1
|
Cao R, Jones DTD, Pan L, Yang A, Wang S, Padi SKR, Rawson S, Aster JC, Blacklow SC. Molecular Mechanism of PP2A/B55α Phosphatase Inhibition by IER5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555174. [PMID: 37693604 PMCID: PMC10491241 DOI: 10.1101/2023.08.29.555174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
PP2A serine/threonine phosphatases are heterotrimeric complexes that execute many essential physiologic functions. These activities are modulated by additional regulatory proteins, such as ARPP19, FAM122A, and IER5. Here, we report the cryoelectron microscopy structure of a complex of PP2A/B55α with the N-terminal structured region of IER5 (IER5-N50), which occludes a surface on B55α used for substrate recruitment, and show that IER5-N50 inhibits PP2A/B55α catalyzed dephosphorylation of pTau in biochemical assays. Mutations of full-length IER5 that disrupt its PP2A/B55α interface interfere with co-immunoprecipitation of PP2A/B55α. These mutations and deletions that remove the nuclear localization sequence of IER5 suppress cellular events such as KRT1 expression that depend on association of IER5 with PP2A/B55α. Querying the Alphafold2 predicted structure database identified SERTA domain proteins as high-confidence PP2A/B55α-binding structural homologs of IER5-N50. These studies define the molecular basis of PP2A/B55α inhibition by IER5-family proteins and suggest a roadmap for selective pharmacologic modulation of PP2A/B55α complexes.
Collapse
Affiliation(s)
- Ruili Cao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel TD Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Li Pan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Annie Yang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shumei Wang
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sathish K. R. Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
2
|
Crespo JR, Martín-Martín N, Garcia-Longarte S, Corres-Mendizabal J, Carlevaris O, Astobiza I, Zabala-Letona A, Guiu M, Azkargorta M, Gonzalez-Lopez M, Macías-Cámara N, Doan P, Elortza F, Mendizabal I, Westermack J, Gomis RR, Ercilla A, Carracedo A. The PP2A regulator IER5L supports prostate cancer progression. Cell Death Dis 2024; 15:514. [PMID: 39025841 PMCID: PMC11258296 DOI: 10.1038/s41419-024-06907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Prostate cancer exhibits high prevalence and accounts for a high number of cancer-related deaths. The discovery and characterization of molecular determinants of aggressive prostate cancer represents an active area of research. The Immediate Early Response (IER) family of genes, which regulate Protein Phosphatase 2A (PP2A) activity, has emerged among the factors that influence cancer biology. Here, we show that the less studied member of this family, Immediate Early Response 5 like (IER5L), is upregulated in aggressive prostate cancer. Interestingly, the upregulation of IER5L expression exhibits a robust association with metastatic disease in prostate and is recapitulated in other cancer types. In line with this observation, IER5L silencing reduces foci formation, migration and invasion ability in a variety of human and murine prostate cancer cell lines. In vivo, using zebrafish and immunocompromised mouse models, we demonstrate that IER5L-silencing reduces prostate cancer tumor growth, dissemination, and metastasis. Mechanistically, we characterize the transcriptomic and proteomic landscapes of IER5L-silenced cells. This approach allowed us to identify DNA replication and monomeric G protein regulators as downstream programs of IER5L through a pathway that is consistent with the regulation of PP2A. In sum, we report the alteration of IER5L in prostate cancer and beyond and provide biological and molecular evidence of its contribution to tumor aggressiveness.
Collapse
Affiliation(s)
- Jana R Crespo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Traslational prostate cancer Research lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Bizkaia, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saioa Garcia-Longarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Jon Corres-Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Onintza Carlevaris
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Madrid, Spain
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Traslational prostate cancer Research lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Bizkaia, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marc Guiu
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Gipuzkoa, Spain
- CIBERehd, Bizkaia Science and Technology Park, Derio, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nuria Macías-Cámara
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Phuong Doan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Gipuzkoa, Spain
- CIBERehd, Bizkaia Science and Technology Park, Derio, Spain
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Traslational prostate cancer Research lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jukka Westermack
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine and InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Roger R Gomis
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
- Traslational prostate cancer Research lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Bizkaia, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
3
|
Takeuchi H, Koga M, Doi K, Sakurai H. PP2A and its adapter protein IER5 induce the DNA-binding ability and target gene expression of E2F1 via dephosphorylation at serine 375. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194960. [PMID: 37467925 DOI: 10.1016/j.bbagrm.2023.194960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The transcription factor E2F1 participates in cell cycle control through transcriptional activation of genes that promote S-phase entry. E2F1 is also linked to the expression of proapoptotic genes, and the loss of E2F1 activity facilitates tumor progression by reducing cellular apoptosis. Phosphorylation controlled by protein kinases and phosphatases is the major posttranslational modification and regulates the cellular levels and transactivator function of E2F1. Here, we characterize the regulatory roles of serine-375 (S375), one of the major phosphorylation sites of E2F1. Cyclin-dependent kinases such as CDK8 phosphorylate at S375 of E2F1, which is dephosphorylated by protein phosphatase 2A (PP2A) containing the B55 regulatory subunit. The PP2A adapter protein IER5 binds to both PP2A/B55 and E2F1 and assists dephosphorylation at S375 by PP2A. S375-dephosphorylated E2F1 exhibits higher DNA-binding affinity than the phosphorylated form. Although the promoter regions of proapoptotic genes are less occupied by E2F1 in cells, an increase in S375-dephosphorylated E2F1 induces preferential binding of E2F1 to the proapoptotic gene promoters and their expression. Our data identify PP2A/B55-IER5 as a critical regulator of E2F1 and suggest that the phosphorylation state of E2F1 is an important determinant for the expression of proapoptotic genes.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Mayuko Koga
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kuriko Doi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
4
|
Doi K, Takeuchi H, Sakurai H. PP2A-B55 and its adapter proteins IER2 and IER5 regulate the activity of RB family proteins and the expression of cell cycle-related genes. FEBS J 2023; 290:745-762. [PMID: 36047562 DOI: 10.1111/febs.16612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
The retinoblastoma (RB) tumour suppressor protein regulates cell proliferation, motility, differentiation and apoptosis. The phosphorylation state of RB is modulated by kinases and phosphatases, and RB exhibits phosphorylation-sensitive interactions with E2F family transcription factors. Here, we characterize RB dephosphorylation by protein phosphatase 2A (PP2A). The growth factor-inducible immediate early response (IER) proteins IER2 and IER5 possess an adapter-like function in which IER proteins bind to both PP2A and its target proteins and enhance PP2A activity towards the proteins. IER2 interacts with RB and facilitates dephosphorylation of RB at T821/T826 by PP2A. In IER2 knockdown cells, elevated phosphorylation of RB resulted in reduced binding of RB to the promoters and derepression of cyclin D1 and p21. IER5 binds to both RB and RB-like 1 (p107/RBL1), enhances dephosphorylation of these proteins by PP2A and represses the expression of various cell cycle-related genes. However, IER2-regulated dephosphorylation at T821/T826 is not necessary for the repression function of RB in cell mobility-related gene expression. Our data identify PP2A adapter proteins as critical regulators of RB family proteins and suggest that the phosphorylation status of RB differentially affects gene expression.
Collapse
Affiliation(s)
- Kuriko Doi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Japan
| | - Hiroto Takeuchi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Japan
| |
Collapse
|
5
|
Roy A, Wang G, Iskander D, O'Byrne S, Elliott N, O'Sullivan J, Buck G, Heuston EF, Wen WX, Meira AR, Hua P, Karadimitris A, Mead AJ, Bodine DM, Roberts I, Psaila B, Thongjuea S. Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Rep 2021; 36:109698. [PMID: 34525349 PMCID: PMC8456780 DOI: 10.1016/j.celrep.2021.109698] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
Human hematopoiesis is a dynamic process that starts in utero 18-21 days post-conception. Understanding the site- and stage-specific variation in hematopoiesis is important if we are to understand the origin of hematological disorders, many of which occur at specific points in the human lifespan. To unravel how the hematopoietic stem/progenitor cell (HSPC) compartment changes during human ontogeny and the underlying gene regulatory mechanisms, we compare 57,489 HSPCs from 5 different tissues spanning 4 developmental stages through the human lifetime. Single-cell transcriptomic analysis identifies significant site- and developmental stage-specific transitions in cellular architecture and gene regulatory networks. Hematopoietic stem cells show progression from cycling to quiescence and increased inflammatory signaling during ontogeny. We demonstrate the utility of this dataset for understanding aberrant hematopoiesis through comparison to two cancers that present at distinct time points in postnatal life-juvenile myelomonocytic leukemia, a childhood cancer, and myelofibrosis, which classically presents in older adults.
Collapse
Affiliation(s)
- Anindita Roy
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.
| | - Guanlin Wang
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK
| | - Deena Iskander
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Sorcha O'Byrne
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Natalina Elliott
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Jennifer O'Sullivan
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma Buck
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Wei Xiong Wen
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK
| | - Alba Rodriguez Meira
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Irene Roberts
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Bethan Psaila
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.
| | - Supat Thongjuea
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
6
|
Wu Z, Wang D, Zeng F, Zhang Y, Zhu G, Ma Y, Song B, Lui S, Wu M. High IER5 Gene Expression Is Associated With Poor Prognosis in Glioma Patients. Front Cell Dev Biol 2021; 9:679684. [PMID: 34222249 PMCID: PMC8248409 DOI: 10.3389/fcell.2021.679684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Immediate early response 5 (IER5) plays a core role in cell cycle and response to irradiation. However, its role in glioma remains unclear. We aimed to evaluate its prognostic significance in glioma based on The Cancer Genome Atlas data resource. Methods The Kruskal–Wallis test, Wilcoxon signed-rank test, and logistic regression were employed to explore the relationship between IER5 expression and clinicopathological features. Kaplan–Meier and Cox regression analyses were implemented to investigate the relationship of IER5 with prognosis. A nomogram to estimate the impact of IER5 on prognosis was created based on the Cox multivariate data. We performed gene set enrichment analysis (GSEA) to determine the key signaling cascades associated with IER5. Immunohistochemistry was performed to examine IER5 expression in a tissue microarray (TMA) of glioma samples. Results Immediate early response 5 gene expression was elevated in glioma patients. The level of IER5 was significantly correlated with WHO grade [OR = 6.71 (4.34–10.68) for G4 vs. G2 and G3], IDH (isocitrate dehydrogenase enzyme) status [OR = 13.35 (8.92–20.46) for wild-type (WT) vs. mutated (Mut)], epidermal growth factor receptor status [OR = 8.42 (4.32–18.43) for Mut vs. WT], age [OR = 0.27 (0.18–0.41) for ≤ 60 years vs. >60 years], and histological type [OR = 7.13 (4.63–11.31] for glioblastoma vs. astrocytoma, oligoastrocytoma, and oligodendroglioma). Univariate analyses revealed that high IER5 expression was linked to short overall survival (OS) [hazard ratio (HR): 3.747; 95% confidence interval (CI): 2.847–4.933; and P < 0.001]. High IER5 expression was linked to poor OS in multivariate analyses (HR: 2.474; 95% CI: 1.552–3.943; and P < 0.001). TMA results showed that high IER5 protein levels were related to short OS (HR: 1.84; 95% CI: 1.10–3.07; and P = 0.021) and poor disease-specific survival (HR: 1.82; 95% CI: 1.09–3.04; and P = 0.023). GSEA showed that many tumor related pathways were enriched differentially in the IER5-high expression group. The C-index and calibration plots of the nomogram showed an effective estimation performance in glioma patients. Conclusion Herein, we established that IER5 plays a critical role in glioma progression and prognosis, which might be an important biomarker for the prognosis of glioma patients.
Collapse
Affiliation(s)
- Zijun Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Wang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Fanxin Zeng
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China.,Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Guannan Zhu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Ma
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China.,Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Pan L, Lemieux ME, Thomas T, Rogers JM, Lipper CH, Lee W, Johnson C, Sholl LM, South AP, Marto JA, Adelmant GO, Blacklow SC, Aster JC. IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation. eLife 2020; 9:e58081. [PMID: 32936072 PMCID: PMC7529455 DOI: 10.7554/elife.58081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Notch signaling regulates squamous cell proliferation and differentiation and is frequently disrupted in squamous cell carcinomas, in which Notch is tumor suppressive. Here, we show that conditional activation of Notch in squamous cells activates a context-specific gene expression program through lineage-specific regulatory elements. Among direct Notch target genes are multiple DNA damage response genes, including IER5, which we show is required for Notch-induced differentiation of squamous carcinoma cells and TERT-immortalized keratinocytes. IER5 is epistatic to PPP2R2A, a gene that encodes the PP2A B55α subunit, which we show interacts with IER5 in cells and in purified systems. Thus, Notch and DNA-damage response pathways converge in squamous cells on common genes that promote differentiation, which may serve to eliminate damaged cells from the proliferative pool. We further propose that crosstalk involving Notch and PP2A enables tuning and integration of Notch signaling with other pathways that regulate squamous differentiation.
Collapse
Affiliation(s)
- Li Pan
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | | | - Tom Thomas
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Winston Lee
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Carl Johnson
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
- Departmentof Oncologic Pathology and Blais Proteomics Center, Dana FarberCancer Institute, HarvardMedical SchoolBostonUnited States
| | - Guillaume O Adelmant
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
- Departmentof Oncologic Pathology and Blais Proteomics Center, Dana FarberCancer Institute, HarvardMedical SchoolBostonUnited States
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Xiong Q, Jiang X, Liu X, Zhou P, Ding K. Prediction of IER5 structure and function using a bioinformatics approach. Mol Med Rep 2019; 19:4631-4636. [PMID: 31059029 PMCID: PMC6522821 DOI: 10.3892/mmr.2019.10166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
Immediate-early response gene 5 (IER5) is a gene involved in the regulation of the cell cycle, and its structure and function have been investigated by bioinformatics analyses. The present study determined the sites of promoter methylation and gene ontology (GO) annotations associated with IER5. In addition, we conducted a prediction analysis to determine the physical and chemical properties, hydrophobicity/hydrophilicity, posttranslational modification, subcellular localization, transmembrane structure, signal peptide and secondary and tertiary structures of IER5. One CpG island and several methylated sites were identified close to the promoter of IER5. The GO analysis suggested that IER5 could bind ions and proteins that were mainly associated with metabolic processes. IER5 comprised 327 amino acids and was reported to be an unstable hydrophilic protein with an isoelectric point of 4.91. A total of 18 O-glycosylation sites and 22 phosphorylation sites were identified within this protein. The subcellular localization of IER5 was mainly in the nucleus, and its main secondary structural element was the α-helix. Bioinformatic analyses of the features of IER5 may improve understanding of its structure and function; however, experimental verification is required.
Collapse
Affiliation(s)
- Qiang Xiong
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiaoyan Jiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiaodan Liu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pingkun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Kuke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| |
Collapse
|
9
|
Vitali M, Sirri R, Zappaterra M, Zambonelli P, Giannini G, Lo Fiego DP, Davoli R. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations. PLoS One 2019; 14:e0212449. [PMID: 30785965 PMCID: PMC6382273 DOI: 10.1371/journal.pone.0212449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Supplementing pig diets with n-3 polyunsaturated fatty acids (n-3 PUFA) may produce meat products with an increased n-3 fatty acid content, and the combined antioxidants addition could prevent lipid oxidation in the feed. However, to date, the effects of these bioactive compounds at the molecular level in porcine skeletal muscle are mostly unknown. This study aimed to analyse changes in the Longissimus thoracis transcriptome of 35 pigs fed three diets supplemented with: linseed (L); linseed, vitamin E and Selenium (LES) or linseed and plant-derived polyphenols (LPE). Pigs were reared from 80.8 ± 5.6 kg to 151.8 ± 9.9 kg. After slaughter, RNA-Seq was performed and 1182 differentially expressed genes (DEGs) were submitted to functional analysis. The L vs LES comparison did not show differences, while L vs LPE showed 1102 DEGs and LES vs LPE 80 DEGs. LPE compared to the other groups showed the highest number of up-regulated genes involved in preserving muscle metabolism and structure. Results enlighten that the combined supplementation of bioactive lipids (n-3 PUFA from linseed) with plant extracts as a source of polyphenols increases, compared to the only addition of linseed, the expression of genes involved in mRNA metabolic processes and transcriptional regulation, glucose uptake and, finally, in supporting muscle development and physiology. These results improve the knowledge of the biological effect of bioactive compounds in Longissimus thoracis muscle, and sustain the growing interest over their use in pig production.
Collapse
Affiliation(s)
- Marika Vitali
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Rubina Sirri
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Giulia Giannini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Davoli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ueda T, Kohama Y, Sakurai H. IER family proteins are regulators of protein phosphatase PP2A and modulate the phosphorylation status of CDC25A. Cell Signal 2018; 55:81-89. [PMID: 30599213 DOI: 10.1016/j.cellsig.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/25/2018] [Accepted: 12/29/2018] [Indexed: 01/09/2023]
Abstract
Proteins encoded by immediate-early response (IER) family genes, IER2, IER5, and IER5L, share homology at their N-terminal regions. IER5 binds to protein phosphatase 2A (PP2A) and enhances dephosphorylation of PP2A target proteins such as heat shock factor HSF1. Here, we show the expression of IER family genes and the target protein-specific function of IER proteins. The IER homology regions of IER2 and IER5L are required for the interaction with PP2A. Expression of IER2 and IER5L in cells leads to reduced phosphorylation of HSF1 and derepression of its transcriptional activity. Although IER5 and IER5L enhance dephosphorylation of ribosomal protein S6 kinase, IER2 fails to do so. IER2, IER5, and IER5L all bind to the cell cycle regulator CDC25A and convert it to the hypophosphorylated form, which causes dissociation from 14-3-3 regulatory protein. IER5 differentially regulates CDC25A levels in cells under normal and thermal stress conditions. These results suggest that IER proteins are target protein-specific regulators of PP2A activity and modulate cell proliferation through CDC25A activity.
Collapse
Affiliation(s)
- Takumi Ueda
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yuri Kohama
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
11
|
Kohama Y, Saito M, Yada M, Sakurai H. Regulation of the stability and activity of CDC25A and CDC25B by protein phosphatase PP2A and 14-3-3 binding. Cell Signal 2018; 54:10-16. [PMID: 30468767 DOI: 10.1016/j.cellsig.2018.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Cyclin-dependent kinase (CDK)-activating phosphatases, CDC25A and CDC25B, are labile proteins, and their levels vary in a cell cycle-dependent manner. Immediate-early response IER5 protein negatively regulates the cellular CDC25B levels, and stress-induced IER5 expression potentiates G2/M arrest. IER5 binds to protein phosphatase PP2A and regulates the PP2A substrate specificity. We show that IER5 binds to CDC25B and assists PP2A to convert CDC25B to hypophosphorylated forms. Hypophosphorylation at Ser323 results in the dissociation of CDC25B from 14-3-3 phospho-binding proteins. In IER5 expressing cells, CDC25B dissociated from 14-3-3 is unstable but slightly activated, because 14-3-3 inhibits CDC25B polyubiquitination and CDC25B binding to CDK1. The 14-3-3 binding to CDC25A also impedes CDC25A degradation and CDC25A-CDK2 interaction. We propose that 14-3-3 is an important regulator of CDC25A and CDC25B and that PP2A/IER5 controls the stability and activity of CDC25B through regulating the interaction of CDC25B and 14-3-3.
Collapse
Affiliation(s)
- Yuri Kohama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Megumi Saito
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Mizue Yada
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
12
|
Nagashimada M, Ueda T, Ishita Y, Sakurai H. TAF7 is a heat‐inducible unstable protein and is required for sustained expression of heat shock protein genes. FEBS J 2018; 285:3215-3224. [DOI: 10.1111/febs.14604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mayumi Nagashimada
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Takumi Ueda
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Yuichiro Ishita
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Hiroshi Sakurai
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| |
Collapse
|
13
|
Dickinson JM, D'Lugos AC, Naymik MA, Siniard AL, Wolfe AJ, Curtis DR, Huentelman MJ, Carroll CC. Transcriptome response of human skeletal muscle to divergent exercise stimuli. J Appl Physiol (1985) 2018. [PMID: 29543133 DOI: 10.1152/japplphysiol.00014.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aerobic (AE) and resistance exercise (RE) elicit unique adaptations in skeletal muscle that have distinct implications for health and performance. The purpose of this study was to identify the unique transcriptome response of skeletal muscle to acute AE and RE. In a counterbalanced, crossover design, six healthy, recreationally active young men (27 ± 3 yr) completed acute AE (40 min of cycling, ∼70% maximal HR) and RE [8 sets, 10 reps, ∼65% 1-repetition maximum (1RM)], separated by ∼1 wk. Muscle biopsies (vastus lateralis) were obtained before and at 1 and 4 h postexercise. Whole transcriptome RNA sequencing (HiSeq2500; Illumina) was performed on cDNA synthesized from skeletal muscle RNA. Sequencing data were analyzed using HTSeq, and differential gene expression was identified using DESeq2 [adjusted P value (FDR) <0.05, >1.5-fold change from preexercise]. RE resulted in a greater number of differentially expressed genes at 1 (67 vs. 48) and 4 h (523 vs. 221) compared with AE. We identified 348 genes that were differentially expressed only following RE, whereas 48 genes were differentially expressed only following AE. Gene clustering indicated that AE targeted functions related to zinc interaction, angiogenesis, and ubiquitination, whereas RE targeted functions related to transcription regulation, cytokine activity, cell adhesion, kinase activity, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. ESRRG and TNFSRF12A were identified as potential targets related to the specific response of skeletal muscle to AE and RE, respectively. These data describe the early postexercise transcriptome response of skeletal muscle to acute AE and RE and further highlight that different forms of exercise stimulate unique molecular activity in skeletal muscle. NEW & NOTEWORTHY Whole transcriptome RNA sequencing was used to determine the early postexercise transcriptome response of skeletal muscle to acute aerobic (AE) and resistance exercise (RE) in untrained individuals. Although a number of shared genes were stimulated following both AE and RE, several genes were uniquely responsive to each exercise mode. These findings support the need for future research focused to better identify the role of exercise mode as it relates to targeting specific cellular skeletal muscle abnormalities.
Collapse
Affiliation(s)
- Jared M Dickinson
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University , Phoenix, Arizona
| | - Andrew C D'Lugos
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University , Phoenix, Arizona
| | - Marcus A Naymik
- Translational Genomics Research Institute , Phoenix, Arizona
| | | | - Amanda J Wolfe
- Translational Genomics Research Institute , Phoenix, Arizona
| | | | | | - Chad C Carroll
- Midwestern University , Glendale, Arizona.,Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| |
Collapse
|
14
|
Yu XP, Wu YM, Liu Y, Tian M, Wang JD, Ding KK, Ma T, Zhou PK. IER5 is involved in DNA Double-Strand Breaks Repair in Association with PAPR1 in Hela Cells. Int J Med Sci 2017; 14:1292-1300. [PMID: 29104487 PMCID: PMC5666564 DOI: 10.7150/ijms.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/01/2017] [Indexed: 12/01/2022] Open
Abstract
The immediate early response gene 5 (IER5) is a radiation response gene induced in a dose-independent manner, and has been suggested to be a molecular biomarker for biodosimetry purposes upon radiation exposure. Here, we investigated the function of IER5 in DNA damage response and repair. We found that interference on IER5 expression significantly decreased the efficiency of repair of DNA double-strand breaks induced by ionizing radiations in Hela cells. We found that IER5 participates in the non-homologous end-joining pathway of DNA breaks repair. Additionally, we identified a number of potential IER5-interacting proteins through mass spectrometry-based protein assays. The interaction of IER5 protein with poly(ADP-Ribose) polymerase 1 (PARP1) and Ku70 was further confirmed by immunoprecipitation assays. We also found that Olaparib, a PARP1 inhibitor, affected the stability of IER5. These results indicate that targeting of IER5 may be a novel DNA damage response-related strategy to use during cervical cancer radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Xin-Ping Yu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Yu-Mei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Yang Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Ming Tian
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Jian-Dong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Ku-Ke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing ,100088, China
| | - Teng Ma
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|