1
|
Sator C, Lico C, Pannucci E, Marchetti L, Baschieri S, Warzecha H, Santi L. Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering. PLANTS (BASEL, SWITZERLAND) 2024; 13:503. [PMID: 38498408 PMCID: PMC10893517 DOI: 10.3390/plants13040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Substrate channeling could be very useful for plant metabolic engineering; hence, we propose that functionalized supramolecular self-assembly scaffolds can act as enzymatic hubs able to perform reactions in close contiguity. Virus nanoparticles (VNPs) offer an opportunity in this context, and we present a functionalization strategy to display different enzymes on the outer surface of three different VNPs produced in plants. Tomato bushy stunt virus (TBSV) and Potato virus X (PVX) plant viruses were functionalized by the genetic fusion of the E-coil peptide coding sequence to their respective coat proteins genes, while the enzyme lichenase was tagged with the K-coil peptide. Immobilized E-coil VNPs were able to interact in vitro with the plant-produced functionalized lichenase, and catalysis was demonstrated by employing a lichenase assay. To prove this concept in planta, the Hepatitis B core (HBc) virus-like particles (VLPs) were similarly functionalized by genetic fusion with the E-coil sequence, while acyl-activating enzyme 1, olivetolic acid synthase, and olivetolic acid cyclase enzymes were tagged with the K-coil. The transient co-expression of the K-coil-enzymes together with E-coil-VLPs allowed the establishment of the heterologous cannabinoid precursor biosynthetic pathway. Noteworthy, a significantly higher yield of olivetolic acid glucoside was achieved when the scaffold E-coil-VLPs were employed.
Collapse
Affiliation(s)
- Christian Sator
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
| | - Chiara Lico
- Laboratory of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.L.); (S.B.)
| | - Elisa Pannucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.M.); (L.S.)
| | - Luca Marchetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.M.); (L.S.)
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.L.); (S.B.)
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.M.); (L.S.)
| |
Collapse
|
2
|
Madirov A, Yermukhambetova R, Masalimov Z. Exploring the diversity and evolution of tombus-like viruses: phylogenetic analysis, recombination events, and suppressor protein homologs. Arch Virol 2023; 168:287. [PMID: 37947857 DOI: 10.1007/s00705-023-05909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 11/12/2023]
Abstract
This study focuses on the phylogenetic analysis of previously unclassified tombus-like viruses, which are characterized by the presence of homologs of the suppressor protein p19. The primary objectives of this research were to investigate the evolutionary relationships among these viruses and to explore the impact of suppressor proteins and recombination events on their evolution. A dataset comprising 94 viral sequences was analyzed to achieve these goals. The phylogenetic analysis revealed the presence of two distinct clusters within the tombus-like virus group. One cluster consisted of viruses that encoded p19-like RNA suppressors, while the other cluster comprised viruses encoding p14-like suppressors. Based on these findings, we propose the classification of PGT-pt108 as an isolate of carnation Italian ringspot virus (CIRV), and both Tombusviridae sp. s48-k141_139792 and Tombusviridae sp. s51-k141_185213 as isolates of tomato bushy stunt virus (TBSV). Furthermore, this study suggests the establishment of two new genera within the family Tombusviridae, based on the observed divergence and distinct characteristics of these tombus-like viruses. Through the analysis of recombination events, we provide insights into the interspecies movement of CIRV, which is reflected in its phylogenetic positioning. This research contributes to our understanding of the evolutionary dynamics and classification of tombus-like viruses, shedding light on the role of suppressor proteins and recombination events in their evolution and interspecies transmission.
Collapse
Affiliation(s)
- Almas Madirov
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan.
| | - Roza Yermukhambetova
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan
| | - Zhaksylyk Masalimov
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
3
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
4
|
Muthamilselvan T, Khan MRI, Hwang I. Assembly of Human Papillomavirus 16 L1 Protein in Nicotiana benthamiana Chloroplasts into Highly Immunogenic Virus-Like Particles. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2023; 66:1-10. [PMID: 37360984 PMCID: PMC10078042 DOI: 10.1007/s12374-023-09393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
Infection with human papillomavirus (HPV) can cause cervical cancers in women, and vaccination against the virus is one of most effective ways to prevent these cancers. Two vaccines made of virus-like particles (VLPs) of HPV L1 proteins are currently commercially available. However, these HPV vaccines are highly expensive, and thus not affordable for women living in developing countries. Therefore, great demand exists to produce a cost-effective vaccine. Here, we investigate the production of self-assembled HPV16 VLPs in plants. We generated a chimeric protein composed of N-terminal 79 amino acid residues of RbcS as a long-transit peptide to target chloroplasts, the SUMO domain, and HPV16 L1 proteins. The chimeric gene was expressed in plants with chloroplast-targeted bdSENP1, a protein that specifically recognizes the SUMO domain and cleaves its cleavage site. This co-expression of bdSENP1 led to the release of HPV16 L1 from the chimeric proteins without any extra amino acid residues. HPV16 L1 purified by heparin chromatography formed VLPs that mimicked native virions. Moreover, the plant-produced HPV16 L1 VLPs elicited strong immune responses in mice without adjuvants. Thus, we demonstrated the cost-effective production of HPV16 VLPs in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12374-023-09393-6.
Collapse
Affiliation(s)
| | - Md Rezaul Islam Khan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| |
Collapse
|
5
|
Design of a Diagnostic Immunoassay for Aflatoxin M1 Based on a Plant-Produced Antibody. Toxins (Basel) 2022; 14:toxins14120851. [PMID: 36548748 PMCID: PMC9781297 DOI: 10.3390/toxins14120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A new green competitive ELISA for aflatoxin M1 quantification in raw milk was developed. This diagnostic tool is based on an anti AFM1 mAb produced by plant molecular farming in alternative to classical systems. Our assay, showing an IC50 below 25 ng/L, fits with the requirements of EU legislation limits for AFM1 (50 ng/L). Optimal accuracy was achieved in correspondence of the decision levels (25 and 50 ng/L), and the assay enabled AFM1 quantification in the range 5-110 ng/L, with limit of detection 3 ng/L. Moreover, to evaluate a real applicability in diagnostics, raw milk-spiked samples were analysed, achieving satisfactory recovery rates of AFM1. In conclusion, an efficient and ready-to-use diagnostic assay for the quantification of aflatoxin M1 in milk, based on a plant-produced recombinant mAb, has been successfully developed.
Collapse
|
6
|
Suhorukova AV, Tyurin AA, Pavlenko OS, Mustafayev ON, Sinelnikov IG, Goldenkova-Pavlova IV. Development of dual reporter vector system for estimating translational activity of regulatory elements. BMC PLANT BIOLOGY 2022; 22:356. [PMID: 35864445 PMCID: PMC9306140 DOI: 10.1186/s12870-022-03735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND For the needs of modern biotechnology, a quantitative approach to the control of regulatory elements at all stages of gene expression has long become indispensable. Such a control regime is impossible without a quantitative analysis of the role of each regulatory element or pattern used. Therefore, it seems important to modify and develop the accuracy, reproducibility, and availability of methods for quantifying the contribution of each regulatory code to the implementation of genetic information. RESULTS A new vector system for transient expression in plants is described; this system is intended for quantitative analysis of the contribution of regulatory elements to transcription and translation efficiencies. The proposed vector comprises two expression cassettes carrying reporter genes (of the Clostridium thermocellum thermostable lichenase and E. coli β-glucuronidase) under the control of different promoters. Herewith we also propose a new method for quantification of the effect of tested regulatory elements on expression, which relies on assessment of the enzyme activities of reporter proteins taking into account the transcription of their genes. CONCLUSIONS In our view, this approach makes it possible to precisely determine the amounts of reporter proteins and their transcripts at all stages of expression. The efficiency of the proposed system has been validated by the analysis of the roles of known translation enhancers at the stages of transcription and translation.
Collapse
Affiliation(s)
- Aleksandra V. Suhorukova
- Laboratory of functional genomics, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Tyurin
- Laboratory of functional genomics, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga S. Pavlenko
- Laboratory of functional genomics, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Orkhan N. Mustafayev
- Genetic resources institute, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Igor G. Sinelnikov
- Laboratory of enzyme biotechnology, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Goldenkova-Pavlova
- Laboratory of functional genomics, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Geddes-McAlister J, Prudhomme N, Gutierrez Gongora D, Cossar D, McLean MD. The emerging role of mass spectrometry-based proteomics in molecular pharming practices. Curr Opin Chem Biol 2022; 68:102133. [DOI: 10.1016/j.cbpa.2022.102133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
8
|
Fan L, He C, Gao D, Xu T, Xing F, Yan J, Zhan B, Li S, Wang H. Identification of Silencing Suppressor Protein Encoded by Strawberry Mottle Virus. FRONTIERS IN PLANT SCIENCE 2022; 13:786489. [PMID: 35712581 PMCID: PMC9195133 DOI: 10.3389/fpls.2022.786489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Strawberry mottle virus (SMoV) is associated with strawberry decline disease, causing losses to fruit yield and quality. In this study, using a screening system that enables detection of both local and systemic plant host (RNA silencing) defense responses, we found that Pro2Glu and P28, encoded by SMoV RNA2 genome, functioned to suppress local and systemic RNA silencing triggered by single- but not double-stranded GFP RNA. Subcellular localization assay revealed that both Pro2Glu and P28 were localized to nucleus and cytoplasm. The deletion of 11 amino acid residues at the C-terminus destabilized Pro2Glu protein, and the disruption of two conserved GW motifs deprived Pro2Glu of ability to suppress RNA silencing. Additionally, SMoV Pro2Glu and P28 enhanced the accumulation of potato virus X (PVX) in Nicotiana benthamiana 22 days post-infiltration, and P28 exacerbated significantly the symptoms of PVX. Collectively, these data indicate that the genome of SMoV RNA2 encodes two suppressors of RNA silencing. This is the first identification of a stramovirus suppressor of RNA silencing.
Collapse
Affiliation(s)
- Lingjiao Fan
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Chengyong He
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Tengfei Xu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Xing
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Yan
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Binhui Zhan
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lieser RM, Li Q, Chen W, Sullivan MO. Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells. Mol Pharm 2022; 19:661-673. [PMID: 35040326 DOI: 10.1021/acs.molpharmaceut.1c00788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular delivery of protein therapeutics remains a significant challenge limiting the majority of clinically available protein drugs to extracellular targets. Strategies to deliver proteins to subcellular compartments have traditionally relied on cell-penetrating peptides, which can drive enhanced internalization but exhibit unreliable activity and are rarely able to target specific cells, leading to off-target effects. Moreover, few design rules exist regarding the relative efficacy of various endosomal escape strategies in proteins. Accordingly, we developed a simple fusion modification approach to incorporate endosomolytic peptides onto epidermal growth factor receptor (EGFR)-targeted protein conjugates and performed a systematic comparison of the endosomal escape efficacy, mechanism of action, and capacity to maintain EGFR-targeting specificity of conjugates modified with four different endosomolytic sequences of varying modes of action (Aurein 1.2, GALA, HA2, and L17E). Use of the recently developed Gal8-YFP assay indicated that the fusion of each endosomolytic peptide led to enhanced endosomal disruption. Additionally, the incorporation of each endosomolytic peptide increased the half-life of the internalized protein and lowered lysosomal colocalization, further supporting the membrane-disruptive capacity. Despite this, only EGFR-targeted conjugates modified with Aurein 1.2 or GALA maintained EGFR specificity. These results thus demonstrated that the choice of endosomal escape moiety can substantially affect targeting capability, cytotoxicity, and bioactivity and provided important new insights into endosomolytic peptide selection for the design of targeted protein delivery systems.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Qirun Li
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
11
|
Diaz N, Lico C, Capodicasa C, Baschieri S, Dessì D, Benvenuto E, Fiori PL, Rappelli P. Production and Functional Characterization of a Recombinant Predicted Pore-Forming Protein (TVSAPLIP12) of Trichomonas vaginalis in Nicotiana benthamiana Plants. Front Cell Infect Microbiol 2020; 10:581066. [PMID: 33117734 PMCID: PMC7561387 DOI: 10.3389/fcimb.2020.581066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Pore-forming proteins (PFPs) are a group of functionally versatile molecules distributed in all domains of life, and several microbial pathogens notably use members of this class of proteins as cytotoxic effectors. Among pathogenic protists, Entamoeba histolytica, and Naegleria fowleri display a range of pore-forming toxins belonging to the Saposin-Like Proteins (Saplip) family: Amoebapores and Naegleriapores. Following the genome sequencing of Trichomonas vaginalis, we identified a gene family of 12 predicted saposin-like proteins (TvSaplips): this work focuses on investigating the potential role of TvSaplips as cytopathogenetic effectors. We provide evidence that TvSaplip12 gene expression is potently upregulated upon T. vaginalis contact with target cells. We cloned and expressed recombinant TvSaplip12 in planta and we demonstrate haemolytic, cytotoxic, and bactericidal activities of rTvSaplip12 in vitro. Also, evidence for TvSaplip subcellular discrete distribution in cytoplasmic granules is presented. Altogether, our results highlight the importance of TvSaplip in T. vaginalis pathogenesis, depicting its involvement in the cytolytic and bactericidal activities during the infection process, leading to predation on host cells and resident vaginal microbiota for essential nutrients acquisition. This hence suggests a potential key role for TvSaplip12 in T. vaginalis pathogenesis as a candidate Trichopore.
Collapse
Affiliation(s)
- Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Cristina Capodicasa
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| |
Collapse
|
12
|
Ghazizadeh E, Moosavifard SE, Daneshmand N, Kaverlavani SK. Impediometric Electrochemical Sensor Based on The Inspiration of Carnation Italian Ringspot Virus Structure to Detect an Attommolar of miR. Sci Rep 2020; 10:9645. [PMID: 32541792 PMCID: PMC7295965 DOI: 10.1038/s41598-020-66393-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
Electrochemical sensors are the tools to detect the accurate and sensitive miRs. There is the challenge to increase the power and sensitivity of the surface for the electrochemical sensor. We design a virus-like hallow structure of cuco2o4 that it holds the large amounts of p19 protein by mimicking of inherent virus (Carnation italian ringspot virus) to detect 21mir with the limit of detection (LOD = 1aM). The electrochemical measurements are performed between the potentials at -0.3 V and +0.3 V with 1 mM [Fe(CN)6] -3/-4. After dropping the cuco2o4 on the SCPE (screen carbon printed electrode), the sensor is turned on due to the high electrochemical properties. Then, p19 proteins move into the hallow structure and inhibit the exchange of electrochemical reactions between the shells and the sensor is turned off. Then, adding the duplexes of RNA/miRs cause to increase the electrochemical property of p19 due to the change of p19 conformation and the system is turned on, again. So, for the first time, a virus-like hallow structure has been used to detect the 21miR in the human serum, MCF-7, Hella cells, with high sensitivity, specificity, and reproducibility in few minutes.
Collapse
Affiliation(s)
- E Ghazizadeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, 74148-46199, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, 74148-46199, Iran.
| | - Negin Daneshmand
- Department of Materials Science and Engineering, Shiraz university, Shiraz, Iran
| | | |
Collapse
|
13
|
Huang CH, Foo MH, Raja JAJ, Tan YR, Lin TT, Lin SS, Yeh SD. A Conserved Helix in the C-Terminal Region of Watermelon Silver Mottle Virus Nonstructural Protein S Is Imperative For Protein Stability Affecting Self-Interaction, RNA Silencing Suppression, and Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:637-652. [PMID: 31935338 DOI: 10.1094/mpmi-10-19-0279-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In orthotospovirus, the nonstructural protein S (NSs) is the RNA-silencing suppressor (RSS) and pathogenicity determinant. Here, we demonstrate that a putative α-helix, designated H8, spanning amino acids 338 to 369 of the C-terminal region of the NSs protein, is crucial for self-interaction of watermelon silver mottle virus NSs protein and that the H8 affects RSS function. Co-immunoprecipitation, yeast two-hybrid, and bimolecular fluorescence complementation analyses revealed that the triple point mutation (TPM) of H8 amino acids Y338A, H350A, and F353A resulted in NSs protein self-interaction dysfunction. Transient expression of H8-deleted (ΔH8) and TPM NSs proteins in Nicotiana benthamiana plants by agroinfitration indicated that these proteins have weaker RSS activity and are far less stable than wild-type (WT) NSs. However, an electrophoretic mobility assay revealed that small interfering RNA (siRNA) binding ability of TPM NSs protein is not compromised. The pathogenicity assay of WT NSs protein expressed by the attenuated turnip mosaic virus vector restored severe symptoms in recombinant-infected N. benthamiana plants but not for ΔH8 or TPM proteins. Taken together, we conclude that the H8 helix in the C-terminal region of NSs protein is crucial for stabilizing NSs protein through self-interaction to maintain normal functions of RSS and pathogenicity, but not for NSs-siRNA binding activity.
Collapse
Affiliation(s)
- Chung-Hao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Advanced Plant Biotechnology Center, National Chung Hsing University
| | - Mung-Hsia Foo
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Advanced Plant Biotechnology Center, National Chung Hsing University
| | - Yue-Rong Tan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Tzu-Tung Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Shih-Shun Lin
- Advanced Plant Biotechnology Center, National Chung Hsing University
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Advanced Plant Biotechnology Center, National Chung Hsing University
| |
Collapse
|
14
|
Ahmed N, Foss DV, Powdrill MH, Pezacki JP. Site-Specific Cross-Linking of a p19 Viral Suppressor of RNA Silencing Protein and Its RNA Targets Using an Expanded Genetic Code. Biochemistry 2019; 58:3520-3526. [PMID: 31329415 DOI: 10.1021/acs.biochem.9b00428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p19 viral suppressor of RNA silencing protein has useful applications in biotechnology due to its high affinity for binding to small RNAs such as small interfering RNAs (siRNAs). Also, its applications for the study and modulation of microRNAs are actively expanding. Here we demonstrate the successful site-specific incorporation of a photoactivatable unnatural amino acid, p-azido-l-phenylalanine (AzF), for cross-linking to RNA substrates into the p19 sequence. Incorporation of AzF was performed at three positions in the protein near the RNA binding site: K67, R115, and T111. Incorporation of AzF at position T111 of p19 did not affect the binding affinity of p19 for siRNAs and also showed nanomolar affinity for human microRNA miR-122. The affinity was less favorable with AzF incorporation at two other positions, suggesting the sensitivity of placement of the unnatural amino acid. Exposure of the T111AzF in complex with either siRNA or miRNA to ultraviolet light resulted in cross-linking of the protein with the RNA, but no cross-linking could be detected with the wild-type protein. Our results demonstrate that p19-T111AzF can be used for detection of small RNAs, including human miR-122, with high sensitivity and to irreversibly sequester these RNAs through covalent photo-cross-linking.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Dana V Foss
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Megan H Powdrill
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - John Paul Pezacki
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada.,Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
15
|
Foss DV, Schirle NT, MacRae IJ, Pezacki JP. Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs. FEBS Open Bio 2019; 9:1042-1051. [PMID: 31021526 PMCID: PMC6551489 DOI: 10.1002/2211-5463.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). Mutational analysis has identified single amino acid substitutions that reverse this selectivity through new high-affinity interactions with human miR-122. Herein, we report crystal structures of complexed p19-T111S (2.6 Å), p19-T111H (2.3 Å) and wild-type p19 protein (2.2 Å) from the Carnation Italian ringspot virus with small interfering RNA (siRNA) ligands. Structural comparisons reveal that these mutations do not lead to major changes in p19 architecture, but instead promote subtle rearrangement of residues and solvent molecules along the p19 midline. These observations suggest p19 uses many small interactions to distinguish siRNAs from miRNAs and perturbing these interactions can create p19 variants with novel RNA-recognition properties. DATABASE: Model data are deposited in the PDB database under the accession numbers 6BJG, 6BJH and 6BJV.
Collapse
Affiliation(s)
- Dana V Foss
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Nicole T Schirle
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| |
Collapse
|
16
|
Lu QY, Yang L, Huang J, Zheng L, Sun X. Identification and subcellular location of an RNA silencing suppressor encoded by mulberry crinkle leaf virus. Virology 2019; 526:45-51. [PMID: 30342301 DOI: 10.1016/j.virol.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 11/28/2022]
Abstract
Mulberry crinkle leaf virus (MCLV) is a novel geminivirus recently identified from the woody plant mulberry (Morus alba L.). Little is known about the functions of the proteins encoded by the MCLV genome. Here, all the MCLV-encoded proteins were examined for the ability to suppress gene silencing by an agroinfiltration assay in combination with northern blot analysis of green fluorescent protein (GFP) mRNA and western blot analysis. Of the six proteins, only one protein, V3, which has been predicted to play a role in viral movement, was found to suppress the gene silencing induced by a sense GFP gene in Nicotiana benthamiana 16c. The minimal amino acid sequence of V3 that maintains suppressor activity was also determined by constructing truncated mutants lacking different lengths of the amino acid sequences at the N- or C-terminus of the V3 protein. The results showed that the 94 N-terminal amino acid residues of V3 are sufficient to maintain V3 suppressor activity. In addition, the subcellular location of the V3 protein was investigated by confocal laser scanning microscopy after the expression of a V3-RFP fused protein in leaf epidermal cells of N. benthamiana. The results indicated that the V3 protein localized not only to the cytoplasm but also to the nucleus of N. benthamiana, implying that V3 can shuttle between the nucleus and the cytoplasm. Deletion mutant analysis indicated that a putative nuclear localization signal (NLS) between aa 118-134 might be responsible for the nuclear distribution of the V3 protein. Given the importance of RNA silencing in plant-virus interactions, the identification of a silencing suppressor of MCLV should be valuable in understanding the pathogenicity and molecular biology of this virus.
Collapse
Affiliation(s)
- Quan-You Lu
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
| | - Lei Yang
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | - Jinshan Huang
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | - Luping Zheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xin Sun
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| |
Collapse
|
17
|
Gengenbach BB, Müschen CR, Buyel JF. Expression and purification of human phosphatase and actin regulator 1 (PHACTR1) in plant-based systems. Protein Expr Purif 2018; 151:46-55. [PMID: 29894805 DOI: 10.1016/j.pep.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases are a prevalent cause of morbidity and mortality especially in industrialized countries. The human phosphatase and actin regulator 1 (PHACTR1) may be involved in such diseases, but its precise regulatory function remains unclear due to the large number of potential interaction partners. The same phenomenon makes this protein difficult to express in mammalian cells, but it is also an intrinsically disordered protein that likely aggregates when expressed in bacteria due to the absence of chaperones. We therefore used a design of experiments approach to test the suitability of three plant-based systems for the expression of satisfactory quantities of recombinant PHACTR1, namely transient expression in tobacco (Nicotiana tabacum) BY-2 plant cell packs (PCPs), whole N. benthamiana leaves and BY-2 cell lysate (BYL). The highest yield was achieved using the BYL: up to 120 mg product kg-1 biomass equivalent within 48 h of translation. This was 1.3-fold higher than transient expression in N. benthamiana together with the silencing inhibitor p19, and 6-fold higher than the PCP system. The presence of Triton X-100 in the extraction buffer increased the recovery of PHACTR1 by 2-200-fold depending on the conditions. PHACTR1 was incompatible with biomass blanching and was stable for less than 16 h in raw plant extracts. Purification using a DDK-tag proved inefficient whereas 15% purity was achieved by immobilized metal affinity chromatography.
Collapse
Affiliation(s)
- B B Gengenbach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - C R Müschen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
18
|
Mao Y, Yang X, Zhou Y, Zhang Z, Botella JR, Zhu JK. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems. Genome Biol 2018; 19:149. [PMID: 30266091 PMCID: PMC6161460 DOI: 10.1186/s13059-018-1529-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background The CRISPR/Cas9 system, composed of a single-guide RNA for target recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9, little is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level. Results Here, we evaluate the expression levels of the two CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post-transcriptional gene-silencing pathway display significantly higher Cas9 and sgRNA transcript levels, resulting in higher mutagenesis frequencies than wild-type controls. Accordingly, silencing of AGO1 by introduction of an AGO1-RNAi cassette into the CRISPR/Cas9 vector provides an increase in gene editing efficiency. Co-expression of the viral suppressor p19 from the tomato bushy stunt virus to suppress the plant RNA-silencing pathway shows a strong correlation between the severity of the phenotypic effects caused by p19 and the gene editing efficiency of the CRISPR/Cas9 system for two different target genes, AP1 and TT4. Conclusions This system has useful practical applications in facilitating the detection of CRISPR/Cas9-induced mutations in T1 plants as well as the identification of transgene-free T2 plants by simple visual observation of the symptom severity caused by p19. Our study shows that CRISPR/Cas9 gene editing efficiency can be improved by reducing RNA silencing in plants. Electronic supplementary material The online version of this article (10.1186/s13059-018-1529-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanfei Mao
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Xiaoxuan Yang
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.,University of Chinese Academy of Sciences (CAS), Beijing, 100049, People's Republic of China
| | - Yiting Zhou
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.,University of Chinese Academy of Sciences (CAS), Beijing, 100049, People's Republic of China
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.,University of Chinese Academy of Sciences (CAS), Beijing, 100049, People's Republic of China
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Stepanenko AA, Chekhonin VP. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 2018; 679:11-18. [PMID: 30171937 DOI: 10.1016/j.gene.2018.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022]
Abstract
In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield. Truncation mutations in E3-19K or i-leader sequence or overexpression of adenovirus death protein (ADP) potently increase adenovirus progeny release and spread without affecting virus yield. Moreover, E3-19K protein, which was found to inhibit both major histocompatibility complex I (MHCI) and MHC-I chain-related A and B proteins (MICA/MICB) expression on the cell surface, protecting infected cells from T-lymphocyte and natural killer (NK) cell attack, may be tailored to selectively target only MHCI or MICA/MICB, or to lose the ability to downregulate both. At last, E3-19K protein may be exploited to deliver tumor-associated epitopes directly to the endoplasmic reticulum for loading MHCI in the transporter associated with antigen processing (TAP)-deregulated cells.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia
| |
Collapse
|
20
|
Kim H, Cho WK, Lian S, Kim KH. Identification of residues or motif(s) of the rice stripe virus NS3 protein required for self-interaction and for silencing suppressor activity. Virus Res 2017; 235:14-23. [PMID: 28392445 DOI: 10.1016/j.virusres.2017.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/20/2022]
Abstract
Rice stripe virus (RSV) is an important pathogen of rice. The RSV genome consists of four single-stranded RNA segments that encode seven viral proteins. A previous report found that NS3 is a viral suppressor of RNA silencing and self interacts. Using a model that predicts protein structure, we identified amino acid residues or motifs, including four α-helix motifs, required for NS3 self-interaction. We then used yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays to study the interactions between full-length NS3 and its truncated and alanine substitution mutants. Y2H and BiFC results showed that the N-terminal region of NS3 is essential for self-interaction. All α-helix deletion mutants and substitution mutants lost the ability to self-interact. To identify the relationship between NS3 self-interaction and silencing suppressor activity, we used a GFP silencing system in Nicotiana benthamiana with Agrobacterium-mediated transient overexpression of each mutated NS3 protein. All of the deletion and the α-helix substitution mutants that had lost the ability to self-interact also lost their silencing suppressor ability. The substitution of amino acids with alanine at positions 70-75, 76-83, and 173-177, however, resulted in mutants that were able to self-interact but were unable to function as silencing suppressors. These results suggest that RSV requires NS3 self-interaction to suppress RNA silencing and to thereby counter host defenses.
Collapse
Affiliation(s)
- Hangil Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sen Lian
- College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Llauger G, de Haro LA, Alfonso V, Del Vas M. Interaction of Mal de Río Cuarto virus (Fijivirus genus) proteins and identification of putative factors determining viroplasm formation and decay. Virus Res 2017; 230:19-28. [PMID: 28087398 DOI: 10.1016/j.virusres.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
Abstract
Mal de Río Cuarto virus (MRCV) is a member of the Fijivirus genus, within the Reoviridae family, that replicates and assembles in cytoplasmic inclusion bodies called viroplasms. In this study, we investigated interactions between ten MRCV proteins by yeast two-hybrid (Y2H) assays and identified interactions of non-structural proteins P6/P6, P9-2/P9-2 and P6/P9-1. P9-1 and P6 are the major and minor components of the viroplasms respectively, whereas P9-2 is an N-glycosylated membrane protein of unknown function. Interactions involving P6 and P9-1 were confirmed by bimolecular fluorescence complementation (BiFC) in rice protoplasts. We demonstrated that a region including a predicted coiled-coil domain within the C-terminal moiety of P6 was necessary for P6/P6 and P6/P9-1 interactions. In turn, a short C-terminal arm was necessary for the previously reported P9-1 self-interaction. Transient expression of these proteins by agroinfiltration of Nicotiana benthamiana leaves showed very low accumulation levels and further in silico analyses allowed us to identify conserved PEST degradation sequences [rich in proline (P), glutamic acid (E), serine (S), and threonine (T)] within P6 and P9-1. The removal of these PEST sequences resulted in a significant increase of the accumulation of both proteins.
Collapse
Affiliation(s)
- Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina
| | - Luis Alejandro de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Victoria Alfonso
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
22
|
A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e303. [PMID: 27045207 PMCID: PMC5014518 DOI: 10.1038/mtna.2016.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the “TAT” peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects.
Collapse
|
23
|
Chen KI, Pan CY, Li KH, Huang YC, Lu CW, Tang CY, Su YW, Tseng LW, Tseng KC, Lin CY, Chen CD, Lin SS, Chen YT. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor. Sci Rep 2015; 5:17375. [PMID: 26616332 PMCID: PMC4663627 DOI: 10.1038/srep17375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/29/2015] [Indexed: 02/08/2023] Open
Abstract
Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3′-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.
Collapse
Affiliation(s)
- Kuan-I Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Keng-Hui Li
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ying-Chih Huang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chuan-Yi Tang
- Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ya-Wen Su
- National Nano Device Laboratories, Hsinchu 300, Taiwan
| | - Ling-Wei Tseng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kun-Chang Tseng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
| | - Chi-Yun Lin
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chii-Dong Chen
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
| |
Collapse
|
24
|
Inturi R, Kamel W, Akusjärvi G, Punga T. Complementation of the human adenovirus type 5 VA RNAI defect by the Vaccinia virus E3L protein and serotype-specific VA RNAIs. Virology 2015. [PMID: 26196231 DOI: 10.1016/j.virol.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human adenoviruses (HAdVs) encode for multifunctional non-coding virus-associated (VA) RNAs, which function as powerful suppressors of the cellular interferon (IFN) and RNA interference (RNAi) systems. In this study we tested the ability of various plant and animal virus encoded RNAi and IFN suppressor proteins to functionally substitute for the HAdV-5 VA RNAI. Our results revealed that only the Vaccinia virus (VACV) E3L protein was able to substitute for the HAdV-5 VA RNAI functions in virus-infected cells. Interestingly, the E3L protein rescues the translational defect but does not stimulate viral capsid mRNA accumulation observed with VA RNA. We further show that the E3L C-terminal region containing the dsRNA-binding domain is needed to enhance VA RNAI mutant virus replication. Additionally, we show that the HAdV-4 and HAdV-37 VA RNAI are more effective than the HAdV-5 VA RNAI in rescuing virus replication.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden.
| |
Collapse
|
25
|
The many faces of proteins. FEBS Lett 2013; 587:995-6. [DOI: 10.1016/j.febslet.2013.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|