1
|
Schuster J, Dreyhaupt J, Mönkemöller K, Dupuis L, Dieterlé S, Weishaupt JH, Kassubek J, Petri S, Meyer T, Grosskreutz J, Schrank B, Boentert M, Emmer A, Hermann A, Zeller D, Prudlo J, Winkler AS, Grehl T, Heneka MT, Johannesen S, Göricke B, Witzel S, Dorst J, Ludolph AC. In-depth analysis of data from the RAS-ALS study reveals new insights in rasagiline treatment for amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16204. [PMID: 38240416 PMCID: PMC11235627 DOI: 10.1111/ene.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND PURPOSE In 2016, we concluded a randomized controlled trial testing 1 mg rasagiline per day add-on to standard therapy in 252 amyotrophic lateral sclerosis (ALS) patients. This article aims at better characterizing ALS patients who could possibly benefit from rasagiline by reporting new subgroup analysis and genetic data. METHODS We performed further exploratory in-depth analyses of the study population and investigated the relevance of single nucleotide polymorphisms (SNPs) related to the dopaminergic system. RESULTS Placebo-treated patients with very slow disease progression (loss of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R] per month before randomization of ≤0.328 points) showed a per se survival probability after 24 months of 0.85 (95% confidence interval = 0.65-0.94). The large group of intermediate to fast progressing ALS patients showed a prolonged survival in the rasagiline group compared to placebo after 6 and 12 months (p = 0.02, p = 0.04), and a reduced decline of ALSFRS-R after 18 months (p = 0.049). SNP genotypes in the MAOB gene and DRD2 gene did not show clear associations with rasagiline treatment effects. CONCLUSIONS These results underline the need to consider individual disease progression at baseline in future ALS studies. Very slow disease progressors compromise the statistical power of studies with treatment durations of 12-18 months using clinical endpoints. Analysis of MAOB and DRD2 SNPs revealed no clear relationship to any outcome parameter. More insights are expected from future studies elucidating whether patients with DRD2CC genotype (Rs2283265) show a pronounced benefit from treatment with rasagiline, pointing to the opportunities precision medicine could open up for ALS patients in the future.
Collapse
Affiliation(s)
- Joachim Schuster
- Department of NeurologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical BiometryUniversity of UlmUlmGermany
| | - Karla Mönkemöller
- Department of Clinical and Health Psychology, Institute of Education and PsychologyUniversity of UlmUlmGermany
| | - Luc Dupuis
- Université de StrasbourgInserm, UMR‐S1118, Centre de Recherches en biomédecine de StrasbourgStrasbourgFrance
| | - Stéphane Dieterlé
- Université de StrasbourgInserm, UMR‐S1118, Centre de Recherches en biomédecine de StrasbourgStrasbourgFrance
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Jan Kassubek
- Department of NeurologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | - Susanne Petri
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and other Motor Neuron DisordersCharité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Julian Grosskreutz
- Department of NeurologyUniversity Clinic Schleswig‐Holstein, Campus LübeckLübeckGermany
| | - Berthold Schrank
- Department of NeurologyDKD HELIOS Klinik WiesbadenWiesbadenGermany
| | | | - Alexander Emmer
- Department of NeurologyUniversity Hospital HalleHalleGermany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel,” Department of NeurologyUniversity Medical Center RostockRostockGermany
- German Center for Neurodegenerative Diseases, Rostock/GreifswaldRostockGermany
| | - Daniel Zeller
- Department of NeurologyUniversity of WürzburgWürzburgGermany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases, Rostock/GreifswaldRostockGermany
- Department of NeurologyRostock University Medical CenterRostockGermany
| | | | - Torsten Grehl
- Department of NeurologyAlfried Krupp HospitalEssenGermany
| | - Michael T. Heneka
- Luxembourg Center for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
| | | | - Bettina Göricke
- Department of NeurologyUniversity Hospital of GöttingenGöttingenGermany
| | - Simon Witzel
- Department of NeurologyUniversity of UlmUlmGermany
| | | | - Albert C. Ludolph
- Department of NeurologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | | |
Collapse
|
2
|
Huang H, Hsieh Y, Hsiao C, Lin C, Wang S, Ho K, Chang L, Huang H, Yang S, Chien M. MAOB expression correlates with a favourable prognosis in prostate cancer, and its genetic variants are associated with the metastasis of the disease. J Cell Mol Med 2024; 28:e18229. [PMID: 38520217 PMCID: PMC10960177 DOI: 10.1111/jcmm.18229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2024] Open
Abstract
Monoamine oxidase B (MAOB), a neurotransmitter-degrading enzyme, was reported to reveal conflicting roles in various cancers. However, the functional role of MAOB and impacts of its genetic variants on prostate cancer (PCa) is unknown. Herein, we genotyped four loci of MAOB single-nucleotide polymorphisms (SNPs), including rs1799836 (A/G), rs3027452 (G/A), rs6651806 (A/C) and rs6324 (G/A) in 702 PCa Taiwanese patients. We discovered that PCa patients carrying the MAOB rs6324 A-allele exhibited an increased risk of having a high initial prostate-specific antigen (iPSA) level (>10 ng/mL). Additionally, patients with the rs3027452 A-allele had a higher risk of developing distal metastasis, particularly in the subpopulation with high iPSA levels. In a subpopulation without postoperative biochemical recurrence, patients carrying the rs1799836 G-allele had a higher risk of developing lymph node metastasis and recurrence compared to those carrying the A-allele. Furthermore, genotype screening in PCa cell lines revealed that cells carrying the rs1799836 G-allele expressed lower MAOB levels than those carrying the A-allele. Functionally, overexpression and knockdown of MAOB in PCa cells respectively suppressed and enhanced cell motility and proliferation. In clinical observations, correlations of lower MAOB expression levels with higher Gleason scores, advanced clinical T stages, tumour metastasis, and poorer prognosis in PCa patients were noted. Our findings suggest that MAOB may act as a suppressor of PCa progression, and the rs3027452 and rs1799836 genetic variants of MAOB are linked to PCa metastasis within the Taiwanese population.
Collapse
Affiliation(s)
- Hsiang‐Ching Huang
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Hsien Hsieh
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Chi‐Hao Hsiao
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK)Taipei Medical UniversityTaipeiTaiwan
- Department of Urology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chia‐Yen Lin
- Division of Urology, Department of SurgeryTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Shian‐Shiang Wang
- Division of Urology, Department of SurgeryTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Applied ChemistryNational Chi Nan UniversityNantouTaiwan
| | - Kuo‐Hao Ho
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Lun‐Ching Chang
- Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Huei‐Mei Huang
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Shun‐Fa Yang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Ming‐Hsien Chien
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Pulmonary Research CenterWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Konjevod M, Sreter KB, Popovic-Grle S, Lampalo M, Tudor L, Jukic I, Nedic Erjavec G, Bingulac-Popovic J, Safic Stanic H, Nikolac Perkovic M, Markeljevic J, Samarzija M, Pivac N, Svob Strac D. Platelet Serotonin (5-HT) Concentration, Platelet Monoamine Oxidase B (MAO-B) Activity and HTR2A, HTR2C, and MAOB Gene Polymorphisms in Asthma. Biomolecules 2023; 13:biom13050800. [PMID: 37238670 DOI: 10.3390/biom13050800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The complex role of the serotonin system in respiratory function and inflammatory diseases such as asthma is unclear. Our study investigated platelet serotonin (5-HT) levels and platelet monoamine oxidase B (MAO-B) activity, as well as associations with HTR2A (rs6314; rs6313), HTR2C (rs3813929; rs518147), and MAOB (rs1799836; rs6651806) gene polymorphisms in 120 healthy individuals and 120 asthma patients of different severity and phenotypes. Platelet 5-HT concentration was significantly lower, while platelet MAO-B activity was considerably higher in asthma patients; however, they did not differ between patients with different asthma severity or phenotypes. Only the healthy subjects, but not the asthma patients, carrying the MAOB rs1799836 TT genotype had significantly lower platelet MAO-B activity than the C allele carriers. No significant differences in the frequency of the genotypes, alleles, or haplotypes for any of the investigated HTR2A, HTR2C and MAOB gene polymorphisms have been observed between asthma patients and healthy subjects or between patients with various asthma phenotypes. However, the carriers of the HTR2C rs518147 CC genotype or C allele were significantly less frequent in severe asthma patients than in the G allele carriers. Further studies are necessary to elucidate the involvement of the serotonergic system in asthma pathophysiology.
Collapse
Affiliation(s)
- Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Katherina B Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | | | | | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samarzija
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
- University of Applied Sciences "Hrvatsko Zagorje Krapina", 49000 Krapina, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
5
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
6
|
A review: traditional herbs and remedies impacting pathogenesis of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:495-513. [PMID: 35258640 DOI: 10.1007/s00210-022-02223-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.
Collapse
|
7
|
Babić Leko M, Nikolac Perković M, Nedić Erjavec G, Klepac N, Švob Štrac DK, Borovečki F, Pivac N, Hof PR, Šimić G. Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ɛ4 Allele in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:585-594. [PMID: 34533445 DOI: 10.2174/1567205018666210917162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dopaminergic system is functionally compromised in Alzheimer's dis-ease (AD). The activity of monoamine oxidase B (MAOB), the enzyme involved in the degradation of dopamine, is increased during AD. Also, increased expression of MAOB occurs in the post-mortem hippocampus and neocortex of patients with AD. The MAOB rs1799836 polymorphism modulates MAOB transcription, consequently influencing protein translation and MAOB activity. We recently showed that cerebrospinal fluid levels of amyloid β1-42 are decreased in patients carry- ing the A allele in MAOB rs1799836 polymorphism. OBJECTIVE The present study compares MAOB rs1799836 polymorphism and APOE, the only con- firmed genetic risk factor for sporadic AD. METHOD We included 253 participants, 127 of whom had AD, 57 had mild cognitive impairment, 11 were healthy controls, and 58 suffered from other primary causes of dementia. MAOB and APOE polymorphisms were determined using TaqMan SNP Genotyping Assays. RESULTS We observed that the frequency of APOE ɛ4/ɛ4 homozygotes and APOE ɛ4 carriers is sig- nificantly increased among patients carrying the AA MAOB rs1799836 genotype. CONCLUSION These results indicate that the MAOB rs1799836 polymorphism is a potential genetic biomarker of AD and a potential target for the treatment of decreased dopaminergic transmission and cognitive deterioration in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
8
|
Jakubauskienė E, Kanopka A. Alternative Splicing and Hypoxia Puzzle in Alzheimer's and Parkinson's Diseases. Genes (Basel) 2021; 12:genes12081272. [PMID: 34440445 PMCID: PMC8394294 DOI: 10.3390/genes12081272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Alternative pre-mRNA splicing plays a very important role in expanding protein diversity as it generates numerous transcripts from a single protein-coding gene. Therefore, alterations lead this process to neurological human disorders, including Alzheimer’s and Parkinson’s diseases. Moreover, accumulating evidence indicates that the splicing machinery highly contributes to the cells’ ability to adapt to different altered cellular microenvironments, such as hypoxia. Hypoxia is known to have an effect on the expression of proteins involved in a multiple of biological processes, such as erythropoiesis, angiogenesis, and neurogenesis, and is one of the important risk factors in neuropathogenesis. In this review, we discuss the current knowledge of alternatively spliced genes, which, as it is reported, are associated with Alzheimer’s and Parkinson’s diseases. Additionally, we highlight the possible influence of cellular hypoxic microenvironment for the formation of mRNA isoforms contributing to the development of these neurodegenerative diseases.
Collapse
|
9
|
Madzarac Z, Tudor L, Sagud M, Nedic Erjavec G, Mihaljevic Peles A, Pivac N. The Associations between COMT and MAO-B Genetic Variants with Negative Symptoms in Patients with Schizophrenia. Curr Issues Mol Biol 2021; 43:618-636. [PMID: 34287249 PMCID: PMC8928957 DOI: 10.3390/cimb43020045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Negative symptoms of schizophrenia, including anhedonia, represent a heavy burden on patients and their relatives. These symptoms are associated with cortical hypodopamynergia and impaired striatal dopamine release in response to reward stimuli. Catechol-O-methyltransferase (COMT) and monoamine oxidase type B (MAO-B) degrade dopamine and affect its neurotransmission. The study determined the association between COMT rs4680 and rs4818, MAO-B rs1799836 and rs6651806 polymorphisms, the severity of negative symptoms, and physical and social anhedonia in schizophrenia. Sex-dependent associations were detected in a research sample of 302 patients with schizophrenia. In female patients with schizophrenia, the presence of the G allele or GG genotype of COMT rs4680 and rs4818, as well as GG haplotype rs4818-rs4680, which were all related to higher COMT activity, was associated with an increase in several dimensions of negative symptoms and anhedonia. In male patients with schizophrenia, carriers of the MAO-B rs1799836 A allele, presumably associated with higher MAO-B activity, had a higher severity of alogia, while carriers of the A allele of the MAO-B rs6651806 had a higher severity of negative symptoms. These findings suggest that higher dopamine degradation, associated with COMT and MAO-B genetic variants, is associated with a sex-specific increase in the severity of negative symptoms in schizophrenia patients.
Collapse
Affiliation(s)
- Zoran Madzarac
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
| | - Lucija Tudor
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
| | - Marina Sagud
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | | | - Alma Mihaljevic Peles
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nela Pivac
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
- Correspondence: ; Tel.: +385-915-371-810
| |
Collapse
|
10
|
Babić Leko M, Nikolac Perković M, Klepac N, Švob Štrac D, Borovečki F, Pivac N, Hof PR, Šimić G. Relationships of Cerebrospinal Fluid Alzheimer's Disease Biomarkers and COMT, DBH, and MAOB Single Nucleotide Polymorphisms. J Alzheimers Dis 2021; 73:135-145. [PMID: 31771069 PMCID: PMC7029364 DOI: 10.3233/jad-190991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The noradrenergic and dopaminergic systems are affected in Alzheimer’s disease (AD). Polymorphisms in genes encoding enzymes and proteins that are components of these systems can affect products of transcription and translation and lead to altered enzymatic activity and alterations in overall dopamine and noradrenaline levels. Catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAOB) are the enzymes that regulate degradation of dopamine, while dopamine β-hydroxylase (DBH) is involved in synthesis of noradrenaline. COMT Val158Met (rs4680), DBH rs1611115 (also called –1021C/T or –970C/T), and MAOB rs1799836 (also called A644G) polymorphisms have been previously associated with AD. We assessed whether these polymorphisms are associated with cerebrospinal fluid (CSF) AD biomarkers including total tau (t-tau), phosphorylated tau proteins (p-tau181, p-tau199, and p-tau231), amyloid-β42 (Aβ42), and visinin-like protein 1 (VILIP-1) to test possible relationships of specific genotypes and pathological levels of CSF AD biomarkers. The study included 233 subjects: 115 AD, 53 mild cognitive impairment, 54 subjects with other primary causes of dementia, and 11 healthy controls. Significant decrease in Aβ42 levels was found in patients with GG compared to AG COMT Val158Met genotype, while t-tau and p-tau181 levels were increased in patients with AA compared to AG COMT Val158Met genotype. Aβ42 levels were also decreased in carriers of A allele in MAO-B rs1799836 polymorphism, while p-tau181 levels were increased in carriers of T allele in DBH rs1611115 polymorphism. These results indicate that COMT Val158Met, DBH rs1611115, and MAOB rs1799836 polymorphisms deserve further investigation as genetic markers of AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
11
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
12
|
Rahmani Z, Fayyazi Bordbar MR, Dibaj M, Alimardani M, Moghbeli M. Genetic and molecular biology of autism spectrum disorder among Middle East population: a review. Hum Genomics 2021; 15:17. [PMID: 33712060 PMCID: PMC7953769 DOI: 10.1186/s40246-021-00319-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease, characterized by impaired social communication, executive dysfunction, and abnormal perceptual processing. It is more frequent among males. All of these clinical manifestations are associated with atypical neural development. Various genetic and environmental risk factors are involved in the etiology of autism. Genetic assessment is essential for the early detection and intervention which can improve social communications and reduce abnormal behaviors. Although, there is a noticeable ASD incidence in Middle East countries, there is still a lack of knowledge about the genetic and molecular biology of ASD among this population to introduce efficient diagnostic and prognostic methods. MAIN BODY In the present review, we have summarized all of the genes which have been associated with ASD progression among Middle East population. We have also categorized the reported genes based on their cell and molecular functions. CONCLUSIONS This review clarifies the genetic and molecular biology of ASD among Middle East population and paves the way of introducing an efficient population based panel of genetic markers for the early detection and management of ASD in Middle East countries.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohsen Dibaj
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maliheh Alimardani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Beyond Haemostasis and Thrombosis: Platelets in Depression and Its Co-Morbidities. Int J Mol Sci 2020; 21:ijms21228817. [PMID: 33233416 PMCID: PMC7700239 DOI: 10.3390/ijms21228817] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Alongside their function in primary haemostasis and thrombo-inflammation, platelets are increasingly considered a bridge between mental, immunological and coagulation-related disorders. This review focuses on the link between platelets and the pathophysiology of major depressive disorder (MDD) and its most frequent comorbidities. Platelet- and neuron-shared proteins involved in MDD are functionally described. Platelet-related studies performed in the context of MDD, cardiovascular disease, and major neurodegenerative, neuropsychiatric and neurodevelopmental disorders are transversally presented from an epidemiological, genetic and functional point of view. To provide a complete scenario, we report the analysis of original data on the epidemiological link between platelets and depression symptoms suggesting moderating and interactive effects of sex on this association. Epidemiological and genetic studies discussed suggest that blood platelets might also be relevant biomarkers of MDD prediction and occurrence in the context of MDD comorbidities. Finally, this review has the ambition to formulate some directives and perspectives for future research on this topic.
Collapse
|
14
|
Detention in Juvenile Correctional Facilities Is Associated with Higher Platelet Monoamine Oxidase B Activity in Males. Biomolecules 2020; 10:biom10111555. [PMID: 33203099 PMCID: PMC7697475 DOI: 10.3390/biom10111555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023] Open
Abstract
Juvenile delinquency is related to several biological factors, yet very few vulnerability biomarkers have been identified. Previous data suggest that the enzyme monoamine oxidase B (MAO-B) influences several personality traits linked to the propensity to engage in delinquent behavior. Building on this evidence, we assessed whether conduct disorder (CD), juvenile delinquency adjudications, or detention in a correctional facility were associated with either platelet MAO-B activity or the MAOB rs1799836 polymorphism. The study enrolled 289 medication-free male youths, including 182 individuals detained in a correctional facility (with or without a diagnosis of CD). Of the remaining 107 participants, 26 subjects had a diagnosis of CD, and 81 were mentally healthy controls. Platelet MAO-B activity was determined by spectrophotofluorometry, while MAOB rs1799836 was genotyped using qPCR. Platelet MAO-B activity, corrected for age and smoking, was significantly higher in juvenile detainees (p < 0.001), irrespective of CD diagnosis. MAOB rs1799836 was not associated with platelet MAO-B activity or with detention in a correctional facility, CD diagnosis, or delinquent behavior. These data suggest that detention in a juvenile correctional facility increases platelet MAO-B activity in male adolescents. Future studies are needed to determine the mechanisms and functional significance of MAO-B peripheral elevation in juvenile male detainees.
Collapse
|
15
|
Leiter O, Walker TL. Platelets in Neurodegenerative Conditions-Friend or Foe? Front Immunol 2020; 11:747. [PMID: 32431701 PMCID: PMC7214916 DOI: 10.3389/fimmu.2020.00747] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
It is now apparent that platelet function is more diverse than originally thought, shifting the view of platelets from blood cells involved in hemostasis and wound healing to major contributors to numerous regulatory processes across different tissues. Given their intriguing ability to store, produce and release distinct subsets of bioactive molecules, including intercellular signaling molecules and neurotransmitters, platelets may play an important role in orchestrating healthy brain function. Conversely, a number of neurodegenerative conditions have recently been associated with platelet dysfunction, further highlighting the tissue-independent role of these cells. In this review we summarize the requirements for platelet-neural cell communication with a focus on neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets and the proteins which they release to counteract these conditions.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tara L Walker
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Latorre E, Mesonero JE, Harries LW. Alternative splicing in serotonergic system: Implications in neuropsychiatric disorders. J Psychopharmacol 2019; 33:1352-1363. [PMID: 31210090 DOI: 10.1177/0269881119856546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The serotonergic system is a key component of physiological brain function and is essential for proper neurological activity. Numerous neuropsychiatric disorders are associated with deregulation of the serotonergic system. Accordingly, many pharmacological treatments are focused on modulation of this system. While providing a promising line of therapeutic moderation, these approaches may be complicated due to the presence of alternative splicing events for key genes in this pathway. Alternative splicing is a co-transcriptional process by which different mRNA transcripts can be produced from the same gene. These different isoforms may have diverse activities and functions, and their relative balance is often critical for the maintenance of homeostasis. Alternative splicing greatly increases the production of proteins, augmenting cell plasticity, and provides an important control point for regulation of gene expression. AIM The objective of this narrative review is to discuss the potential impact of alternative splicing of different components of the serotonergic system and speculate on their involvement in several neuropsychiatric disorders. CONCLUSIONS The specific role of each isoform in disease and their relative activities in the signalling pathways involved are yet to be determined. We need to gain a better understanding of the basis of alternative isoforms of the serotonergic system in order to fully understand their impact and be able to develop new effective pharmacological isoform-specific targets.
Collapse
Affiliation(s)
- Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
17
|
Guo XY, Wang SN, Wu Y, Lin YH, Tang J, Ding SQ, Shen L, Wang R, Hu JG, Lü HZ. Transcriptome profile of rat genes in bone marrow-derived macrophages at different activation statuses by RNA-sequencing. Genomics 2018; 111:986-996. [PMID: 31307632 DOI: 10.1016/j.ygeno.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.
Collapse
Affiliation(s)
- Xue-Yan Guo
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yu-Hong Lin
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
18
|
Abdanipour A, Jafari Anarkooli I, Shokri S, Ghorbanlou M, Bayati V, Nejatbakhsh R. Neuroprotective effects of selegiline on rat neural stem cells treated with hydrogen peroxide. Biomed Rep 2018; 8:41-46. [PMID: 29399337 DOI: 10.3892/br.2017.1023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress and reactive oxygen species generation have been implicated in the pathogenesis of several neurological disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. In the present study, the neuroprotective effects of selegiline against hydrogen peroxide-induced oxidative stress in hippocampus-derived neural stem cells (NSCs) were evaluated. NSCs isolated from neonatal Wistar rats were pretreated with different doses of selegiline for 48 h and then exposed to 125 µM H2O2 for 30 min. Using MTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, acridine orange/ethidium bromide staining and reverse transcription-quantitative polymerase chain reaction, the effects of selegiline on cell survival, apoptosis and the expression of B-cell lymphoma 2 (Bcl-2) and heat shock protein 4 (Hspa4) in pretreated stem cells were assessed compared with a control group lacking pretreatment. The results indicated that the viability of cells pretreated with 20 µM selegiline was significantly increased compared with the control group (P<0.05). Additionally, 20 µM selegiline increased the mRNA expression of Bcl-2 and Hspa4 (P<0.05 vs. control) and suppressed oxidative stress-induced cell death (apoptosis and necrosis; P<0.05 vs. control and 10 µM groups). From these findings, it was concluded that selegiline may be a therapeutic candidate for the treatment of neurological diseases mediated by oxidative stress.
Collapse
Affiliation(s)
- Alireza Abdanipour
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Saeed Shokri
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 6135715794, Iran
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
19
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons. J Neural Transm (Vienna) 2017; 125:1635-1650. [DOI: 10.1007/s00702-017-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 02/01/2023]
|
20
|
Ma GW, Chu YK, Zhang WJ, Qin FY, Xu SS, Yang H, Rong EG, Du ZQ, Wang SZ, Li H, Wang N. Polymorphisms of FST gene and their association with wool quality traits in Chinese Merino sheep. PLoS One 2017; 12:e0174868. [PMID: 28384189 PMCID: PMC5383234 DOI: 10.1371/journal.pone.0174868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/16/2017] [Indexed: 11/19/2022] Open
Abstract
Follistatin (FST) is involved in hair follicle morphogenesis. However, its effects on hair traits are not clear. This study was designed to investigate the effects of FST gene single nucleotide polymorphisms (SNP) on wool quality traits in Chinese Merino sheep (Junken Type). We performed gene expression analysis, SNP detection, and association analysis of FST gene with sheep wool quality traits. The real-time RT-PCR analysis showed that FST gene was differentially expressed in adult skin between Chinese Merino sheep (Junken Type) and Suffolk sheep. Immunostaining showed that FST was localized in inner root sheath (IRS) and matrix of hair follicle (HF) in both SF and Suffolk sheep. Sequencing analysis identified a total of seven SNPs (termed SNPs 1-7) in the FST gene in Chinese Merino sheep (Junken Type). Association analysis showed that SNP2 (Chr 16. 25,633,662 G>A) was significantly associated with average wool fiber diameter, wool fineness SD, and wool crimp (P < 0.05). SNP4 (Chr 16. 25,633,569 C>T) was significantly associated with wool fineness SD and CV of fiber diameter (P < 0.05). Similarly, the haplotypes derived from these seven identified SNPs were also significantly associated with average wool fiber diameter, wool fineness SD, CV of fiber diameter, and wool crimp (P < 0.05). Our results suggest that FST influences wool quality traits and its SNPs 2 and 4 might be useful markers for marker-assisted selection and sheep breeding.
Collapse
Affiliation(s)
- Guang-Wei Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Yan-Kai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Wen-Jian Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Fei-Yue Qin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Song-Song Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, P. R. China
| | - En-Guang Rong
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Shou-Zhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Nikolac Perkovic M, Svob Strac D, Nedic Erjavec G, Uzun S, Podobnik J, Kozumplik O, Vlatkovic S, Pivac N. Monoamine oxidase and agitation in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:131-46. [PMID: 26851573 DOI: 10.1016/j.pnpbp.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | - Josip Podobnik
- Department of Psychiatry, Psychiatric Hospital for Children and Youth Zagreb, Kukuljeviceva 11, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
22
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
23
|
Svob Strac D, Kovacic Petrovic Z, Nikolac Perkovic M, Umolac D, Nedic Erjavec G, Pivac N. Platelet monoamine oxidase type B, MAOB intron 13 and MAOA-uVNTR polymorphism and symptoms of post-traumatic stress disorder. Stress 2016; 19:362-73. [PMID: 27112218 DOI: 10.1080/10253890.2016.1174849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), a disorder that develops following exposure to traumatic experience(s), is frequently associated with agitation, aggressive behavior and psychotic symptoms. Monoamine oxidase (MAO) degrades different biogenic amines and regulates mood, emotions and behavior, and has a role in the pathophysiology of various neuropsychiatric disorders. The aim of the study was to investigate the association between different symptoms occurring in PTSD [PTSD symptom severity assessed by the Clinician Administered PTSD Scale (CAPS), agitation and selected psychotic symptoms assessed by the Positive and Negative Syndrome Scale (PANSS)] and platelet MAO-B activity and/or genetic variants of MAOB rs1799836 and MAOA-uVNTR polymorphisms in 249 Croatian male veterans with PTSD. Our study revealed slightly higher platelet MAO-B activity in veterans with PTSD with more severe PTSD symptoms and in veterans with agitation, and significantly higher platelet MAO-B activity in veterans with more pronounced psychotic symptoms compared to veterans with less pronounced psychotic symptoms. Platelet MAO-B activity was associated with smoking but not with age. Genetic variants of MAOB rs1799836 and MAOA-uVNTR were not associated with agitation and selected psychotic symptoms in veterans with PTSD. A marginally significant association was found between MAOB rs1799836 polymorphism and severity of PTSD symptoms, but it was not confirmed since carriers of G or A allele of MAOB rs1799836 did not differ in their total CAPS scores. These findings suggest an association of platelet MAO-B activity, but a lack of association of MAOB rs1799836 and MAOA-uVNTR, with selected psychotic symptoms in ethnically homogenous veterans with PTSD.
Collapse
Affiliation(s)
- Dubravka Svob Strac
- a Division of Molecular Medicine , Rudjer Boskovic Institute , Zagreb , Croatia
| | - Zrnka Kovacic Petrovic
- b Department of Psychopharmacology, Croatian Institute for Brain Research, School of Medicine , University of Zagreb, Zagreb , Croatia
- c Department of Biological Psychiatry and Psychogeriatry, University Psychiatric Hospital Vrapce , Zagreb , Croatia
| | | | - Danica Umolac
- a Division of Molecular Medicine , Rudjer Boskovic Institute , Zagreb , Croatia
| | | | - Nela Pivac
- a Division of Molecular Medicine , Rudjer Boskovic Institute , Zagreb , Croatia
| |
Collapse
|
24
|
Splicing: is there an alternative contribution to Parkinson's disease? Neurogenetics 2015; 16:245-63. [PMID: 25980689 PMCID: PMC4573652 DOI: 10.1007/s10048-015-0449-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Alternative splicing is a crucial mechanism of gene expression regulation that enormously increases the coding potential of our genome and represents an intermediate step between messenger RNA (mRNA) transcription and protein posttranslational modifications. Alternative splicing occupies a central position in the development and functions of the nervous system. Therefore, its deregulation frequently leads to several neurological human disorders. In the present review, we provide an updated overview on the impact of alternative splicing in Parkinson's disease (PD), the second most common neurodegenerative disorder worldwide. We will describe the alternative splicing of major PD-linked genes by collecting the current evidences about this intricate and not carefully explored aspect. Assessing the role of this mechanism on PD pathobiology may represent a central step toward an improved understanding of this complex disease.
Collapse
|
25
|
Alquézar C, Barrio E, Esteras N, de la Encarnación A, Bartolomé F, Molina JA, Martín-Requero Á. Targeting cyclin D3/CDK6 activity for treatment of Parkinson's disease. J Neurochem 2015; 133:886-97. [PMID: 25689470 DOI: 10.1111/jnc.13070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/11/2023]
Abstract
At present, treatment for Parkinson's disease (PD) is only symptomatic; therefore, it is important to identify new targets tackling the molecular causes of the disease. We previously found that lymphoblasts from sporadic PD patients display increased activity of the cyclin D3/CDK6/pRb pathway and higher proliferation than control cells. These features were considered systemic manifestations of the disease, as aberrant activation of the cell cycle is involved in neuronal apoptosis. The main goal of this work was to elucidate whether the inhibition of cyclin D3/CDK6-associated kinase activity could be useful in PD treatment. For this purpose, we investigated the effects of two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic (SAHA) acid and sodium butyrate (NaB), and the m-TOR inhibitor rapamycin on cell viability and cyclin D3/CDK6 activity. Moreover, the potential neuroprotective action of these drugs was evaluated in 6-hydroxy-dopamine (6-OHDA) treated dopaminergic SH-SY5Y cells and primary rat mesencephalic cultures. Here, we report that both compounds normalized the proliferative activity of PD lymphoblasts and reduced the 6-OHDA-induced cell death in neuronal cells by preventing the over-activation of the cyclin D3/CDK6/pRb cascade. Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it is plausible that they may serve as novel therapeutic drugs for PD. We report here that peripheral cells from Parkinson's disease (PD) patients show an enhanced proliferative activity due to the activation of cyclin D3/CDK6-mediated phosphorylation of retinoblastoma protein (pRb). Treatment of PD lymphoblasts with inhibitors of histone deacetylases like suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (NaB), or with rapamycin, inhibitor of mechanistic target of rapamycin (mTOR) normalized the proliferation of PD lymphoblasts by preventing the over-activation of the cyclin D3/CDK6/pRb cascade. These drugs were shown to have neuroprotective effects in both human neuroblastoma SH-SY5Y cells and primary rat mid-brain dopaminergic neuronal cultures toxicity induced by 6-hidroxydopamine. Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it seems reasonable to believe that the repositioning of these drugs toward PD holds promise as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Estíbaliz Barrio
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ana de la Encarnación
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fernando Bartolomé
- Neuroscience Laboratory, Research Institute, Hospital Doce de Octubre, Madrid, Spain
| | - José A Molina
- Department of Neurology, Hospital Doce de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
26
|
Naoi M, Riederer P, Maruyama W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm (Vienna) 2015; 123:91-106. [PMID: 25604428 DOI: 10.1007/s00702-014-1362-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/27/2014] [Indexed: 12/18/2022]
Abstract
Monoamine oxidase types A and B (MAO-A, MAO-B) regulate the levels of monoamine neurotransmitters in the brain, and their dysfunction may be involved in the pathogenesis and influence the clinical phenotypes of neuropsychiatric disorders. Reversible MAO-A inhibitors, such as moclobemide and befloxatone, are currently employed in the treatment of emotional disorders by inhibiting the enzymatic degradation of dopamine, serotonin and norepinephrine in the central nervous system (CNS). It has been suggested that the irreversible MAO-B inhibitors selegiline and rasagiline exert a neuroprotective effect in Parkinson's and Alzheimer's diseases. This effect, however, is not related to their inhibition of MAO activity; in animal and cellular models, selegiline and rasagiline protect neuronal cells through their anti-apoptotic activity and induction of pro-survival genes. There is increasing evidence that MAO-A activity, but not that of MAO-B, is implicated in the pathophysiology of neurodegenerative disorders, but also in gene induction by MAO-B inhibitors; on the other hand, selegiline and rasagiline increase MAO-A mRNA, protein, and enzyme activity levels. Taken together, these results suggest that each MAO subtype exerts effects that modulate the expression and activity of the other isoenzyme. The roles of MAO-A and -B in the CNS should therefore be re-evaluated with respect to the "type-specificity" of their inhibitors, which may not be unconditional during chronic treatment. Mao-a expression, in particular, may be implicated in pathogenesis and phenotypes in neuropsychiatric disorders. MAO-A expression is modified by mao polymorphisms affecting its transcriptional efficiency, as well as by mutations and polymorphism of parkin, Sirt1, FOXO, microRNA, presenilin-1, and other regulatory proteins. In addition, childhood maltreatment has been shown to have an impact upon adolescent social behavior in children with mao-a polymorphisms of low transcriptional activity. Low MAO-A activity may increase the levels of serotonin and norepinephrine, resulting in disturbed neurotransmitter system development and behavior. This review discusses genetic and environmental factors involved in the regulation of MAO-A expression, in the contexts of neuropsychiatric function and of the regulation of neuronal survival and death.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 470-0195, Japan.
| | - Peter Riederer
- Clinical Neurochemistry, National Parkinson's Foundation Centre of Excellence Laboratories, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Wakako Maruyama
- Department of Cognitive Brain Science, National Research Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
27
|
A platelet protein biochip rapidly detects an Alzheimer's disease-specific phenotype. Acta Neuropathol 2014; 128:665-77. [PMID: 25248508 PMCID: PMC4201753 DOI: 10.1007/s00401-014-1341-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD), a multifactorial neurodegenerative condition caused by genetic and environmental factors, is diagnosed using neuropsychological tests and brain imaging; molecular diagnostics are not routinely applied. Studies have identified AD-specific cerebrospinal fluid (CSF) biomarkers but sample collection requires invasive lumbar puncture. To identify AD-modulated proteins in easily accessible blood platelets, which share biochemical signatures with neurons, we compared platelet lysates from 62 AD, 24 amnestic mild cognitive impairment (aMCI), 13 vascular dementia (VaD), and 12 Parkinson's disease (PD) patients with those of 112 matched controls by fluorescence two-dimensional differential gel electrophoresis in independent discovery and verification sets. The optimal sum score of four mass spectrometry (MS)-identified proteins yielded a sensitivity of 94 % and a specificity of 89 % (AUC = 0.969, 95 % CI = 0.944-0.994) to differentiate AD patients from healthy controls. To bridge the gap between bench and bedside, we developed a high-throughput multiplex protein biochip with great potential for routine AD screening. For convenience and speed of application, this array combines loading control-assisted protein quantification of monoamine oxidase B and tropomyosin 1 with protein-based genotyping for single nucleotide polymorphisms (SNPs) in the apolipoprotein E and glutathione S-transferase omega 1 genes. Based on minimally invasive blood drawing, this innovative protein biochip enables identification of AD patients with an accuracy of 92 % in a single analytical step in less than 4 h.
Collapse
|
28
|
Nedic Erjavec G, Nenadic Sviglin K, Nikolac Perkovic M, Muck-Seler D, Jovanovic T, Pivac N. Association of gene polymorphisms encoding dopaminergic system components and platelet MAO-B activity with alcohol dependence and alcohol dependence-related phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:321-7. [PMID: 25035107 DOI: 10.1016/j.pnpbp.2014.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the association of alcohol dependence and alcohol dependence-related phenotypes with platelet monoamine oxidase type B (MAO-B) activity, Val108/158Met of catechol-o-methyltransferase (COMT), variable number of tandem repeats (VNTR) in the third exon of dopamine receptor D4 (DRD4) gene, VNTR in the 3'-untranslated region of dopamine transporter (DAT) gene, -1021C/T of dopamine beta-hydroxylase (DBH) and MAO-B intron 13 polymorphisms. The study included 1270 Caucasian men and women of Croatian origin: 690 patients with alcohol dependence and 580 healthy controls. Patients with alcohol dependence were subdivided according to the presence or absence of withdrawal symptoms, aggressive behavior, severity of alcohol dependence, delirium tremens, comorbid depression, suicidal behavior, lifetime suicide attempt and early/late onset of alcohol abuse. The results, corrected for multiple testing, revealed increased platelet MAO-B activity in patients with alcohol dependence, subdivided into those with or without alcohol-related liver diseases, compared to control subjects (P<0.001). In addition, we found an increased frequency of the COMT Met/Met genotype among suicidal (P=0.002) and patients who attempted suicide (P<0.001) and an increased frequency of COMT Val/Val genotype in patients with an early onset of alcohol dependence (P=0.004). This study provides data from a sample of ethnically homogeneous unrelated Caucasian subjects for future meta-analyses and suggests that the increased platelet MAO-B activity might be used as independent peripheral indicator of alcohol dependence, while COMT Val108/158Met polymorphism is associated with increased suicidality and early onset of alcohol dependence.
Collapse
Affiliation(s)
| | - Korona Nenadic Sviglin
- Center for Alcoholism and Other Addictions, Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Dorotea Muck-Seler
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
29
|
Sun YX, Wang XH, Xu AH, Zhao JH. Functional polymorphisms of the MAO gene with Parkinson disease susceptibility: A meta-analysis. J Neurol Sci 2014; 345:97-105. [DOI: 10.1016/j.jns.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/09/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
|
30
|
Vemula SR, Xiao J, Zhao Y, Bastian RW, Perlmutter JS, Racette BA, Paniello RC, Wszolek ZK, Uitti RJ, Van Gerpen JA, Hedera P, Truong DD, Blitzer A, Rudzińska M, Momčilović D, Jinnah HA, Frei K, Pfeiffer RF, LeDoux MS. A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia. Mol Genet Genomic Med 2014; 2:261-72. [PMID: 24936516 PMCID: PMC4049367 DOI: 10.1002/mgg3.67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022] Open
Abstract
Although coding variants in THAP1 have been causally associated with primary dystonia, the contribution of noncoding variants remains uncertain. Herein, we examine a previously identified Intron 1 variant (c.71+9C>A, rs200209986). Among 1672 subjects with mainly adult-onset primary dystonia, 12 harbored the variant in contrast to 1/1574 controls (P < 0.01). Dystonia classification included cervical dystonia (N = 3), laryngeal dystonia (adductor subtype, N = 3), jaw-opening oromandibular dystonia (N = 1), blepharospasm (N = 2), and unclassified (N = 3). Age of dystonia onset ranged from 25 to 69 years (mean = 54 years). In comparison to controls with no identified THAP1 sequence variants, the c.71+9C>A variant was associated with an elevated ratio of Isoform 1 (NM_018105) to Isoform 2 (NM_199003) in leukocytes. In silico and minigene analyses indicated that c.71+9C>A alters THAP1 splicing. Lymphoblastoid cells harboring the c.71+9C>A variant showed extensive apoptosis with relatively fewer cells in the G2 phase of the cell cycle. Differentially expressed genes from lymphoblastoid cells revealed that the c.71+9C>A variant exerts effects on DNA synthesis, cell growth and proliferation, cell survival, and cytotoxicity. In aggregate, these data indicate that THAP1 c.71+9C>A is a risk factor for adult-onset primary dystonia.
Collapse
Affiliation(s)
- Satya R Vemula
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Yu Zhao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | | | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Randal C Paniello
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine St. Louis, Missouri
| | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Jay A Van Gerpen
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Nashville, Tennessee
| | - Daniel D Truong
- Parkinson's & Movement Disorder Institute Fountain Valley, California, 92708
| | - Andrew Blitzer
- New York Center for Voice and Swallowing Disorders New York, New York
| | - Monika Rudzińska
- Department of Neurology, Jagiellonian University Medical College in Krakow Kraków, Poland
| | - Dragana Momčilović
- Clinic for Child Neurology and Psychiatry, Medical Faculty University of Belgrade Belgrade, Serbia
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, School of Medicine, Emory University Atlanta, Georgia, 30322
| | - Karen Frei
- Department of Neurology, Loma Linda University Health System Loma Linda, California, 92354
| | - Ronald F Pfeiffer
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Mark S LeDoux
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| |
Collapse
|
31
|
Liu Y, Wang Z, Zhang B. The relationship between monoamine oxidase B (MAOB) A644G polymorphism and Parkinson disease risk: a meta-analysis. Ann Saudi Med 2014; 34:12-7. [PMID: 24658549 PMCID: PMC6074924 DOI: 10.5144/0256-4947.2014.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Many studies were conducted to assess the relationship between Monoamine oxidase B (MAOB) A644G polymorphism and susceptibility to Parkinson disease (PD). However, the results were inconsistent and inconclusive. DESIGN AND SETTINGS A meta-analysis was conducted from all published studies on the associations between monoamine oxidase B (MAOB) A644G polymorphism and Parkinson disease. METHODS In this present study, the possible relationship between MAOB A644G polymorphism and PD risk was assessed by a meta-analysis. Eligible articles were identified for the period up to March 2013. Pooled odds ratios (OR) with 95% confidence intervals (CI) were appropriately derived from fixed-effects models. RESULTS Twenty case-control studies with a total of 2846 cases and 3508 controls were eligible. In a recessive model, MAOB A644G polymorphism was associated with PD risk (OR=1.32, 95% CI 1.18-1.47, P < .001). Subgroup analyses by ethnicity and gender also found significant relationships between this polymorphism and PD risk. CONCLUSION This meta-analysis suggested that MAOB A644G polymorphism may be associated with PD development.
Collapse
Affiliation(s)
| | | | - Benshu Zhang
- Benshu Zhang, 153 Anshan Rd.,, Tianjin 30052, China, +86 022 23626407,
| |
Collapse
|
32
|
Baumgartner R, Umlauf E, Veitinger M, Guterres S, Rappold E, Babeluk R, Mitulović G, Oehler R, Zellner M. Identification and validation of platelet low biological variation proteins, superior to GAPDH, actin and tubulin, as tools in clinical proteomics. J Proteomics 2013; 94:540-51. [DOI: 10.1016/j.jprot.2013.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/27/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
|