1
|
Matsui Y, Togayachi A, Sakamoto K, Angata K, Kadomatsu K, Nishihara S. Integrated Systems Analysis Deciphers Transcriptome and Glycoproteome Links in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.25.573290. [PMID: 38234803 PMCID: PMC10793412 DOI: 10.1101/2023.12.25.573290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glycosylation is increasingly recognized as a potential therapeutic target in Alzheimer's disease. In recent years, evidence of Alzheimer's disease-specific glycoproteins has been established. However, the mechanisms underlying their dysregulation, including tissue- and cell-type specificity, are not fully understood. We aimed to explore the upstream regulators of aberrant glycosylation by integrating multiple data sources using a glycogenomics approach. We identified dysregulation of the glycosyltransferase PLOD3 in oligodendrocytes as an upstream regulator of cerebral vessels and found that it is involved in COL4A5 synthesis, which is strongly correlated with amyloid fiber formation. Furthermore, COL4A5 has been suggested to interact with astrocytes via extracellular matrix receptors as a ligand. This study suggests directions for new therapeutic strategies for Alzheimer's disease targeting glycosyltransferases.
Collapse
Affiliation(s)
- Yusuke Matsui
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Akira Togayachi
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuma Sakamoto
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kiyohiko Angata
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shoko Nishihara
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
2
|
Feng X, Qi F, Huang Y, Zhang G, Deng W. Reduced Expression of CLEC4G in Neurons Is Associated with Alzheimer's Disease. Int J Mol Sci 2024; 25:4621. [PMID: 38731839 PMCID: PMC11083414 DOI: 10.3390/ijms25094621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aβ generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.
Collapse
Affiliation(s)
- Xinwei Feng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 510631, China
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuying Huang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 510631, China
| |
Collapse
|
3
|
Moodie JE, Harris SE, Harris MA, Buchanan CR, Davies G, Taylor A, Redmond P, Liewald DCM, Valdés Hernández MDC, Shenkin S, Russ TC, Muñoz Maniega S, Luciano M, Corley J, Stolicyn A, Shen X, Steele D, Waiter G, Sandu A, Bastin ME, Wardlaw JM, McIntosh A, Whalley H, Tucker‐Drob EM, Deary IJ, Cox SR. General and specific patterns of cortical gene expression as spatial correlates of complex cognitive functioning. Hum Brain Mapp 2024; 45:e26641. [PMID: 38488470 PMCID: PMC10941541 DOI: 10.1002/hbm.26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components: gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 29 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|β| range = 0.18 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.
Collapse
Affiliation(s)
- Joanna E. Moodie
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Mathew A. Harris
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Colin R. Buchanan
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Gail Davies
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - David C. M. Liewald
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Maria del C. Valdés Hernández
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Susan Shenkin
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
- Ageing and Health Research Group, Usher InstituteUniversity of EdinburghUK
| | - Tom C. Russ
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghUK
| | - Susana Muñoz Maniega
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Michelle Luciano
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Janie Corley
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Aleks Stolicyn
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Xueyi Shen
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Douglas Steele
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Gordon Waiter
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Anca‐Larisa Sandu
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Mark E. Bastin
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Joanna M. Wardlaw
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | | | | | | | - Ian J. Deary
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| |
Collapse
|
4
|
Wang Y, Song X, Jin M, Lu J. Characterization of the Immune Microenvironment and Identification of Biomarkers in Chronic Rhinosinusitis with Nasal Polyps Using Single-Cell RNA Sequencing and Transcriptome Analysis. J Inflamm Res 2024; 17:253-277. [PMID: 38229690 PMCID: PMC10790669 DOI: 10.2147/jir.s440409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Purpose Chronic rhinosinusitis is a prevalent condition in the field of otorhinolaryngology; however, its pathogenesis remains to be elucidated. The immunological defense of the nasal mucosa is significantly influenced by dendritic cells (DCs). We identified specific biological indicators linked to DCs and explored their significance in cases of chronic rhinosinusitis with nasal polyps (CRSwNP). Patients and Methods We categorized cells using single-cell RNA (scRNA) sequencing, and combined transcriptome sequencing was used to identify potential candidate genes for CRSwNP. We selected three biomarkers based on two algorithms and performed enrichment and immune correlation analyses. Biomarkers were verified using training and validation sets, receiver operating characteristic curves, immunohistochemistry, and quantitative real-time reverse-transcription PCR (qRT-PCR). Variations in biomarker expression were validated using pseudotime analysis. The networks of competing transcription factor (TF)-mRNA and competing endogenous RNA (ceRNA) were established, and the protein drugs associated with these biomarkers were predicted. Results Both scRNA-seq and transcriptome data showed that DCs immune infiltration was higher in the CRSwNP group than in the control group. Three DC-related biomarkers (NR4A1, CLEC4G, and CD163) were identified. In CRSwNP, NR4A1 expression decreased, whereas CLEC4G and CD163 expression increased. All biomarkers were shown to be involved in immunological and metabolic pathways by enrichment analysis. These biomarkers were associated with γδ T cells, effector memory CD4 + T cells, regulatory T cells, and immature DCs. According to pseudotime analysis, NR4A1 and CD163 expression decreased from high to low, whereas CLEC4G expression remained low. Conclusion We screened and identified potential DC-associated biomarkers of CRSwNP progression by integrating scRNA-seq with whole transcriptome sequencing. We analyzed the biological pathways in which they were involved, explored their molecular regulatory mechanisms and related drugs, and constructed ceRNA, TF-mRNA, and biomarker-drug networks to identify new CRSwNP treatment targets, laying the groundwork for the clinical management of CRSwNP.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xinyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
5
|
Moodie JE, Harris SE, Harris MA, Buchanan CR, Davies G, Taylor A, Redmond P, Liewald D, del C Valdés Hernández M, Shenkin S, Russ TC, Muñoz Maniega S, Luciano M, Corley J, Stolicyn A, Shen X, Steele D, Waiter G, Sandu-Giuraniuc A, Bastin ME, Wardlaw JM, McIntosh A, Whalley H, Tucker-Drob EM, Deary IJ, Cox SR. General and specific patterns of cortical gene expression as spatial correlates of complex cognitive functioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532915. [PMID: 36993650 PMCID: PMC10055068 DOI: 10.1101/2023.03.16.532915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components : gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 41 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|β| range = 0.15 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.
Collapse
Affiliation(s)
- Joanna E. Moodie
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Mathew A. Harris
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Colin R. Buchanan
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - David Liewald
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Maria del C Valdés Hernández
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Susan Shenkin
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Ageing and Health Research Group, Usher Institute, University of Edinburgh, UK
| | - Tom C. Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, UK
| | - Susana Muñoz Maniega
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Michelle Luciano
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Douglas Steele
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Gordon Waiter
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Anca Sandu-Giuraniuc
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Mark E. Bastin
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Joanna M. Wardlaw
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Andrew McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Heather Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | | | - Ian J. Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| |
Collapse
|
6
|
Taniguchi N, Okawa Y, Maeda K, Kanto N, Johnson EL, Harada Y. N-glycan branching enzymes involved in cancer, Alzheimer's disease and COPD and future perspectives. Biochem Biophys Res Commun 2022; 633:68-71. [DOI: 10.1016/j.bbrc.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
|
7
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
8
|
Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z, Huang P, Fang T, Yang B, Xia J. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8 +T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med 2020; 18:306. [PMID: 32762721 PMCID: PMC7409704 DOI: 10.1186/s12967-020-02469-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fibrinogen-like protein 1 (FGL1)-Lymphocyte activating gene 3 (LAG-3) pathway is a promising immunotherapeutic target and has synergistic effect with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1). However, the prognostic significance of FGL1-LAG-3 pathway and the correlation with PD-L1 in hepatocellular carcinoma (HCC) remain unknown. METHODS The levels of LAG-3, FGL1, PD-L1 and cytotoxic T (CD8+T) cells in 143 HCC patients were assessed by multiplex immunofluorescence. Associations between the marker's expression and clinical significances were studied. RESULTS We found FGL1 and LAG-3 densities were elevated while PD-L1 and CD8 were decreased in HCC tissues compared to adjacent normal liver tissues. High levels of FGL1 were strongly associated with high densities of LAG-3+cells but not PD-L1. CD8+ T cells densities had positive correlation with PD-L1 levels and negative association with FGL1 expression. Elevated densities of LAG-3+cells and low levels of CD8+ T cells were correlated with poor disease outcome. Moreover, LAG-3+cells deteriorated patient stratification based on the abundance of CD8+ T cells. Patients with positive PD-L1 expression on tumor cells (PD-L1 TC+) tended to have an improved survival than that with negative PD-L1 expression on tumor cells (PD-L1 TC-). Furthermore, PD-L1 TC- in combination with high densities of LAG-3+cells showed the worst prognosis, and PD-L1 TC+ patients with low densities of LAG-3+cells had the best prognosis. CONCLUSIONS LAG-3, FGL1, PD-L1 and CD8 have distinct tissue distribution and relationships with each other. High levels of LAG-3+cells and CD8+ T cells represent unfavorable and favorable prognostic biomarkers for HCC respectively.
Collapse
Affiliation(s)
- Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qianwen Rao
- Minhang Hospital, Shanghai Medical School of Fudan University, Shanghai, 201100, China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
9
|
Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 2018; 176:334-347.e12. [PMID: 30580966 DOI: 10.1016/j.cell.2018.11.010] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/13/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Lymphocyte-activation gene 3 (LAG-3) is an immune inhibitory receptor, with major histocompatibility complex class II (MHC-II) as a canonical ligand. However, it remains controversial whether MHC-II is solely responsible for the inhibitory function of LAG-3. Here, we demonstrate that fibrinogen-like protein 1 (FGL1), a liver-secreted protein, is a major LAG-3 functional ligand independent from MHC-II. FGL1 inhibits antigen-specific T cell activation, and ablation of FGL1 in mice promotes T cell immunity. Blockade of the FGL1-LAG-3 interaction by monoclonal antibodies stimulates tumor immunity and is therapeutic against established mouse tumors in a receptor-ligand inter-dependent manner. FGL1 is highly produced by human cancer cells, and elevated FGL1 in the plasma of cancer patients is associated with a poor prognosis and resistance to anti-PD-1/B7-H1 therapy. Our findings reveal an immune evasion mechanism and have implications for the design of cancer immunotherapy.
Collapse
|
10
|
Neural functions of bisecting GlcNAc. Glycoconj J 2018; 35:345-351. [DOI: 10.1007/s10719-018-9829-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/02/2023]
|
11
|
Taniguchi N, Kizuka Y, Takamatsu S, Miyoshi E, Gao C, Suzuki K, Kitazume S, Ohtsubo K. Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Arch Biochem Biophys 2016; 595:72-80. [PMID: 27095220 DOI: 10.1016/j.abb.2015.11.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 11/25/2022]
Abstract
Reduction-oxidation (redox) response is one of the most important biological phenomena. The concept introduced by Helmut Sies encouraged many researchers to examine oxidative stress under pathophysiological conditions. Our group has been interested in redox regulation under oxidative stress as well as glycobiology in relation to disease. Current studies by our group and other groups indicate that functional and structural changes of glycans are regulated by redox responses resulting from the generation of reactive oxygen species (ROS) or reactive nitrogen species (RNS) in various diseases including cancer, diabetes, neurodegenerative disease such as Parkinson disease, Alzheimer's disease and amyotrophic lateral sclerosis (ALS), and chronic obstructive pulmonary disease (COPD), even though very few investigators appear to be aware of these facts. Here we propose that the field "glyco-redox" will open the door to a more comprehensive understanding of the mechanism associated with diseases in relation to glycan changes under oxidative stress. A tight link between structural and functional changes of glycans and redox system under oxidative stress will lead to the recognition and interest of these aspects by many scientists. Helmut's contribution in this field facilitated our future perspectives in glycobiology.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan.
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Congxiao Gao
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan
| | - Keiichiro Suzuki
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinobu Kitazume
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Taniguchi N, Takahashi M, Kizuka Y, Kitazume S, Shuvaev VV, Ookawara T, Furuta A. Glycation vs. glycosylation: a tale of two different chemistries and biology in Alzheimer's disease. Glycoconj J 2016; 33:487-97. [PMID: 27325408 DOI: 10.1007/s10719-016-9690-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/21/2023]
Abstract
In our previous studies, we reported that the activity of an anti-oxidant enzyme, Cu,Zn-superoxide dismutase (Cu,Zn-SOD) became decreased as the result of glycation in vitro and in vivo. Glycated Cu,Zn-SOD produces hydroxyl radicals in the presence of transition metals due to the formation of a Schiff base adduct and a subsequent Amadori product. This results in the site-specific cleavage of the molecule, followed by random fragmentation. The glycation of other anti-oxidant enzymes such as glutathione peroxidase and thioredoxin reductase results in a loss or decrease in enzyme activity under pathological conditions, resulting in oxidative stress. The inactivation of anti-oxidant enzymes induces oxidative stress in aging, diabetes and neurodegenerative disorders. It is well known that the levels of Amadori products and N(e)-(carboxylmethyl)lysine (CML) and other carbonyl compounds are increased in diabetes, a situation that will be discussed by the other authors in this special issue. We and others, reported that the glycation products accumulate in the brains of patients with Alzheimer's disease (AD) patients as well as in cerebrospinal fluid (CSF), suggesting that glycation plays a pivotal role in the development of AD. We also showed that enzymatic glycosylation is implicated in the pathogenesis of AD and that oxidative stress is also important in this process. Specific types of glycosylation reactions were found to be up- or downregulated in AD patients, and key AD-related molecules including the amyloid-precursor protein (APP), tau, and APP-cleaving enzymes were shown to be functionally modified as the result of glycosylation. These results suggest that glycation as well as glycosylation are involved in oxidative stress that is associated with aging, diabetes and neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinobu Kitazume
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tomomi Ookawara
- Laboratory of Biochemistry, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, 650-8530, Japan
| | - Akiko Furuta
- Department of Cellular and Molecular Neuropathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyou-ku, Tokyo, 113-8421, Japan
| |
Collapse
|