1
|
Rizzolo K, Weitz AC, Cohen SE, Drennan CL, Hendrich MP, Elliott SJ. A Stable Ferryl Porphyrin at the Active Site of Y463M BthA. J Am Chem Soc 2020; 142:11978-11982. [PMID: 32564595 DOI: 10.1021/jacs.0c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BthA is a diheme enzyme that is a member of the bacterial cytochrome c peroxidase superfamily, capable of generating a highly unusual Fe(IV)Fe(IV)═O oxidation state, known to be responsible for long-range oxidative chemistry in the enzyme MauG. Here, we show that installing a canonical Met ligand in lieu of the Tyr found at the heme of MauG associated with electron transfer, results in a construct that yields an unusually stable Fe(IV)═O porphyrin at the peroxidatic heme. This state is spontaneously formed at ambient conditions using either molecular O2 or H2O2. The resulting data illustrate how a ferryl iron, with unforeseen stability, may be achieved in biology.
Collapse
Affiliation(s)
- Kimberly Rizzolo
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, United States
| | - Andrew C Weitz
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, United States.,Carnegie Mellon University, Department of Chemistry, Pittsburgh, Pennsylvania 15213, United States
| | - Steven E Cohen
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, United States
| | - Catherine L Drennan
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, United States.,Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, United States
| | - Michael P Hendrich
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, Pennsylvania 15213, United States
| | - Sean J Elliott
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Schmitt G, Birke J, Jendrossek D. Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase RoxA. AMB Express 2019; 9:166. [PMID: 31624946 PMCID: PMC6797691 DOI: 10.1186/s13568-019-0888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 09/28/2019] [Indexed: 12/27/2022] Open
Abstract
Utilization of polyisoprene (natural rubber) as a carbon source by Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. strain 35Y) depends on the formation and secretion of rubber oxygenase A (RoxA). RoxA is a dioxygenase that cleaves polyisoprene to 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a suitable growth substrate for S. cummioxidans. RoxA harbours two non-equivalent, spectroscopically distinguishable haem centres. A dioxygen molecule is bound to the N-terminal haem of RoxA and identifies this haem as the active site. In this study, we provide insights into the nature of this unusually stable dioxygen-haem coordination of RoxA by a re-evaluation of previously published together with newly obtained biophysical data on the cleavage of polyisoprene by RoxA. In combination with the meanwhile available structure of RoxA we are now able to explain several uncommon and previously not fully understood features of RoxA, the prototype of rubber oxygenases in Gram-negative rubber-degrading bacteria.
Collapse
Affiliation(s)
- Georg Schmitt
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
3
|
Hira D, Kitamura R, Nakamura T, Yamagata Y, Furukawa K, Fujii T. Anammox Organism KSU-1 Expresses a Novel His/DOPA Ligated Cytochrome c. J Mol Biol 2018; 430:1189-1200. [DOI: 10.1016/j.jmb.2018.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
|
4
|
Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG. J Inorg Biochem 2016; 167:60-67. [PMID: 27907864 DOI: 10.1016/j.jinorgbio.2016.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
The diheme enzyme MauG utilizes H2O2 to perform oxidative posttranslational modification on a protein substrate. A bis-Fe(IV) species of MauG was previously identified as a key intermediate in this reaction. Heterolytic cleavage of the OO bond of H2O2 drives the formation of the bis-Fe(IV) intermediate. In this work, we tested a hypothesis that a glutamate residue, Glu113 in the distal pocket of the pentacoordinate heme of MauG, facilitates heterolytic OO bond cleavage, thereby leading to bis-Fe(IV) formation. This hypothesis was proposed based on sequence alignment and structural comparison with other H2O2-utilizing hemoenzymes, especially those from the diheme enzyme superfamily that MauG belongs to. Electron paramagnetic resonance (EPR) characterization of the reaction between MauG and H2O2 revealed that mutation of Glu113 inhibited heterolytic OO bond cleavage, in agreement with our hypothesis. This result was further confirmed by the HPLC study in which an analog of H2O2, cumene hydroperoxide, was used to probe the pattern of OO bond cleavage. Together, our data suggest that Glu113 functions as an acid-base catalyst to assist heterolytic OO bond cleavage during the early stage of the catalytic reaction. This work advances our mechanistic understanding of the H2O2-activation process during bis-Fe(IV) formation in MauG.
Collapse
|
5
|
Bennett EH, Akbas N, Adrian SA, Lukat-Rodgers GS, Collins DP, Dawson JH, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Heme Binding by Corynebacterium diphtheriae HmuT: Function and Heme Environment. Biochemistry 2015; 54:6598-609. [PMID: 26478504 PMCID: PMC4943319 DOI: 10.1021/acs.biochem.5b00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The heme uptake pathway (hmu) of Corynebacterium diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. In this study, the axial ligation of the heme in ferric HmuT is probed by examination of wild-type (WT) HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, and M292A. Characterization by UV-visible, resonance Raman, and magnetic circular dichroism spectroscopies indicates that H136 and Y235 are the axial ligands in ferric HmuT. Consistent with this assignment of axial ligands, ferric WT and H136A HmuT are difficult to reduce while Y235A is reduced readily in the presence of dithionite. The FeCO Raman shifts in WT, H136A, and Y235A HmuT-CO complexes provide further evidence of the axial ligand assignments. Additionally, these frequencies provide insight into the nonbonding environment of the heme pocket. Ferrous Y235A and the Y235A-CO complex reveal that the imidazole of H136 exists in two forms, one neutral and one with imidazolate character, consistent with a hydrogen bond acceptor on the H136 side of the heme. The ferric fluoride complex of Y235A reveals the presence of at least one hydrogen bond donor on the Y235 side of the heme. Hemoglobin utilization assays showed that the axial Y235 ligand is required for heme uptake in HmuT.
Collapse
Affiliation(s)
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Seth A. Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daniel P. Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtni E. Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| |
Collapse
|
6
|
Shin S, Feng M, Li C, Williamson HR, Choi M, Wilmot CM, Davidson VL. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:709-16. [PMID: 25896561 DOI: 10.1016/j.bbabio.2015.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. One heme is low-spin with ligands provided by His205 and Tyr294, and the other is high-spin with a ligand provided by His35. The side chain methyl groups of Thr67 and Leu70 are positioned at a distance of 3.4Å on either side of His35, maintaining a hydrophobic environment in the proximal pocket of the high-spin heme and restricting the movement of this ligand. Mutation of Thr67 to Ala in the proximal pocket of the high-spin heme prevented reduction of the low-spin heme by dithionite, yielding a mixed-valent state. The mutation also enhanced the stabilization of the charge-resonance-transition of the high-valent bis-FeIV state that is generated by addition of H2O2. The rates of electron transfer from TTQ biosynthetic intermediates to the high-valent form of T67A MauG were similar to that of wild-type MauG. These results are compared to those previously reported for mutation of residues in the distal pocket of the high-spin heme that also affected the redox properties and charge resonance transition stabilization of the high-valent state of the hemes. However, given the position of residue 67, the structure of the variant protein and the physical nature of the T67A mutation, the basis for the effects of the T67A mutation must be different from those of the mutations of the residues in the distal heme pocket.
Collapse
Affiliation(s)
- Sooim Shin
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, Chonnam, South Korea
| | - Manliang Feng
- Department of Chemistry, Tougaloo College, Tougaloo, MS 39174, USA
| | - Chao Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Moonsung Choi
- Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 139-743, South Korea
| | - Carrie M Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
7
|
Geng J, Davis I, Liu A. Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model. Angew Chem Int Ed Engl 2015; 54:3692-6. [PMID: 25631460 PMCID: PMC4363735 DOI: 10.1002/anie.201410247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/14/2014] [Indexed: 11/08/2022]
Abstract
The biosynthesis of tryptophan tryptophylquinone, a protein-derived cofactor, involves a long-range reaction mediated by a bis-Fe(IV) intermediate of a diheme enzyme, MauG. Recently, a unique charge-resonance (CR) phenomenon was discovered in this intermediate, and a biological, long-distance CR model was proposed. This model suggests that the chemical nature of the bis-Fe(IV) species is not as simple as it appears; rather, it is composed of a collection of resonance structures in a dynamic equilibrium. Here, we experimentally evaluated the proposed CR model by introducing small molecules to, and measuring the temperature dependence of, bis-Fe(IV) MauG. Spectroscopic evidence was presented to demonstrate that the selected compounds increase the decay rate of the bis-Fe(IV) species by disrupting the equilibrium of the resonance structures that constitutes the proposed CR model. The results support this new CR model and bring a fresh concept to the classical CR theory.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, United States, Homepage: http://Feradical.gsu.edu
| | - Ian Davis
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, United States, Homepage: http://Feradical.gsu.edu
| | - Aimin Liu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, United States, Homepage: http://Feradical.gsu.edu
| |
Collapse
|
8
|
Geng J, Davis I, Liu A. Probing Bis-FeIVMauG: Experimental Evidence for the Long-Range Charge-Resonance Model. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Bis-Fe(IV): nature's sniper for long-range oxidation. J Biol Inorg Chem 2014; 19:1057-67. [PMID: 24722994 DOI: 10.1007/s00775-014-1123-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Iron-dependent enzymes are prevalent in nature and participate in a wide range of biological redox activities. Frequently, high-valence iron intermediates are involved in the catalytic events of iron-dependent enzymes, especially when the activation of peroxide or molecular oxygen is involved. Building on the fundamental framework of iron-oxygen chemistry, these reactive intermediates constantly attract significant attention from the enzymology community. During the past few decades, tremendous efforts from a number of laboratories have been dedicated to the capture and characterization of these intermediates to improve mechanistic understandings. In 2008, an unprecedented bis-Fe(IV) intermediate was reported in a c-type diheme enzyme, MauG, which is involved in the maturation of a tryptophan tryptophylquinone cofactor of methylamine dehydrogenase. This intermediate, although chemically equivalent to well-characterized high-valence iron intermediates, such as compound I, compound ES, and intermediate Q in methane monooxygenase, as well as the hypothetical Fe(V) species in Rieske non-heme oxygenases, is orders of magnitude more stable than these other high-valence species in the absence of its primary substrate. It has recently been discovered that the bis-Fe(IV) intermediate exhibits a unique near-IR absorption feature which has been attributed to a novel charge-resonance phenomenon. This review compares the properties of MauG with structurally related enzymes, summarizes the current knowledge of this new high-valence iron intermediate, including its chemical origin and structural basis, explores the formation and consequences of charge resonance, and recounts the long-range catalytic mechanism in which bis-Fe(IV) participates. Biological strategies for storing oxidizing equivalents with iron ions are also discussed.
Collapse
|
10
|
Shin S, Yukl ET, Sehanobish E, Wilmot CM, Davidson VL. Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG. Biochemistry 2014; 53:1342-9. [PMID: 24517455 PMCID: PMC3985960 DOI: 10.1021/bi5000349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The diheme enzyme MauG catalyzes
a six-electron oxidation that
is required for the posttranslational modification of a precursor
of methylamine dehydrogenase (preMADH) to complete the biosynthesis
of its protein-derived cofactor, tryptophan tryptophylquinone (TTQ).
Crystallographic and computational studies have implicated Gln103
in stabilizing the FeIV=O moiety of the bis-FeIV state by hydrogen bonding. The role of Gln103 was probed
by site-directed mutagenesis. Q103L and Q103E mutations resulted in
no expression and very little expression of the protein, respectively.
Q103A MauG exhibited oxidative damage when isolated. Q103N MauG was
isolated at levels comparable to that of wild-type MauG and exhibited
normal activity in catalyzing the biosynthesis of TTQ from preMADH.
The crystal structure of the Q103N MauG–preMADH complex suggests
that a water may mediate hydrogen bonding between the shorter Asn103
side chain and the FeIV=O moiety. The Q103N mutation
caused the two redox potentials associated with the diferric/diferrous
redox couple to become less negative, although the redox cooperativity
of the hemes of MauG was retained. Upon addition of H2O2, Q103N MauG exhibits changes in the absorbance spectrum in
the Soret and near-IR regions consistent with formation of the bis-FeIV redox state. However, the rate of spontaneous return of
the spectrum in the Soret region was 4.5-fold greater for Q103N MauG
than for wild-type MauG. In contrast, the rate of spontaneous decay
of the absorbance at 950 nm, which is associated with charge-resonance
stabilization of the high-valence state, was similar for wild-type
MauG and Q103N MauG. This suggests that as a consequence of the mutation
a different distribution of resonance structures stabilizes the bis-FeIV state. These results demonstrate that subtle changes in
the structure of the side chain of residue 103 can significantly affect
the overall protein stability of MauG and alter the redox properties
of the hemes.
Collapse
Affiliation(s)
- Sooim Shin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | | | | | | | | |
Collapse
|
11
|
Shin S, Davidson VL. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis. Arch Biochem Biophys 2014; 544:112-8. [PMID: 24144526 PMCID: PMC3946517 DOI: 10.1016/j.abb.2013.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
Abstract
MauG contains two c-type hemes with atypical physical and catalytic properties. While most c-type cytochromes function simply as electron transfer mediators, MauG catalyzes the completion of tryptophan tryptophylquinone (TTQ)(1) biosynthesis within a precursor protein of methylamine dehydrogenase. This posttranslational modification is a six-electron oxidation that requires crosslinking of two Trp residues, oxygenation of a Trp residue and oxidation of the resulting quinol to TTQ. These reactions proceed via a bis-Fe(IV) state in which one heme is present as Fe(IV)O and the other is Fe(IV) with axial heme ligands provided by His and Tyr side chains. Catalysis does not involve direct contact between the protein substrate and either heme of MauG. Instead it is accomplished by remote catalysis using a hole hopping mechanism of electron transfer in which Trp residues of MauG are reversibly oxidized. In this process, long range electron transfer is coupled to the radical mediated chemical reactions that are required for TTQ biosynthesis.
Collapse
Affiliation(s)
- Sooim Shin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
12
|
Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Biochem J 2013; 456:129-37. [PMID: 24024544 DOI: 10.1042/bj20130981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dihaem enzyme MauG catalyses a six-electron oxidation required for post-translational modification of preMADH (precursor of methylamine dehydrogenase) to complete the biosynthesis of its TTQ (tryptophan tryptophylquinone) cofactor. Trp93 of MauG is positioned midway between its two haems, and in close proximity to a Ca2+ that is critical for MauG function. Mutation of Trp93 to tyrosine caused loss of bound Ca2+ and changes in spectral features similar to those observed after removal of Ca2+ from WT (wild-type) MauG. However, whereas Ca2+-depleted WT MauG is inactive, W93Y MauG exhibited TTQ biosynthesis activity. The rate of TTQ biosynthesis from preMADH was much lower than that of WT MauG and exhibited highly unusual kinetic behaviour. The steady-state reaction exhibited a long lag phase, the duration of which was dependent on the concentration of preMADH. The accumulation of reaction intermediates, including a diradical species of preMADH and quinol MADH (methylamine dehydrogenase), was detected during this pre-steady-state phase. In contrast, steady-state oxidation of quinol MADH to TTQ, the final step of TTQ biosynthesis, exhibited no lag phase. A kinetic model is presented to explain the long pre-steady-state phase of the reaction of W93Y MauG, and the role of this conserved tryptophan residue in MauG and related dihaem enzymes is discussed.
Collapse
|
13
|
The Tll0287 protein is a hemoprotein associated with the PsbA2-Photosystem II complex in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1174-82. [DOI: 10.1016/j.bbabio.2013.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
|
14
|
Abu Tarboush N, Yukl ET, Shin S, Feng M, Wilmot CM, Davidson VL. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG. Biochemistry 2013; 52:6358-67. [PMID: 23952537 DOI: 10.1021/bi400905s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The diheme enzyme MauG catalyzes a six-electron oxidation required for post-translational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-Fe(IV) state of MauG, in which one heme is Fe(IV)═O and the other is Fe(IV) with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite but was only reduced to a mixed valence Fe(II)/Fe(III) state, which is never observed in wild-type (WT) MauG. Addition of H2O2 to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-Fe(IV) state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H2O2 to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H2O2 resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-Fe(IV) redox state.
Collapse
Affiliation(s)
- Nafez Abu Tarboush
- Biochemistry and Physiology Department, College of Medicine, The University of Jordan , Amman, Jordan 11942
| | | | | | | | | | | |
Collapse
|