1
|
Sundell GN, Tao SC. Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome. Mol Cell Proteomics 2024; 23:100831. [PMID: 39168282 PMCID: PMC11417174 DOI: 10.1016/j.mcpro.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.
Collapse
Affiliation(s)
- Gustav N Sundell
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Does Generic Cyclic Kinase Insert Domain of Receptor Tyrosine Kinase KIT Clone Its Native Homologue? Int J Mol Sci 2022; 23:ijms232112898. [PMID: 36361689 PMCID: PMC9656684 DOI: 10.3390/ijms232112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are modular membrane proteins possessing both well-folded and disordered domains acting together in ligand-induced activation and regulation of post-transduction processes that tightly couple extracellular and cytoplasmic events. They ensure the fine-turning control of signal transmission by signal transduction. Deregulation of RTK KIT, including overexpression and gain of function mutations, has been detected in several human cancers. In this paper, we analysed by in silico techniques the Kinase Insert Domain (KID), a key platform of KIT transduction processes, as a generic macrocycle (KIDGC), a cleaved isolated polypeptide (KIDC), and a natively fused TKD domain (KIDD). We assumed that these KID species have similar structural and dynamic characteristics indicating the intrinsically disordered nature of this domain. This finding means that both polypeptides, cyclic KIDGC and linear KIDC, are valid models of KID integrated into the RTK KIT and will be helpful for further computational and empirical studies of post-transduction KIT events.
Collapse
|
3
|
Gogl G, Zambo B, Kostmann C, Cousido-Siah A, Morlet B, Durbesson F, Negroni L, Eberling P, Jané P, Nominé Y, Zeke A, Østergaard S, Monsellier É, Vincentelli R, Travé G. Quantitative fragmentomics allow affinity mapping of interactomes. Nat Commun 2022; 13:5472. [PMID: 36115835 PMCID: PMC9482650 DOI: 10.1038/s41467-022-33018-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human protein networks have been widely explored but most binding affinities remain unknown, hindering quantitative interactome-function studies. Yet interactomes rely on minimal interacting fragments displaying quantifiable affinities. Here, we measure the affinities of 65,000 interactions involving PDZ domains and their target PDZ-binding motifs (PBM) within a human interactome region particularly relevant for viral infection and cancer. We calculate interactomic distances, identify hot spots for viral interference, generate binding profiles and specificity logos, and explain selected cases by crystallographic studies. Mass spectrometry experiments on cell extracts and literature surveys show that quantitative fragmentomics effectively complements protein interactomics by providing affinities and completeness of coverage, putting a full human interactome affinity survey within reach. Finally, we show that interactome hijacking by the viral PBM of human papillomavirus E6 oncoprotein substantially impacts the host cell proteome beyond immediate E6 binders, illustrating the complex system-wide relationship between interactome and function. Protein networks have been widely explored but most binding affinities remain unknown, limiting the quantitative interpretation of interactomes. Here the authors measure affinities of 65,000 interactions involving human PDZ domains and target sequence motifs relevant for viral infection and cancer.
Collapse
|
4
|
Abdin O, Nim S, Wen H, Kim PM. PepNN: a deep attention model for the identification of peptide binding sites. Commun Biol 2022; 5:503. [PMID: 35618814 PMCID: PMC9135736 DOI: 10.1038/s42003-022-03445-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein-peptide interactions play a fundamental role in many cellular processes, but remain underexplored experimentally and difficult to model computationally. Here, we present PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction of peptide binding sites on a protein. A main difficulty for the prediction of peptide-protein interactions is the flexibility of peptides and their tendency to undergo conformational changes upon binding. Motivated by this, we developed reciprocal attention to simultaneously update the encodings of peptide and protein residues while enforcing symmetry, allowing for information flow between the two inputs. PepNN integrates this module with modern graph neural network layers and a series of transfer learning steps are used during training to compensate for the scarcity of peptide-protein complex information. We show that PepNN-Struct achieves consistently high performance across different benchmark datasets. We also show that PepNN makes reasonable peptide-agnostic predictions, allowing for the identification of novel peptide binding proteins.
Collapse
Affiliation(s)
- Osama Abdin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Han Wen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Philip M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
5
|
Human Vitamin K Epoxide Reductase as a Target of Its Redox Protein. Int J Mol Sci 2022; 23:ijms23073899. [PMID: 35409257 PMCID: PMC8998853 DOI: 10.3390/ijms23073899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Human vitamin K epoxide reductase (hVKORC1) enzymatic activity requires an initial activation by a specific redox protein, a less studied step in the hVKORC1 vital cycle. Significant steric conditions must be met by enzymes, being that to adapt their configurations is mandatory for hVKORC1 activation. We studied, by molecular dynamics (MD) simulations, the folding and conformational plasticity of hVKORC1 in its inactive (fully oxidised) state using available structures, crystallographic and from de novo modelling. According to the obtained results, hVKORC1 is a modular protein composed of the stable transmembrane domain (TMD) and intrinsically disordered luminal (L) loop, possessing the great plasticity/adaptability required to perform various steps of the activation process. The docking (HADDOCK) of Protein Disulfide Isomerase (PDI) onto different hVKORC1 conformations clearly indicated that the most interpretable solutions were found on the target closed L-loop form, a prevalent conformation of hVKORC1’s oxidised state. We also suggest that the cleaved L-loop is an appropriate entity to study hVKORC1 recognition/activation by its redox protein. Additionally, the application of hVKORC1 (membrane protein) in aqueous solution is likely to prove to be very useful in practice in either in silico studies or in vitro experiments.
Collapse
|
6
|
Boone M, Ramasamy P, Zuallaert J, Bouwmeester R, Van Moer B, Maddelein D, Turan D, Hulstaert N, Eeckhaut H, Vandermarliere E, Martens L, Degroeve S, De Neve W, Vranken W, Callewaert N. Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit. Nat Commun 2021; 12:6414. [PMID: 34741024 PMCID: PMC8571348 DOI: 10.1038/s41467-021-26720-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
While transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50-100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium. .,Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium. .,Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA.
| | - Pathmanaban Ramasamy
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium ,grid.8767.e0000 0001 2290 8069Structural Biology Brussels, VUB, Brussels, Belgium ,grid.11486.3a0000000104788040Structural Biology Research Center, VIB, Brussels, Belgium ,Interuniversity Institute of Bioinformatics in Brussels (IB)2, ULB-VUB, Brussels, Belgium
| | - Jasper Zuallaert
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium ,grid.510328.dCenter for Biotech Data Science, Ghent University Global Campus, Songdo, Incheon, South Korea ,grid.5342.00000 0001 2069 7798IDLab, ELIS, UGent, Ghent, Belgium
| | - Robbin Bouwmeester
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Berre Van Moer
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Davy Maddelein
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Demet Turan
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Niels Hulstaert
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hannah Eeckhaut
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Elien Vandermarliere
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lennart Martens
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sven Degroeve
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wesley De Neve
- grid.510328.dCenter for Biotech Data Science, Ghent University Global Campus, Songdo, Incheon, South Korea ,grid.5342.00000 0001 2069 7798IDLab, ELIS, UGent, Ghent, Belgium
| | - Wim Vranken
- grid.8767.e0000 0001 2290 8069Structural Biology Brussels, VUB, Brussels, Belgium ,grid.11486.3a0000000104788040Structural Biology Research Center, VIB, Brussels, Belgium ,Interuniversity Institute of Bioinformatics in Brussels (IB)2, ULB-VUB, Brussels, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium. .,Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
8
|
Ledoux J, Trouvé A, Tchertanov L. Folding and Intrinsic Disorder of the Receptor Tyrosine Kinase KIT Insert Domain Seen by Conventional Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:ijms22147375. [PMID: 34298994 PMCID: PMC8307779 DOI: 10.3390/ijms22147375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
The kinase insert domain (KID) of RTK KIT is the key recruitment region for downstream signalling proteins. KID, studied by molecular dynamics simulations as a cleaved polypeptide and as a native domain fused to KIT, showed intrinsic disorder represented by a set of heterogeneous conformations. The accurate atomistic models showed that the helical fold of KID is mainly sequence dependent. However, the reduced fold of the native KID suggests that its folding is allosterically controlled by the kinase domain. The tertiary structure of KID represents a compact array of highly variable α- and 310-helices linked by flexible loops playing a principal role in the conformational diversity. The helically folded KID retains a collapsed globule-like shape due to non-covalent interactions associated in a ternary hydrophobic core. The free energy landscapes constructed from first principles-the size, the measure of the average distance between the conformations, the amount of helices and the solvent-accessible surface area-describe the KID disorder through a collection of minima (wells), providing a direct evaluation of conformational ensembles. We found that the cleaved KID simulated with restricted N- and C-ends better reproduces the native KID than the isolated polypeptide. We suggest that a cyclic, generic KID would be best suited for future studies of KID f post-transduction effects.
Collapse
|
9
|
Carmi G, Gorohovski A, Frenkel-Morgenstern M. EvoProDom: Evolutionary modeling of protein families by assessing translocations of protein domains. FEBS Open Bio 2021; 11:2507-2524. [PMID: 34196123 PMCID: PMC8409312 DOI: 10.1002/2211-5463.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
Here, we introduce a novel ‘evolution of protein domains’ (EvoProDom) model for describing the evolution of proteins based on the ‘mix and merge’ of protein domains. We assembled and integrated genomic and proteomic data comprising protein domain content and orthologous proteins from 109 organisms. In EvoProDom, we characterized evolutionary events, particularly, translocations, as reciprocal exchanges of protein domains between orthologous proteins in different organisms. We showed that protein domains that translocate with highly frequency are generated by transcripts enriched in trans‐splicing events, that is, the generation of novel transcripts from the fusion of two distinct genes. In EvoProDom, we describe a general method to collate orthologous protein annotation from KEGG, and protein domain content from protein sequences using tools such as KoFamKOAL and Pfam. To summarize, EvoProDom presents a novel model for protein evolution based on the ‘mix and merge’ of protein domains rather than DNA‐based evolution models. This confers the advantage of considering chromosomal alterations as drivers of protein evolutionary events.
Collapse
Affiliation(s)
- Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, 13195, Israel
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, 13195, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, 13195, Israel
| |
Collapse
|
10
|
Krishnatreya DB, Agarwala N, Gill SS, Bandyopadhyay T. Understanding the role of miRNAs for improvement of tea quality and stress tolerance. J Biotechnol 2021; 328:34-46. [PMID: 33421509 DOI: 10.1016/j.jbiotec.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are an emerging class of small non-coding RNAs that exhibit important role in regulation of gene expression, mostly through the mechanism of cleavage and/or inhibition of translation of target mRNAs during or after transcription. Although much has been unravelled about the role of miRNAs in diverse biological processes like maintenance of functional integrity of genes and genome, growth and development, metabolism, and adaptive responses towards biotic and abiotic stresses in plants, not much is known on their specific roles in majority of cash crops - an area of investigation with potentially significant and gainful economic implications. Tea (Camellia sinensis) is globally the second most consumed beverage after water and its cultivation has major agro-economic and social ramifications. In recent years, global tea production has been greatly challenged by many biotic and abiotic stress factors and a deeper understanding of molecular processes regulating stress adaptation in this largely under investigated crop stands to significantly facilitate potential crop improvement strategies towards durable stress tolerance. This review endeavours to highlight recent advances in our understanding of the role of miRNAs in regulating stress tolerance traits in tea plant with additional focus on their role in determining tea quality attributes.
Collapse
Affiliation(s)
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| | - Sarvajeet Singh Gill
- Center for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | | |
Collapse
|
11
|
Jané P, Chiron L, Bich G, Travé G, Nominé Y. A Computational Protocol to Analyze PDZ/PBM Affinity Data Obtained by High-Throughput Holdup Assay. Methods Mol Biol 2021; 2256:61-74. [PMID: 34014516 DOI: 10.1007/978-1-0716-1166-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The holdup assay is an automated high-throughput comparative chromatographic retention approach that allows to measure quantitative binding intensities (BI) for a large number of domain-motif pairs and deduce equilibrium binding affinity constants. We routinely apply this approach to obtain quantitative binding specificity profiles of particular PDZ-binding motifs (PBMs) toward the full library of known human PDZ domains (the PDZome). The quality of the electropherograms extracted from the capillary electrophoresis instrument at the final step of the holdup assay may vary, influencing the accuracy and reproducibility of the measurement. By using bioinformatic tools, we can solve these issues to extract more reliable BIs by means of a better superimposition of the electropherograms. The protocol presented in this chapter describes the main principles and strategies of our curated method to process holdup data and new ways to plot and compare the BIs for the PBM-PDZ interactions. For this particular protocol, all the necessary computing commands are freely available in open Python packages.
Collapse
Affiliation(s)
- Pau Jané
- (Equipe labelisée Ligue, 2015) Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 / CNRS UMR 7104 / Université de Strasbourg, Illkirch, France
| | | | - Goran Bich
- (Equipe labelisée Ligue, 2015) Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 / CNRS UMR 7104 / Université de Strasbourg, Illkirch, France
| | - Gilles Travé
- (Equipe labelisée Ligue, 2015) Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 / CNRS UMR 7104 / Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- (Equipe labelisée Ligue, 2015) Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 / CNRS UMR 7104 / Université de Strasbourg, Illkirch, France.
| |
Collapse
|
12
|
Jané P, Gógl G, Kostmann C, Bich G, Girault V, Caillet-Saguy C, Eberling P, Vincentelli R, Wolff N, Travé G, Nominé Y. Interactomic affinity profiling by holdup assay: Acetylation and distal residues impact the PDZome-binding specificity of PTEN phosphatase. PLoS One 2020; 15:e0244613. [PMID: 33382810 PMCID: PMC7774954 DOI: 10.1371/journal.pone.0244613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Protein domains often recognize short linear protein motifs composed of a core conserved consensus sequence surrounded by less critical, modulatory positions. PTEN, a lipid phosphatase involved in phosphatidylinositol 3-kinase (PI3K) pathway, contains such a short motif located at the extreme C-terminus capable to recognize PDZ domains. It has been shown that the acetylation of this motif could modulate the interaction with several PDZ domains. Here we used an accurate experimental approach combining high-throughput holdup chromatographic assay and competitive fluorescence polarization technique to measure quantitative binding affinity profiles of the PDZ domain-binding motif (PBM) of PTEN. We substantially extended the previous knowledge towards the 266 known human PDZ domains, generating the full PDZome-binding profile of the PTEN PBM. We confirmed that inclusion of N-terminal flanking residues, acetylation or mutation of a lysine at a modulatory position significantly altered the PDZome-binding profile. A numerical specificity index is also introduced as an attempt to quantify the specificity of a given PBM over the complete PDZome. Our results highlight the impact of modulatory residues and post-translational modifications on PBM interactomes and their specificity.
Collapse
Affiliation(s)
- Pau Jané
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergő Gógl
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Camille Kostmann
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Goran Bich
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Virginie Girault
- Unité Récepteurs-canaux, Institut Pasteur, UMR 3571/CNRS, Paris, France
| | | | - Pascal Eberling
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS/Aix-Marseille Université, Marseille, France
| | - Nicolas Wolff
- Unité Récepteurs-canaux, Institut Pasteur, UMR 3571/CNRS, Paris, France
| | - Gilles Travé
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
14
|
Kokoszka ME, Kall SL, Khosla S, McGinnis JE, Lavie A, Kay BK. Identification of two distinct peptide-binding pockets in the SH3 domain of human mixed-lineage kinase 3. J Biol Chem 2018; 293:13553-13565. [PMID: 29980598 PMCID: PMC6120190 DOI: 10.1074/jbc.ra117.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a β-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.
Collapse
Affiliation(s)
| | - Stefanie L Kall
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | | | | | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Brian K Kay
- From the Departments of Biological Sciences and
| |
Collapse
|
15
|
Jadwin JA, Curran TG, Lafontaine AT, White FM, Mayer BJ. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J Biol Chem 2017; 293:623-637. [PMID: 29162725 DOI: 10.1074/jbc.m117.794412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/17/2017] [Indexed: 02/03/2023] Open
Abstract
Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr-EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain-binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.
Collapse
Affiliation(s)
- Joshua A Jadwin
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Timothy G Curran
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Adam T Lafontaine
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Forest M White
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bruce J Mayer
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| |
Collapse
|
16
|
Liu Q, Remmelzwaal S, Heck AJR, Akhmanova A, Liu F. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry. Sci Rep 2017; 7:13453. [PMID: 29044157 PMCID: PMC5647383 DOI: 10.1038/s41598-017-13663-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 10/27/2022] Open
Abstract
Characterization of protein interaction domains is crucial for understanding protein functions. Here we combine cross-linking mass spectrometry (XL-MS) with deletion analysis to accurately locate minimal protein interaction domains. As a proof of concept, we investigated in detail the binding interfaces of two protein assemblies: the complex formed by MICAL3, ELKS and Rab8A, which is involved in exocytosis, and the complex of SLAIN2, CLASP2 and ch-TOG, which controls microtubule dynamics. We found that XL-MS provides valuable information to efficiently guide the design of protein fragments that are essential for protein interaction. However, we also observed a number of cross-links between polypeptide regions that were dispensable for complex formation, especially among intrinsically disordered sequences. Collectively, our results indicate that XL-MS, which renders distance restrains of linked residue pairs, accelerates the characterization of protein binding regions in combination with other biochemical approaches.
Collapse
Affiliation(s)
- Qingyang Liu
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sanne Remmelzwaal
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands.
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
17
|
Expression and Production of SH2 Domain Proteins. Methods Mol Biol 2017. [PMID: 28092031 DOI: 10.1007/978-1-4939-6762-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.
Collapse
|
18
|
Machida K, Liu B. Binding Assays Using Recombinant SH2 Domains: Far-Western, Pull-Down, and Fluorescence Polarization. Methods Mol Biol 2017; 1555:307-330. [PMID: 28092040 DOI: 10.1007/978-1-4939-6762-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recognition of phosphotyrosine-containing sequences by SH2 domains confers specificity in tyrosine kinase pathways. By assessing interactions between isolated SH2 domains and their binding proteins, it is possible to gain insight into otherwise inaccessible complex cellular systems. Far-Western, pull-down, and fluorescence polarization (FP) have been frequently used for characterization of phosphotyrosine signaling. Here, we outline standard protocols for these established assays using recombinant SH2 domain, emphasizing the importance of appropriate sample preparation and assay controls.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Bernard Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
19
|
Dias AMGC, Santos RD, Iranzo O, Roque ACA. Affinity adsorbents for proline-rich peptide sequences: a new role for WW domains. RSC Adv 2016. [DOI: 10.1039/c6ra10900d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The WW domain derived from human Yes-associated protein (hYAP65_WW) recognizes proline-rich peptides.
Collapse
Affiliation(s)
- A. M. G. C. Dias
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - R. dos Santos
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - O. Iranzo
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - A. C. A. Roque
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| |
Collapse
|
20
|
The discovery of modular binding domains: building blocks of cell signalling. Nat Rev Mol Cell Biol 2015; 16:691-8. [PMID: 26420231 DOI: 10.1038/nrm4068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell signalling - the ability of a cell to process information from the environment and change its behaviour in response - is a central property of life. Signalling depends on proteins that are assembled from a toolkit of modular domains, each of which confers a specific activity or function. The discovery of modular protein- and lipid-binding domains was a crucial turning point in understanding the logic and evolution of signalling mechanisms.
Collapse
|
21
|
Huang H, Economopoulos NO, Liu BA, Uetrecht A, Gu J, Jarvik N, Nadeem V, Pawson T, Moffat J, Miersch S, Sidhu SS. Selection of recombinant anti-SH3 domain antibodies by high-throughput phage display. Protein Sci 2015; 24:1890-900. [PMID: 26332758 DOI: 10.1002/pro.2799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023]
Abstract
Antibodies are indispensable tools in biochemical research and play an expanding role as therapeutics. While hybridoma technology is the dominant method for antibody production, phage display is an emerging technology. Here, we developed and employed a high-throughput pipeline that enables selection of antibodies against hundreds of antigens in parallel. Binding selections using a phage-displayed synthetic antigen-binding fragment (Fab) library against 110 human SH3 domains yielded hundreds of Fabs targeting 58 antigens. Affinity assays demonstrated that representative Fabs bind tightly and specifically to their targets. Furthermore, we developed an efficient affinity maturation strategy adaptable to high-throughput, which increased affinity dramatically but did not compromise specificity. Finally, we tested Fabs in common cell biology applications and confirmed recognition of the full-length antigen in immunoprecipitation, immunoblotting and immunofluorescence assays. In summary, we have established a rapid and robust high-throughput methodology that can be applied to generate highly functional and renewable antibodies targeting protein domains on a proteome-wide scale.
Collapse
Affiliation(s)
- Haiming Huang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Nicolas O Economopoulos
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Andrea Uetrecht
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Jun Gu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Nick Jarvik
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Vincent Nadeem
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Shane Miersch
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| | - Sachdev S Sidhu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3E1
| |
Collapse
|
22
|
Thompson CM, Bloom LR, Ogiue-Ikeda M, Machida K. SH2-PLA: a sensitive in-solution approach for quantification of modular domain binding by proximity ligation and real-time PCR. BMC Biotechnol 2015; 15:60. [PMID: 26112401 PMCID: PMC4482279 DOI: 10.1186/s12896-015-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a great interest in studying phosphotyrosine dependent protein-protein interactions in tyrosine kinase pathways that play a critical role in many aspects of cellular function. We previously established SH2 profiling, a phosphoproteomic approach based on membrane binding assays that utilizes purified Src Homology 2 (SH2) domains as a molecular tool to profile the global tyrosine phosphorylation state of cells. However, in order to use this method to investigate SH2 binding sites on a specific target in cell lysate, additional procedures such as pull-down or immunoprecipitation which consume large amounts of sample are required. RESULTS We have developed PLA-SH2, an alternative in-solution modular domain binding assay that takes advantage of Proximity Ligation Assay and real-time PCR. The SH2-PLA assay utilizes oligonucleotide-conjugated anti-GST and anti-EGFR antibodies recognizing a GST-SH2 probe and cellular EGFR, respectively. If the GST-SH2 and EGFR are in close proximity as a result of SH2-phosphotyrosine interactions, the two oligonucleotides are brought within a suitable distance for ligation to occur, allowing for efficient complex amplification via real-time PCR. The assay detected signal across at least 3 orders of magnitude of lysate input with a linear range spanning 1-2 orders and a low femtomole limit of detection for EGFR phosphotyrosine. SH2 binding kinetics determined by PLA-SH2 showed good agreement with established far-Western analyses for A431 and Cos1 cells stimulated with EGF at various times and doses. Further, we showed that PLA-SH2 can survey lung cancer tissues using 1 μl lysate without requiring phospho-enrichment. CONCLUSIONS We showed for the first time that interactions between SH2 domain probes and EGFR in cell lysate can be determined in a microliter-scale assay using SH2-PLA. The obvious benefit of this method is that the low sample requirement allows detection of SH2 binding in samples which are difficult to analyze using traditional protein interaction assays. This feature along with short assay runtime makes this method a useful platform for the development of high throughput assays to determine modular domain-ligand interactions which could have wide-ranging applications in both basic and translational cancer research.
Collapse
Affiliation(s)
- Christopher M Thompson
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Lee R Bloom
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| |
Collapse
|
23
|
Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nat Methods 2015; 12:787-93. [PMID: 26053890 PMCID: PMC4521981 DOI: 10.1038/nmeth.3438] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
Abstract
Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes.
Collapse
|
24
|
Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC PLANT BIOLOGY 2014; 14:271. [PMID: 25330732 PMCID: PMC4209041 DOI: 10.1186/s12870-014-0271-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/03/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are approximately 19 ~ 21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs have critical functions in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interaction with specific target mRNAs. Camellia sinensis is one of the most important commercial beverage crops in the world. However, miRNAs associated with cold stress tolerance in C. sinensis remains unexplored. The use of high-throughput sequencing can provide a much deeper understanding of miRNAs. To obtain more insight into the function of miRNAs in cold stress tolerance, Illumina sequencing of C. sinensis sRNA was conducted. RESULT Solexa sequencing technology was used for high-throughput sequencing of the small RNA library from the cold treatment of tea leaves. To align the sequencing data with known plant miRNAs, we characterized 106 conserved C. sinensis miRNAs. In addition, 215 potential candidate miRNAs were found, among, which 98 candidates with star sequences were chosen as novel miRNAs. Both congruously and differentially regulated miRNAs were obtained, and cultivar-specific miRNAs were identified by microarray-based hybridization in response to cold stress. The results were also confirmed by quantitative real-time polymerase chain reaction. To confirm the targets of miRNAs, two degradome libraries from two treatments were constructed. According to degradome sequencing, 455 and 591 genes were identified as cleavage targets of miRNAs from cold treatments and control libraries, respectively, and 283 targets were present in both libraries. Functional analysis of these miRNA targets indicated their involvement in important activities, such as development, regulation of transcription, and stress response. CONCLUSIONS We discovered 31 up-regulated miRNAs and 43 down-regulated miRNAs in 'Yingshuang', and 46 up-regulated miRNA and 45 down-regulated miRNAs in 'Baiye 1' in response to cold stress, respectively. A total of 763 related target genes were detected by degradome sequencing. The RLM-5'RACE procedure was successfully used to map the cleavage sites in six target genes of C. sinensis. These findings reveal important information about the regulatory mechanism of miRNAs in C. sinensis, and promote the understanding of miRNA functions during the cold response. The miRNA genotype-specific expression model might explain the distinct cold sensitivities between tea lines.
Collapse
Affiliation(s)
- Yue Zhang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Xujun Zhu
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Xuan Chen
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Changnian Song
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P. R. China
| | - Zhongwei Zou
- />Molecular population genetics group, Temasek lifesciences laboratory, 1 Research link, National University of Singapore, Singapore, 117604 Singapore
| | - Yuhua Wang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Mingle Wang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Wanping Fang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Xinghui Li
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| |
Collapse
|
25
|
Majkut P, Claußnitzer I, Merk H, Freund C, Hackenberger CPR, Gerrits M. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins. PLoS One 2013; 8:e82352. [PMID: 24340019 PMCID: PMC3858276 DOI: 10.1371/journal.pone.0082352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/16/2013] [Indexed: 11/20/2022] Open
Abstract
The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibrium rate constants (Kd values). In this work we present a systematic, accelerated and simplified approach to fill this gap: using cell-free protein synthesis with site-specific labeling for pull-down and microscale thermophoresis (MST) we were able to validate interactions and to establish a binding hierarchy based on Kd values as a completion of existing proteomic data sets. As a model system we analyzed SH2-mediated interactions of the human T-cell phosphoprotein ADAP. Putative SH2 domain-containing binding partners were synthesized from a cDNA library using Expression-PCR with site-specific biotinylation in order to analyze their interaction with fluorescently labeled and in vitro phosphorylated ADAP by pull-down. On the basis of the pull-down results, selected SH2’s were subjected to MST to determine Kd values. In particular, we could identify an unexpectedly strong binding of ADAP to the previously found binding partner Rasa1 of about 100 nM, while no evidence of interaction was found for the also predicted SH2D1A. Moreover, Kd values between ADAP and its known binding partners SLP-76 and Fyn were determined. Next to expanding data on ADAP suggesting promising candidates for further analysis in vivo, this work marks the first Kd values for phosphotyrosine/SH2 interactions on a phosphoprotein level.
Collapse
Affiliation(s)
- Paul Majkut
- Department Chemical Biology II, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | | | - Christian Freund
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Christian P. R. Hackenberger
- Department Chemical Biology II, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (MG); (CH)
| | | |
Collapse
|
26
|
Waaijers S, Koorman T, Kerver J, Boxem M. Identification of human protein interaction domains using an ORFeome-based yeast two-hybrid fragment library. J Proteome Res 2013; 12:3181-92. [PMID: 23718855 DOI: 10.1021/pr400047p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Physical interactions between proteins are essential for biological processes. Hence, there have been major efforts to elucidate the complete networks of protein-protein interactions, or "interactomes", of various organisms. Detailed descriptions of protein interaction networks should include information on the discrete domains that mediate these interactions, yet most large-scale efforts model interactions between whole proteins only. We previously developed a yeast two-hybrid-based strategy to systematically map interaction domains and generated a domain-based interactome network for 750 proteins involved in C. elegans early embryonic development. Here, we expand the concept of Y2H-based interaction domain mapping to the genome-wide level. We generated a human fragment library by randomly fragmenting the full-length open reading frames (ORFs) present in the human ORFeome collection. Screens using several proteins required for cell division or polarity establishment as baits demonstrate the ability to accurately identify interaction domains for human proteins using this approach, while the experimental quality of the Y2H data was independently verified in coaffinity purification assays. The library generation strategy can easily be adapted to generate libraries from full-length ORF collections of other organisms.
Collapse
Affiliation(s)
- Selma Waaijers
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
27
|
Kaneko T, Joshi R, Feller SM, Li SS. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 2012; 10:32. [PMID: 23134684 PMCID: PMC3507883 DOI: 10.1186/1478-811x-10-32] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKCδ and PKCθ C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | | | | | | |
Collapse
|