1
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Ghosh AK, Su YP, Forman M, Keyes RF, Smith BC, Hu X, Ferrer M, Arav-Boger R. Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control. J Virol 2023; 97:e0016023. [PMID: 36939350 PMCID: PMC10134830 DOI: 10.1128/jvi.00160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Collapse
Affiliation(s)
- Ayan K. Ghosh
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yu-Pin Su
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
4
|
Alam MB, Park NH, Song BR, Lee SH. Antioxidant Potential-Rich Betel Leaves ( Piper betle L.) Exert Depigmenting Action by Triggering Autophagy and Downregulating MITF/Tyrosinase In Vitro and In Vivo. Antioxidants (Basel) 2023; 12:antiox12020374. [PMID: 36829933 PMCID: PMC9952209 DOI: 10.3390/antiox12020374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Each individual has a unique skin tone based on the types and quantities of melanin pigment, and oxidative stress is a key element in melanogenesis regulation. This research sought to understand the in vitro and in vivo antioxidant and depigmenting properties of betel leaves (Piper betle L.) extract (PBL) and the underlying mechanism. Ethyl acetate fractions of PBL (PBLA) demonstrated excellent phenolic content (342 ± 4.02 mgGAE/g) and strong DPPH, ABTS radicals, and nitric oxide (NO) scavenging activity with an IC50 value of 41.52 ± 1.02 μg/mL, 45.60 ± 0.56 μg/mL, and 51.42 ± 1.25 μg/mL, respectively. Contrarily, ethanolic extract of PBL (PBLE) showed potent mushroom, mice, and human tyrosinase inhibition activity (IC50 = 7.72 ± 0.98 μg/mL, 20.59 ± 0.83 μg/mL and 24.78 ± 0.56 μg/mL, respectively). According to gas chromatography-mass spectrometry, PBL is abundant in caryophyllene, eugenol, O-eugenol, 3-Allyl-6-methoxyphenyl acetate, and chavicol. An in vitro and in vivo investigation showed that PBLE suppressed tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and Trp-2), and microphthalmia-associated transcription factors (MITF), decreasing the formation of melanin in contrast to the untreated control. PBLE reduced the cyclic adenosine monophosphate (cAMP) response to an element-binding protein (CREB) phosphorylation by preventing the synthesis of cAMP. Additionally, it activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (p38), destroying Tyr and MITF and avoiding melanin production. Higher levels of microtubule-associated protein-light chain 3 (LC3-II), autophagy-related protein 5 (Atg5), Beclin 1, and lower levels of p62 demonstrate that PBLE exhibits significant anti-melanogenic effects via an autophagy-induction mechanism, both in vitro and in vivo. Additionally, PBLE significantly reduced the amount of lipid peroxidation while increasing the activity of several antioxidant enzymes in vivo, such as catalase, glutathione, superoxide dismutase, and thioredoxin. PBLE can therefore be employed in topical formulations as a potent skin-whitening agent.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Na Hyun Park
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-053-950-7754
| |
Collapse
|
5
|
Human milk oligosaccharide 2'-fucosyllactose promotes melanin degradation via the autophagic AMPK-ULK1 signaling axis. Sci Rep 2022; 12:13983. [PMID: 35977966 PMCID: PMC9385628 DOI: 10.1038/s41598-022-17896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
There is still an unmet need for development of safer antimelanogenic or melanin-degrading agents for skin hyperpigmentation, induced by intrinsic or extrinsic factors including aging or ultraviolet irradiation. Owing to the relatively low cytotoxicity compared with other chemical materials, several studies have explored the role of 2'-fucosyllactose (2'-FL), the most dominant component of human milk oligosaccharides. Here, we showed that 2'-FL reduced melanin levels in both melanocytic cells and a human skin equivalent three-dimensional in vitro model. Regarding the cellular and molecular mechanism, 2'-FL induced LC3I conversion into LC3II, an autophagy activation marker, followed by the formation of LC3II+/PMEL+ autophagosomes. Comparative transcriptome analysis provided a comprehensive understanding for the up- and downstream cellular processes and signaling pathways of the AMPK–ULK1 signaling axis triggered by 2'-FL treatment. Moreover, 2'-FL activated the phosphorylation of AMPK at Thr172 and of ULK1 at Ser555, which were readily reversed in the presence of dorsomorphin, a specific AMPK inhibitor, with consequent reduction of the 2'-FL-mediated hypopigmentation. Taken together, these findings demonstrate that 2'-FL promotes melanin degradation by inducing autophagy through the AMPK–ULK1 axis. Hence, 2'-FL may represent a new natural melanin-degrading agent for hyperpigmentation.
Collapse
|
6
|
Lee KW, Kim M, Lee SH, Kim KD. The Function of Autophagy as a Regulator of Melanin Homeostasis. Cells 2022; 11:cells11132085. [PMID: 35805169 PMCID: PMC9265842 DOI: 10.3390/cells11132085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Melanosomes are melanocyte-specific organelles that protect cells from ultraviolet (UV)-induced deoxyribonucleic acid damage through the production and accumulation of melanin and are transferred from melanocytes to keratinocytes. The relatively well-known process by which melanin is synthesized from melanocytes is known as melanogenesis. The relationship between melanogenesis and autophagy is attracting the attention of researchers because proteins associated with autophagy, such as WD repeat domain phosphoinositide-interacting protein 1, microtubule-associated protein 1 light chain 3, autophagy-related (ATG)7, ATG4, beclin-1, and UV-radiation resistance-associated gene, contribute to the melanogenesis signaling pathway. Additionally, there are reports that some compounds used as whitening cosmetics materials induce skin depigmentation through autophagy. Thus, the possibility that autophagy is involved in the removal of melanin has been suggested. To date, however, there is a lack of data on melanosome autophagy and its underlying mechanism. This review highlights the importance of autophagy in melanin homeostasis by providing an overview of melanogenesis, autophagy, the autophagy machinery involved in melanogenesis, and natural compounds that induce autophagy-mediated depigmentation.
Collapse
Affiliation(s)
- Ki Won Lee
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Si Hyeon Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Kwang Dong Kim
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
- Correspondence: ; Tel.: +82-55-772-1365; Fax: +82-55-772-1359
| |
Collapse
|
7
|
Amorphigenin from Amorpha fruticosa L. Root Extract Induces Autophagy-Mediated Melanosome Degradation in mTOR-Independent- and AMPK-Dependent Manner. Curr Issues Mol Biol 2022; 44:2856-2867. [PMID: 35877420 PMCID: PMC9318381 DOI: 10.3390/cimb44070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation.
Collapse
|
8
|
Jun SL, Sun J, Huo X, Feng Q, Li Y, Xie X, Geng S. Lipopolysaccharide reduces melanin synthesis in vitiligo melanocytes by regulating autophagy. Exp Dermatol 2022; 31:1579-1585. [PMID: 35733278 DOI: 10.1111/exd.14629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Vitiligo is an autoimmune-related disease with a complex aetiology that involves innate immunity. Toll-like receptors (TLRs) are important parts of innate immunity and are related to a variety of autoimmune diseases, including vitiligo, through an unknown mechanism. In this study, we found that the TLR4 gene expression was increased in blood samples of patients with advanced stage vitiligo, and then we evaluated the effect of TLR4 ligand lipopolysaccharide (LPS) on melanin synthesis in a vitiligo melanocyte cell line PIG3V and along with its mechanism. LPS suppressed melanin synthesis, downregulated the expression of melanin synthesis-related proteins, and activated autophagy in vitiligo melanocytes. Inhibiting autophagy with 3-methyladenine or chloroquine blocked these effects. This suggests that LPS inhibits skin pigmentation by modulating autophagy, thus providing novel insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Sun Li Jun
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jingying Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xueping Huo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qing Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7881717. [PMID: 35087618 PMCID: PMC8789419 DOI: 10.1155/2022/7881717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress represents an imbalance between the generation of reactive oxygen and nitrogen species and the ability of antioxidant systems to decompose those products. Oxidative stress is implicated in the pathogenesis of hyperpigmentation, hypopigmentation, melanoma, and other skin diseases. Regulatory networks involving oxidative stress and related pathways are widely represented in hypopigmentation diseases, particularly vitiligo. However, there is no complete review into the role of oxidative stress in the pathogenesis of hyperpigmentation disorders, especially regarding associations involving oxidative stress and cellular signaling pathways. Here, we review oxidative and antioxidant systems, oxidative stress-induced signal transduction mechanisms, and effects of antioxidant drugs used in preclinical and clinical settings in hyperpigmentation disorders.
Collapse
|
10
|
Liu C, Gu L, Ding J, Meng Q, Li N, Dai G, Li Q, Wu X. Autophagy in skin barrier and immune-related skin diseases. J Dermatol 2021; 48:1827-1837. [PMID: 34655245 DOI: 10.1111/1346-8138.16185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a process which is highly conserved in eukaryotes to degrade or recycle cytoplasmic components through lysosomes to maintain cellular homeostasis. Recent studies have shown that autophagy also plays critical roles in cell apoptosis, inflammation, pathogen clearance, and so on under stressed conditions and thereby has been linked to a variety of human disorders. The skin is the largest organ of the body and serves as the first line of defense against environmental insult. Skin as a nutrient-poor environment requires recycling of limited resources via the autophagy machinery to maintain homeostasis. Therefore, dysregulation of autophagy has been linked to skin diseases. In this review, we describe the molecular machinery and regulation of autophagy, discuss its role in keratinocytes and skin barrier, skin immune cells, and immune-related skin diseases including autoimmune skin disorders, allergic skin diseases, infectious skin disorders, and antitumor immunity against skin tumor. Finally, we highlight the potential of autophagy as a therapeutic target for immune-related skin diseases, and delivery of autophagy-related molecules (such as inducers, inhibitors, or nucleic acid molecules) by virtue of physical materials (such as nanoparticles) or biological materials (such as peptides) to skin topically may obtain clinical benefits in immune-related skin diseases. Moreover, developing autophagy-related gene product-based biomarkers may be promising to diagnose immune-related skin diseases.
Collapse
Affiliation(s)
- Chi Liu
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.,Department of Cardiology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Lei Gu
- Department of Internal Medicine, Shanghai Shende Hospital, Shanghai, China
| | - Jie Ding
- Department of Gerontology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qianchao Meng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guifeng Dai
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qinying Li
- Department of Rehabilitation Medicine, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xueyong Wu
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Shi HX, Zhang RZ, Xiao L, Wang L. Effects of keratinocyte-derived and fibroblast-derived exosomes on human epidermal melanocytes. Indian J Dermatol Venereol Leprol 2021; 88:322-331. [PMID: 34951940 DOI: 10.25259/ijdvl_1087_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Exosomes have been demonstrated to carry proteins, membrane lipids, mRNAs and microRNAs which can be transferred to surrounding cells and regulate the functions of those recipient cells. OBJECTIVES The objective of the study was to investigate the effects of exosomes released by keratinocytes and fibroblasts on the proliferation, tyrosinase activity and melanogenesis of melanocytes. METHODS Melanocytes, keratinocytes and fibroblasts obtained from human foreskin were cultured and exosomes secreted by keratinocytes and fibroblasts were harvested from the culture supernatants by ultracentrifugation. Each exosome fraction was divided into two parts; one part was subjected to high-throughput sequencing using an Illumina HiSeq sequencer to characterize the microRNA expression profiles, while the other part was labeled with the fluorescent dye PKH67 and was then co-cultivated with epidermal melanocytes. RESULTS High-throughput sequencing analysis showed 168 differentially expressed microRNA within exosomes derived from keratinocytes and from fibroblasts, 97 of those being up-regulated with the other 71 down-regulated. Gene ontology analysis showed that the target genes responsible for these differentially expressed microRNAs were mainly enriched in the protein-binding region of molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that target genes regulated by differentially expressed microRNA were mainly involved in mitogen-activated protein kinase (MAPK) signaling pathway, Ras signaling pathway, cAMP signaling pathway and Wnt signaling pathway. Keratinocyte-derived exosomes were taken up by melanocytes co-cultured with them and promoted the proliferation, tyrosinase activity and melanin synthesis of those melanocytes. However, fibroblast-derived exosomes had no similar effects on melanocytes. CONCLUSION Keratinocyte-derived exosomes but not fibroblast-derived exosomes were taken up by melanocytes in co-culture and significantly stimulated their proliferation, tyrosinase activity and melanin synthesis. Those different effects may be mainly due to the differential expression of microRNAs in exosomes derived from the different types of cells. LIMITATIONS Electron microscopy of the obtained exosomes and in-depth study of apparently differentially expressed microRNAs were not performed.
Collapse
Affiliation(s)
- Hai-Xia Shi
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ru-Zhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li Xiao
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li Wang
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| |
Collapse
|
12
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
13
|
Anti-Melanogenic Effects of Ethanol Extracts of the Leaves and Roots of Patrinia villosa (Thunb.) Juss through Their Inhibition of CREB and Induction of ERK and Autophagy. Molecules 2020; 25:molecules25225375. [PMID: 33212959 PMCID: PMC7698407 DOI: 10.3390/molecules25225375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Patrinia villosa (Thunb.) Juss is a traditional herb commonly used in East Asia including Korea, Japan, and China. It has been administered to reduce and treat inflammation in Donguibogam, Korea. The mechanism for its anti-inflammatory effects has already been reported. In this study, we confirmed the efficacy of Patrinia villosa (Thunb.) Juss ethanol extract (Pv-EE) for inducing autophagy and investigate its anti-melanogenic properties. Melanin secretion and content were investigated using cells from the melanoma cell line B16F10. Pv-EE inhibited melanin in melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH). The mechanism of inhibition of Pv-EE was confirmed by suppressing the mRNA of microphthalmia-associated transcription factor (MITF), decreasing the phosphorylation level of CREB, and increasing the phosphorylation of ERK. Finally, it was confirmed that Pv-EE induces autophagy through the autophagy markers LC3B and p62, and that the anti-melanogenic effect of Pv-EE is inhibited by the autophagy inhibitor 3-methyl adenine (3-MA). These results suggest that Pv-EE may be used as a skin protectant due to its anti-melanin properties including autophagy.
Collapse
|
14
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Park HJ, Jo DS, Choi DS, Bae JE, Park NY, Kim JB, Chang JH, Shin JJ, Cho DH. Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells. Biochem Biophys Res Commun 2020; 531:209-214. [PMID: 32792197 DOI: 10.1016/j.bbrc.2020.07.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that are involved in melanin synthesis. Unlike melanosome biogenesis, the melanosome degradation pathway is poorly understood. Among the cellular processes, autophagy controls degradation of intracellular components by cooperating with lysosomes. In this study, we showed that ursolic acid inhibits skin pigmentation by promoting melanosomal autophagy, or melanophagy, in melanocytes. We found that B16F1 cells treated with ursolic acid suppressed alpha-melanocyte stimulating hormone (α-MSH) stimulated increase in melanin content and activated autophagy. In addition, we found that treatment with ursolic acid promotes melanosomal degradation, and bafilomycin A1 inhibition of autophagosome-lysosome fusion blocked the removal of melanosomes in α-MSH-stimulated B16F1 cells. Furthermore, depletion of the autophagy-related gene 5 (ATG5) resulted in significant suppression of ursolic acid-mediated anti-pigmentation activity and autophagy in α-MSH-treated B16F1 cells. Taken together, our results suggest that ursolic acid inhibits skin pigmentation by increasing melanosomal degradation in melanocytes.
Collapse
Affiliation(s)
- Hyun Jun Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Sig Choi
- T.E.N. Co., Ltd., Yongin, Gyeonggi-do, 17015, Republic of Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jun-Bum Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joong Jin Shin
- T.E.N. Co., Ltd., Yongin, Gyeonggi-do, 17015, Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Park HJ, Jo DS, Choi H, Bae JE, Park NY, Kim JB, Choi JY, Kim YH, Oh GS, Chang JH, Kim HJ, Cho DH. Melasolv induces melanosome autophagy to inhibit pigmentation in B16F1 cells. PLoS One 2020; 15:e0239019. [PMID: 32941497 PMCID: PMC7498095 DOI: 10.1371/journal.pone.0239019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
The melanosome is a specialized membrane-bound organelle that is involved in melanin synthesis, storage, and transportation. In contrast to melanosome biogenesis, the processes underlying melanosome degradation remain largely unknown. Autophagy is a process that promotes degradation of intracellular components' cooperative process between autophagosomes and lysosomes, and its role for process of melanosome degradation remains unclear. Here, we assessed the regulation of autophagy and its contributions to depigmentation associated with Melasolv (3,4,5-trimethoxycinnamate thymol ester). B16F1 cells-treated with Melasolv suppressed the α-MSH-stimulated increase of melanin content and resulted in the activation of autophagy. However, introduction of bafilomycin A1 strongly suppressed melanosome degradation in Melasolv-treated cells. Furthermore, inhibition of autophagy by ATG5 resulted in significant suppression of Melasolv-mediated depigmentation in α-MSH-treated cells. Taken together, our results suggest that treatment with Melasolv inhibits skin pigmentation by promoting melanosome degradation via autophagy activation.
Collapse
Affiliation(s)
- Hyun Jun Park
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Hyunjung Choi
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yeon Choi
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Gyeong Seok Oh
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, South Korea
| | - Hyoung-June Kim
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
- * E-mail: (HJK); (DHC)
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (HJK); (DHC)
| |
Collapse
|
17
|
Chen XK, Kwan JSK, Chang RCC, Ma ACH. 1-phenyl 2-thiourea (PTU) activates autophagy in zebrafish embryos. Autophagy 2020; 17:1222-1231. [PMID: 32286915 DOI: 10.1080/15548627.2020.1755119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
1-phenyl 2-thiourea (PTU) is a Tyr (tyrosinase) inhibitor that is extensively used to block pigmentation and improve optical transparency in zebrafish (Danio rerio) embryo. Here, we reported a previously undescribed effect of PTU on macroautophagy/autophagy in zebrafish embryos. Upon 0.003% PTU treatment, aberrant autophagosome and autolysosome formation, accumulation of lysosomes, and elevated autophagic flux were observed in various tissues and organs of zebrafish embryos, such as skin, brain, and muscle. Similar to PTU treatment, autophagic activation and lysosomal accumulation were also observed in the somatic tyr mutant zebrafish embryos, which suggest that Tyr inhibition may contribute to PTU-induced autophagic activation. Furthermore, we demonstrated that autophagy contributes to pigmentation inhibition, but is not essential to the PTU-induced pigmentation inhibition. With the involvement of autophagy in a wide range of physiological and pathological processes and the routine use of PTU in zebrafish research of autophagy-related processes, these observations raise a novel concern in autophagy-related studies using PTU-treated zebrafish embryos.Abbreviations: 3-MA: 3-methyladenine; Atg: autophagy-related; BSA: bovine serum albumin; CHT: caudal hematopoietic tissue; CQ: chloroquine; GFP: green fluorescent protein; hpf: hour-post-fertilization; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NGS: normal goat serum; PtdIns3K: class III phosphatidylinositol 3-kinase; PTU: 1-phenyl 2-thiourea; RFP: red fluorescent protein; Sqstm1: sequestosome 1; tyr: tyrosinase.
Collapse
Affiliation(s)
- Xiang-Ke Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
18
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
19
|
Celentano A, Yap T, Paolini R, Yiannis C, Mirams M, Koo K, McCullough M, Cirillo N. Inhibition of matrix metalloproteinase-2 modulates malignant behaviour of oral squamous cell carcinoma cells. J Oral Pathol Med 2020; 50:323-332. [PMID: 31925966 DOI: 10.1111/jop.12992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a crucial role in the malignant phenotype of cancer cells. In particular, active levels of MMP2 in cancer cells have been associated with invasion and metastasis through the degradation of basement membrane extracellular matrix proteins. However, little is known about the role of this potential biomarker in oral cancer. Our aim was to investigate the effect of MMP2 inhibition on OSCC activity in vitro, as well as to assess MMP2 dysregulation in oral cancer samples. METHODS Human OSCC cell lines H357 and H400 were tested with the selective MMP2 inhibitor ARP101 and the MMP2 neutralising monoclonal antibody MA5-13590 to assess cell proliferation in vitro using MTS assay. Cell migration at 12/24 h was assessed using a Transwell migration assay. Cell invasion was assessed at 24 h using a Corning Matrigel invasion assay. MMP2 expression was assessed in 208 tissue samples (related to 60 OSCC cases and nine normal control) using tissue microarray (TMA) and further analysed via TCGA. RESULTS Both ARP101 and MA5-13590 monoclonal antibody reduced cell proliferation in both the cell lines tested. Treatment with 4μg/mL of MMP2 monoclonal antibody showed a significant decrease in cell migration at 24 hours. The administration of ARP101 and monoclonal antibody to H357 and H400 cell lines induced a drastic reduction in cell invasion at 24 h compared to the control. In patients, TCGA analysis demonstrated that oral cancer tissues express significantly higher levels of MMP2 mRNA compared to normal oral tissues. Further, IHC analysis on TMA showed significant difference in MMP2 protein expression between low and high histopathological grade OSCC. CONCLUSIONS We have demonstrated, for the first time, that MMP2 inhibition affects oral cancer cells ability to survive, migrate and invade in vitro. Differences between MMP2 expression in normal and malignant tissues varied. Further research on the role of MMP2 in OSCC and novel mechanisms to inhibit MMP2-dependent pathways should be encouraged.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Michiko Mirams
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Kendrick Koo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Antiphotoaging and Antimelanogenic Effects of Penthorum chinense Pursh Ethanol Extract due to Antioxidant- and Autophagy-Inducing Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9679731. [PMID: 31073356 PMCID: PMC6470456 DOI: 10.1155/2019/9679731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 12/27/2022]
Abstract
Ethnopharmacological Relevance. Penthorum chinense Pursh (Penthoraceae) is a traditional herbal plant that has been used in China for the treatment of jaundice, cholecystitis, edema, and infectious hepatitis. In addition, the Korea Medicinal Plant Dictionary states that Penthorum chinense Pursh can be used to treat contusions and skin bruises by improving blood flow. Recent studies have shown that Penthorum chinense Pursh ethanol extract (Pc-EE) exhibits strong antioxidant effects. In this study, we examined the effects of Pc-EE on UVB-induced or H2O2-induced oxidative stress, as well as its antimelanogenic properties. Cell viability, matrix metalloproteinase (MMP) expression, cyclooxygenease-2 (COX-2), and interleukin-6 (IL-6) expression and moisturizing factors were investigated in keratinocytes. Collagen synthesis induction was measured in HEK293T cells. For melanogenesis, the effects of Pc-EE on melanin content and tyrosinase activity were measured. Additionally, the antimelanogenic- and autophagy-inducing activities of Pc-EE were examined using immunoblotting and confocal microscopy. Pc-EE protected HaCaT cells against death from UVB irradiation- or H2O2-induced oxidative stress. Pc-EE increased the promoter activity of the type 1 procollagen gene Col1A1 and decreased the expression of MMPs, COX-2, IL-6, and hyaluronidase induced by UVB irradiation- or H2O2-induced oxidative stress. Pc-EE showed a strong antioxidant effect in the DPPH assay. In α-melanocyte-stimulating hormone- (α-MSH-) stimulated B16F10 cells, Pc-EE reduced melanin production, decreased tyrosinase expression and microphthalmia-associated transcription factor (MITF) protein levels, and decreased the phosphorylation levels of p38 and JNK. In HEK293T cells, Pc-EE promoted the expression of GFP-LC3B. In B16F10 cells, the LC3B and melanin contents were reduced by Pc-EE and were restored by the autophagy inhibitor 3-methyladenine (3-MA). These results suggest that Pc-EE can be used as a skin protection agent due to its antiapoptotic, antiaging, anti-inflammatory, and antimelanogenic properties.
Collapse
|
21
|
Peng S, Hou Y, Yao J, Fang J. Activation of Nrf2 by costunolide provides neuroprotective effect in PC12 cells. Food Funct 2019; 10:4143-4152. [DOI: 10.1039/c8fo02249f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Costunolide (COS), a natural sesquiterpene lactone originally isolated from Inula helenium (Compositae), shows potent neuroprotective effects against oxidative stress-mediated injuries of PC12 cells via activating transcription factor Nrf2.
Collapse
Affiliation(s)
- Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
- Department of Gastrointestinal Surgery/Hepatobiliary and Enteric Surgery Research Center
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
22
|
Kim PS, Shin JH, Jo DS, Shin DW, Choi DH, Kim WJ, Park K, Kim JK, Joo CG, Lee JS, Choi Y, Shin YW, Shin JJ, Jeon HB, Seo JH, Cho DH. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochem Biophys Res Commun 2018; 503:309-315. [DOI: 10.1016/j.bbrc.2018.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
|
23
|
Espósito ACC, Brianezi G, de Souza NP, Miot LDB, Marques MEA, Miot HA. Exploring pathways for sustained melanogenesis in facial melasma: an immunofluorescence study. Int J Cosmet Sci 2018; 40:420-424. [PMID: 29846953 DOI: 10.1111/ics.12468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND The physiopathology of epidermal hypermelanization in melasma is not completely understood. Several cytokines and growth factors are increased in skin with melasma, nevertheless, nor the pathways involved in the increased αMSH expression have been adequately evaluated, nor a model for sustained focal melanogenesis is available. OBJECTIVE To explore stimulatory pathways for epidermal pigmentation in facial melasma related to αMSH: those linked to ultraviolet radiation, oxidative stress, inflammation, neural crest pigmentation cell differentiation and antagonism of αMSH. METHODS Paired skin biopsies (3 mm) from 26 women with facial melasma and from normal adjacent skin (<2 cm far) were processed for immunofluorescence with markers for p53, p38, αMSH, MC1R, Melan-A, IL-1α, COX2, Wnt1, WIF-1 and ASIP. RESULTS The fluorescence intensity in the skin from melasma was higher for MC1R, αMSH at epidermis as at melanocytes (P < 0.05). There were no differences between the sites in epidermal protein expression of COX2, IL-1α, p53, WIF-1 and ASIP (P > 0.1). P53 was expressed only in epidermis, without difference between sites (P = 0.92). WNT1 was remarkable in the epidermis of melasma (P < 0.01), but not in dermis. Positive p38 cells were prominent in the upper dermis of melasma (P < 0.01), despite no marking in epidermis. CONCLUSION Melanogenesis in melasma involves epithelial secretion of αMSH and activation of the Wnt pathway; nevertheless, it seems to be independent of the stimulation by ultraviolet radiation/p53, IL-1α, COX2/PgE2 , WIF-1 and ASIP. Damaged cells at upper dermis suggest the role of senescence/autophagy in sustained pigmentation in melasma.
Collapse
Affiliation(s)
- A C C Espósito
- Departamento de Dermatologia e Radioterapia, Av. Prof. Mário Rubens Guimarães Montenegro, SN Faculdade de Medicina da UNESP Campus, Universitário de Rubião, Jr.18618-687, Botucatu, SP, Brasil
| | - G Brianezi
- Departamento de Patologia, Av. Prof. Mário Rubens Guimarães Montenegro, SN Faculdade de Medicina da UNESP Campus, Universitário de Rubião, Jr.18618-687, Botucatu, SP, Brazil
| | - N P de Souza
- Departamento de Patologia, Av. Prof. Mário Rubens Guimarães Montenegro, SN Faculdade de Medicina da UNESP Campus, Universitário de Rubião, Jr.18618-687, Botucatu, SP, Brazil
| | - L D B Miot
- Departamento de Dermatologia e Radioterapia, Av. Prof. Mário Rubens Guimarães Montenegro, SN Faculdade de Medicina da UNESP Campus, Universitário de Rubião, Jr.18618-687, Botucatu, SP, Brasil
| | - M E A Marques
- Departamento de Patologia, Av. Prof. Mário Rubens Guimarães Montenegro, SN Faculdade de Medicina da UNESP Campus, Universitário de Rubião, Jr.18618-687, Botucatu, SP, Brazil
| | - H A Miot
- Departamento de Dermatologia e Radioterapia, Av. Prof. Mário Rubens Guimarães Montenegro, SN Faculdade de Medicina da UNESP Campus, Universitário de Rubião, Jr.18618-687, Botucatu, SP, Brasil
| |
Collapse
|
24
|
耿 忆, 王 亚, 邓 蓉, 傅 楷, 邓 燕. [Shufeng Huoxue Formula suppresses proliferation and regulates melanin metabolism in murine B16 melanoma cells in vitro through autophagy pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:630-634. [PMID: 29891464 PMCID: PMC6743889 DOI: 10.3969/j.issn.1673-4254.2018.05.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of autophagy in the regulatory effect of Shufeng Huoxue Fumula (SFHXF) on the proliferation and melanin metabolism in cultured murine B16 melanoma cells. METHODS B16 cells were treated with solutions containing 0.12, 0.25, 0.49, 0.98, or 1.96 mg/mL SFHXF preparations, rapamycin (an autophagy inducer), or rapamycin+SFHXF. The changes in the proliferation of B16 cells were assessed using MTT assay, and tyrosinase activity and melanin content in the cells were determined. The expressions of autophagy-related proteins P62, p-mTOR, LC3B, and beclin 1 in the cells were detected using Western blotting. RESULT Compared with the blank control cells, treatments with SFHXF both in the presence and in the absence of rapamycin concentration-dependently inhibited the cell proliferation (P<0.05) and obviously increased tyrosinase activity and melanogenesis in B16 cells (P<0.05); 0.98 mg/mL SFHLF, rapamycin+0.98 mg/mL SFHXF, and 50 nmol/L rapamycin all significantly up-regulated the expressions of LC3B-II and beclin 1 and down-regulated the expressions of P62 and p-mTOR in the cells. CONCLUSION SFHXF can regulate melanin metabolism and enhance tyrosinase activity and melanogenesis through the autophagy pathway to inhibit the proliferation of B16 cells in vitro.
Collapse
Affiliation(s)
- 忆薇 耿
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 亚兰 王
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 蓉 邓
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 楷历 傅
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 燕 邓
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
25
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Giannopoulou AF, Anastasiadou E, Papassideri IS, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Unraveling the human protein atlas of metastatic melanoma in the course of ultraviolet radiation-derived photo-therapy. J Proteomics 2017; 188:119-138. [PMID: 29180045 DOI: 10.1016/j.jprot.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
To explore the photo-therapeutic capacity of UV radiation in solid tumors, we herein employed an nLC-MS/MS technology to profile the proteomic landscape of irradiated WM-266-4 human metastatic-melanoma cells. Obtained data resulted in proteomic catalogues of 5982 and 7280 proteins for UVB- and UVC-radiation conditions, respectively, and indicated the ability of UVB/C-radiation forms to eliminate metastatic-melanoma cells through induction of synergistically operating programs of apoptosis and necroptosis. However, it seems that one or more WM-266-4 cell sub-populations may escape from UV-radiation's photo-damaging activity, acquiring, besides apoptosis tolerance, an EMT phenotype that likely offers them the advantage of developing resistance to certain chemotherapeutic drugs. Low levels of autophagy may also critically contribute to the selective survival and growth of UV-irradiated melanoma-cell escapers. These are the cells that must be systemically targeted with novel therapeutic schemes, like the one of UV radiation and Irinotecan herein suggested to be holding strong promise for the effective treatment of metastatic-melanoma patients. Given the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic agent, all individuals being subjected to risk factors for melanoma development have to be appropriately informed and educated, in order to integrate the innovative PPPM concept in their healthcare-sector management. SIGNIFICANCE This study reports the application of nLC-MS/MS technology to deeply map the proteomic landscape of UV-irradiated human metastatic-melanoma cells. Data bioinformatics processing led to molecular-network reconstructions that unearthed the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic factor in metastatic-melanoma cellular environments. Our UV radiation-derived "photo-proteomic" atlas may prove valuable for the identification of new biomarkers and development of novel therapies for the disease. Given that UV radiation represents a major risk factor causing melanoma, a PPPM-based life style and clinical practice must be embraced by all individuals being prone to disease's appearance and expansion.
Collapse
Affiliation(s)
- Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - George Th Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
26
|
Yang F, Yang L, Wataya-Kaneda M, Hasegawa J, Yoshimori T, Tanemura A, Tsuruta D, Katayama I. Dysregulation of autophagy in melanocytes contributes to hypopigmented macules in tuberous sclerosis complex. J Dermatol Sci 2017; 89:155-164. [PMID: 29146131 DOI: 10.1016/j.jdermsci.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/05/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) gene mutations lead to constitutive activation of the mammalian target of rapamycin (mTOR) pathway, resulting in a broad range of symptoms. Hypopigmented macules are the earliest sign. Although we have already confirmed that topical rapamycin treatment (an mTOR inhibitor) protects patients with TSC against macular hypopigmentation, the pathogenesis of such lesions remains poorly understood. OBJECTIVE Recently emerging evidence supports a role for autophagy in skin pigmentation. Herein, we investigated the impact of autophagic dysregulation on TSC-associated hypopigmentation. METHODS Skin samples from 10 patients with TSC, each bearing characteristic hypopigmented macules, and 6 healthy donors were subjected to immunohistochemical and electron microscopic analyses. In addition, TSC2-knockdown (KD) was investigated in human epidermal melanocytes by melanin content examination, real-time PCR, western blotting analyses, and intracellular immunofluorescence staining. RESULTS Activation of the mTOR signaling pathway decreased melanocytic pigmentation in hypopigmented macules of patients with TSC and in TSC2-KD melanocytes. In addition, LC3 expression (a marker of autophagy) and autophagosome counts increased, whereas, intracellular accumulation of autophagic degradative substrates (p62 and ubiquitinated proteins) was evident in TSC2-KD melanocytes. Furthermore, depigmentation in TSC2-KD melanocytes was accelerated by inhibiting autophagy (ATG7-KD or bafilomycin A1-pretreatment) and was completely reversed by induction of autophagy via mTOR-dependent (rapamycin) or mTOR-independent (SMER28) exposure. Finally, dysregulation of autophagy, marked by increased LC3 expression and accumulation of ubiquitinated proteins, was also observed in melanocytes of TSC-related hypopigmented macules. CONCLUSION Our data demonstrate that melanocytes of patients with TSC display autophagic dysregulation, which thereby reduced pigmentation, serving as the basis for the hypomelanotic macules characteristic of TSC.
Collapse
Affiliation(s)
- Fei Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lingli Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Junya Hasegawa
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Chen L, Xu Z, Jiang M, Zhang C, Wang X, Xiang L. Light-emitting diode 585nm photomodulation inhibiting melanin synthesis and inducing autophagy in human melanocytes. J Dermatol Sci 2017; 89:11-18. [PMID: 29065997 DOI: 10.1016/j.jdermsci.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Melasma is a common hyperpigmentation skin disease on face. Light-emitting diode (LED) photomodulation (585nm) is reported to be effective for the treatment of melasma. However, whether and how LED photomodulation would influence melanogenesis of human epidermal melanocytes (HEMs) is unknown. OBJECTIVE To evaluate the effects of LED photomodulation (585nm) on melanogenesis in HEMs. METHODS HEMs were irradiated with fluences of 0, 5, 10 and 20J/cm2 585nm LED light. After 5-day treatment, cell viability was analyzed by CCK-8 assay, and apoptosis was assessed by Annexin V APC assay. Melanin content and tyrosinase activity were measured by spectrophotometer. Melanosome stage and autophagosomes were determined under transmission electron microscope (TEM). The formation of autophagic punctate structures was observed under confocal microscope. RT-PCR and western blotting were used to assess the expression of relative mRNA and protein levels. RESULTS Yellow light LED 585nm had no effects on HEMs cell viability and apoptosis. Treatment with LED 585nm from 5J/cm2 to 20J/cm2 inhibited melanosome maturation, decreased melanin content and tyrosinase activity. Inhibition was accompanied by the decreased expression of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1) and microphthalmia-associated transcription factor (MITF) on both mRNA and protein levels. Autophagosomes were observed under TEM. Autophagic punctate structures of microtubule-associated protein light chain 3 (LC3) proteins were induced by LED 585nm light. The configuration change of LC3 from LC3-I to LC3-II, and the degradation of p62 protein were observed after LED 585nm. Furthermore, we also revealed that the anti-melanogenic effect of LED 585nm photomodulation was reversed by 3-Methyladenine (3-MA), which inhibits autophagy by blocking autophagosome formation via the inhibition of type III Phosphatidylinositol 3-kinases (PI-3K). CONCLUSIONS Our finding demonstrated that LED photomodulation with 585nm wavelength suppressed melanin content in HEMs, and the effect was caused by its dose-dependent inhibition on melanogenesis and the induction of HEMs autophagy. This may provide new insights into the efficacy of LED photomodulation in the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Li Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Xuan Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
28
|
Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms. Mar Drugs 2017; 15:E297. [PMID: 28946635 PMCID: PMC5666405 DOI: 10.3390/md15100297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Korea.
| | - Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| |
Collapse
|
29
|
Truong XT, Park SH, Lee YG, Jeong HY, Moon JH, Jeon TI. Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells. Int J Mol Sci 2017; 18:ijms18081809. [PMID: 28825660 PMCID: PMC5578196 DOI: 10.3390/ijms18081809] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 11/17/2022] Open
Abstract
Despite the critical role of melanin in the protection of skin against UV radiation, excess production of melanin can lead to hyperpigmentation and skin cancer. Pear fruits are often used in traditional medicine for the treatment of melasma; therefore, we investigated the effects of pear extract (PE) and its component, protocatechuic acid (PCA), on melanogenesis in mouse melanoma cells. We found that PE and PCA significantly suppressed melanin content and cellular tyrosinase activity through a decrease in the expression of melanogenic enzymes and microphthalmia-associated transcription factor (Mitf) in α-melanocyte stimulating hormone-stimulated mouse melanoma cells. Moreover, PCA decreased cyclic adenosine monophosphate (cAMP) levels and cAMP-responsive element-binding protein phosphorylation, which downregulated Mitf promoter activation and subsequently mediated the inhibition of melanogenesis. These results suggested that pear may be an effective skin lightening agent that targets either a tyrosinase activity or a melanogenic pathway.
Collapse
Affiliation(s)
- Xuan T Truong
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea.
| | - Seo-Hee Park
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea.
| | - Yu-Geon Lee
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea.
| | - Hang Yeon Jeong
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, Gwangju 61186, Korea.
| | - Jae-Hak Moon
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, Gwangju 61186, Korea.
| | - Tae-Il Jeon
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
30
|
Chen RJ, Lee YH, Yeh YL, Wu WS, Ho CT, Li CY, Wang BJ, Wang YJ. Autophagy-inducing effect of pterostilbene: A prospective therapeutic/preventive option for skin diseases. J Food Drug Anal 2016; 25:125-133. [PMID: 28911530 PMCID: PMC9333432 DOI: 10.1016/j.jfda.2016.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Pterostilbene is a naturally occurring analog of resveratrol with many health benefits. These health benefits are associated with its antioxidant activity, anti-inflammatory effects, and chemopreventive effects attributed to its unique structure. The skin cancer chemopreventive potential of pterostilbene is supported by a variety of mechanistic studies confirming the anti-inflammatory effects in skin cancer models. Molecular biological studies have identified that pterostilbene targets pleotropic signaling pathways, including those involved in mitogenesis, cell cycle regulation, and apoptosis. Recently, pterostilbene has been reported to induce autophagy in cancer and normal cells. Through autophagy induction, the inflammatory-related skin diseases can be attenuated. This finding suggests the potential use of pterostilbene in the treatment and prevention of skin disorders via alleviating inflammatory responses by autophagy induction. This review summarizes the protective and therapeutic benefits of pterostilbene in skin diseases from the viewpoint of its antioxidant, anti-inflammatory, and autophagy-inducing effects. Novel underlying mechanisms regarding these effects are discussed. We proposed that pterostilbene, a promising natural product, can be used as a preventive and therapeutic agent for inflammation-related skin disorders through induction of autophagy.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wun-Syuan Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Chia-Yi Li
- Robert Thirsk High School, Calgary, AB, Canada
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
31
|
Tsao YT, Huang YF, Kuo CY, Lin YC, Chiang WC, Wang WK, Hsu CW, Lee CH. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signaling in B16F10 Mouse Melanoma Cells. Int J Mol Sci 2016; 17:248. [PMID: 26901194 PMCID: PMC4783978 DOI: 10.3390/ijms17020248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/04/2016] [Accepted: 02/15/2016] [Indexed: 02/05/2023] Open
Abstract
H inokitiol purified from the heartwood of cupressaceous plants has had various biological functions of cell differentiation and growth. Hinokitiol has been demonstrated as having an important role in anti-inflammation and anti-bacteria effect, suggesting that it is potentially useful in therapies for hyperpigmentation. Previously, hinokitiol inhibited the production of melanin by inhibiting tyrosinase activity. The autophagic signaling pathway can induce hypopigmentation. This study is warranted to investigate the mechanism of hinokitiol-induced hypopigmentation through autophagy in B16F10 melanoma cells. The melanin contents and expression of microthphalmia associated transcription factor (MITF) and tyrosinase were inhibited by treatment with hinokitiol. Moreover, the phosphorylation of the protein express levels of phospho-protein kinase B (P-AKT) and phospho-mammalian targets of rapamycin (P-mTOR) were reduced after hinokitiol treatment. In addition, the microtubule associated protein 1 light chain 3 (LC3) -II and beclin 1 (autophagic markers) were increased after the B16F10 cell was treated with hinokitiol. Meanwhile, hinokitiol decreased cellular melanin contents in a dose-dependent manner. These findings establish that hinokitiol inhibited melanogenesis through the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu-Tzu Tsao
- Division of Nephrology, Department of Medicine, Taoyuan General Hospital, Taoyuan 330, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yu-Fen Huang
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Chun-Yu Kuo
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yu-Chiang Lin
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Wei-Cheng Chiang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40407, Taiwan.
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40407, Taiwan.
| | - Chia-Wei Hsu
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Che-Hsin Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan.
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
32
|
Targeting autophagy in skin diseases. J Mol Med (Berl) 2014; 93:31-8. [PMID: 25404245 DOI: 10.1007/s00109-014-1225-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Autophagy is a major intracellular degradative process by which cytoplasmic materials are sequestered in double-membraned vesicles and degraded upon fusion with lysosomes. Under normal circumstances, basal autophagy is necessary to maintain cellular homeostasis by scavenging dysfunctional or damaged organelles or proteins. In addition to its vital homeostatic role, this degradation pathway has been implicated in many different cellular processes such as cell apoptosis, inflammation, pathogen clearance, and antigen presentation and thereby has been linked to a variety of human disorders, including metabolic conditions, neurodegenerative diseases, cancers, and infectious diseases. The skin, the largest organ of the body, serves as the first line of defense against many different environmental insults; however, only a few studies have examined the effect of autophagy on the pathogenesis of skin diseases. This review provides an overview of the mechanisms of autophagy and highlights recent findings relevant to the role of autophagy in skin diseases and strategies for therapeutic modulation.
Collapse
|
33
|
Hyperosmotic stress reduces melanin production by altering melanosome formation. PLoS One 2014; 9:e105965. [PMID: 25170965 PMCID: PMC4149489 DOI: 10.1371/journal.pone.0105965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023] Open
Abstract
Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.
Collapse
|