [PMID: 26211963 DOI: 10.1016/j.micres.2015.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ribosomal proteins (RPs), are essential components of the ribosomes, the molecular machines that turn mRNA blueprints into proteins, as they serve to stabilize the structure of the rRNA, thus improving protein biosynthesis. In addition, growing evidence suggests that RPs can function in other cellular roles. In the present review, we summarize several potential extra-ribosomal functions of RPs in ribosomal biogenesis, transcription activity, translation process, DNA repair, replicative life span, adhesive growth, and morphological transformation in Saccharomyces cerevisiae. However, the future in-depth studies are needed to identify these novel secondary functions of RPs in S. cerevisiae.
Collapse
Affiliation(s)
- Hui Lu
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | - Yi-Fei Zhu
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | - Juan Xiong
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China.
| | - Zhengping Jia
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China.
| |
Collapse
|
19
|
You Y, Wen R, Pathak R, Li A, Li W, St Clair D, Hauer-Jensen M, Zhou D, Liang Y. Latexin sensitizes leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway. Cell Death Dis 2014; 5:e1493. [PMID: 25341047 PMCID: PMC4237263 DOI: 10.1038/cddis.2014.443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022]
Abstract
Leukemia is a leading cause of cancer death. Recently, the latexin (Lxn) gene was identified as a potential tumor suppressor in several types of solid tumors and lymphoma, and Lxn expression was found to be absent or downregulated in leukemic cells. Whether Lxn functions as a tumor suppressor in leukemia and what molecular and cellular mechanisms are involved are unknown. In this study, the myeloid leukemogenic FDC-P1 cell line was used as a model system and Lxn was ectopically expressed in these cells. Using the protein pull-down assay and mass spectrometry, ribosomal protein subunit 3 (Rps3) was identified as a novel Lxn binding protein. Ectopic expression of Lxn inhibited FDC-P1 growth in vitro. More surprisingly, Lxn enhanced gamma irradiation-induced DNA damages and induced cell-cycle arrest and massive necrosis, leading to depletion of FDC-P1 cells. Mechanistically, Lxn inhibited the nuclear translocation of Rps3 upon radiation, resulting in abnormal mitotic spindle formation and chromosome instability. Rps3 knockdown increased the radiation sensitivity of FDC-P1, confirming that the mechanism of action of Lxn is mediated by Rps3 pathway. Moreover, Lxn enhanced the cytotoxicity of chemotherapeutic agent, VP-16, on FDC-P1 cells. Our study suggests that Lxn itself not only suppresses leukemic cell growth but also potentiates the cytotoxic effect of radio- and chemotherapy on cancer cells. Lxn could be a novel molecular target that improves the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Y You
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - R Wen
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - R Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A Li
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - W Li
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - D St Clair
- Gratuate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - M Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - D Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Liang
- 1] Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA [2] Gratuate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Heterogeneity research in muscle-invasive bladder cancer based on differential protein expression analysis. Med Oncol 2014; 31:21. [DOI: 10.1007/s12032-014-0021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/01/2014] [Indexed: 12/15/2022]
|
21
|
Graifer D, Malygin A, Zharkov DO, Karpova G. Eukaryotic ribosomal protein S3: A constituent of translational machinery and an extraribosomal player in various cellular processes. Biochimie 2014; 99:8-18. [DOI: 10.1016/j.biochi.2013.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/05/2013] [Indexed: 01/26/2023]
|
22
|
Wang Z, Hou J, Lu L, Qi Z, Sun J, Gao W, Meng J, Wang Y, Sun H, Gu H, Xin Y, Guo X, Yang G. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One 2013; 8:e79117. [PMID: 24244431 PMCID: PMC3823983 DOI: 10.1371/journal.pone.0079117] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Hou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lili Lu
- Life and Environment Science College, Shanghai Normal University, Shanghai, China
| | - Zihao Qi
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianmin Sun
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Gao
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huizhen Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Gu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhu Xin
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| |
Collapse
|
23
|
Kim Y, Kim HD, Youn B, Park YG, Kim J. Ribosomal protein S3 is secreted as a homodimer in cancer cells. Biochem Biophys Res Commun 2013; 441:805-8. [PMID: 24211576 DOI: 10.1016/j.bbrc.2013.10.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022]
Abstract
Protein secretion is a general phenomenon by which cells communicate with the extracellular environment. Secretory proteins, including hormones, enzymes, toxins, and antimicrobial peptides have various functions in extracellular environments. Here, we determined that ribosomal protein S3 (rpS3) is homodimerized and secreted in several cancer cell lines such as HT1080 (human fibrosarcoma) and MPC11 (mouse plasmacytoma). Moreover, we found that the secreted rpS3 protein increased in doxorubicin-resistant MPC11 cells compared to that in MPC11 cells. In addition, we also detected that the level of secreted rpS3 increased in more malignant cells, which were established with continuous exposure of cigarette smoke condensate. These findings suggest that the secreted rpS3 protein is an indicator of malignant tumors.
Collapse
Affiliation(s)
- YongJoong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Kim Y, Kim HD, Kim J. Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2943-2952. [PMID: 23911537 DOI: 10.1016/j.bbamcr.2013.07.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022]
Abstract
Ribosomal protein S3 (rpS3) is known to play critical roles in ribosome biogenesis and DNA repair. When cellular ROS levels increase, the mitochondrial genes are highly vulnerable to DNA damage. Increased ROS induces rpS3 accumulation in the mitochondria for DNA repair while significantly decreasing the cellular protein synthesis. For the entrance into the mitochondria, the accumulation of rpS3 was regulated by interaction with HSP90, HSP70, and TOM70. Pretreatment with geldanamycin, which binds to the ATP pocket of HSP90, significantly decreased the interaction of rpS3 with HSP90 and stimulated the accumulation of rpS3 in the mitochondria. Furthermore, cellular ROS was decreased and mtDNA damage was rescued when levels of rpS3 were increased in the mitochondria. Therefore, we concluded that when mitochondrial DNA damages accumulate due to increased levels of ROS, rpS3 accumulates in the mitochondria to repair damaged DNA due to the decreased interaction between rpS3 and HSP90 in the cytosol.
Collapse
Affiliation(s)
- YongJoong Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
25
|
Jang CY, Kim HD, Zhang X, Chang JS, Kim J. Ribosomal protein S3 localizes on the mitotic spindle and functions as a microtubule associated protein in mitosis. Biochem Biophys Res Commun 2012; 429:57-62. [PMID: 23131551 DOI: 10.1016/j.bbrc.2012.10.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 01/11/2023]
Abstract
The human ribosomal protein S3 (rpS3) has multi-functions such as translation, DNA repair and apoptosis. These multiple functions are regulated by post-translational modifications including phosphorylation, methylation and sumoylation. We report here a novel function of rpS3 that is involved in mitosis. When we examined localization of ribosomal proteins in mitosis, we found that rpS3 specifically localizes on the mitotic spindle. Depletion of the rpS3 proteins caused mitotic arrest during the metaphase. Furthermore, the shape of the spindle and chromosome movement in the rpS3 depleted cell was abnormal. Microtubule (MT) polymerization also decreased in rpS3 depleted cells, suggesting that rpS3 is involved in spindle dynamics. Therefore, we concluded that rpS3 acts as a microtubule associated protein (MAP) and regulates spindle dynamics during mitosis.
Collapse
Affiliation(s)
- Chang-Young Jang
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|