1
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
2
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
3
|
Xu LL, Zhou XJ, Zhang H. An Update on the Genetics of IgA Nephropathy. J Clin Med 2023; 13:123. [PMID: 38202130 PMCID: PMC10780034 DOI: 10.3390/jcm13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN), the most common form of glomerulonephritis, is one of the leading causes of end-stage kidney disease (ESKD). It is widely believed that genetic factors play a significant role in the development of IgAN. Previous studies of IgAN have provided important insights to unravel the genetic architecture of IgAN and its potential pathogenic mechanisms. The genome-wide association studies (GWASs) together have identified over 30 risk loci for IgAN, which emphasizes the importance of IgA production and regulation in the pathogenesis of IgAN. Follow-up fine-mapping studies help to elucidate the candidate causal variant and the potential pathogenic molecular pathway and provide new potential therapeutic targets. With the rapid development of next-generation sequencing technologies, linkage studies based on whole-genome sequencing (WGS)/whole-exome sequencing (WES) also identify rare variants associated with IgAN, accounting for some of the missing heritability. The complexity of pathogenesis and phenotypic variability may be better understood by integrating genetics, epigenetics, and environment. We have compiled a review summarizing the latest advancements in genetic studies on IgAN. We similarly summarized relevant studies examining the involvement of epigenetics in the pathogenesis of IgAN. Future directions and challenges in this field are also proposed.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| |
Collapse
|
4
|
Zanoni F, Abinti M, Belingheri M, Castellano G. Present and Future of IgA Nephropathy and Membranous Nephropathy Immune Monitoring: Insights from Molecular Studies. Int J Mol Sci 2023; 24:13134. [PMID: 37685941 PMCID: PMC10487514 DOI: 10.3390/ijms241713134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
IgA Nephropathy (IgAN) and Membranous Nephropathy (MN) are primary immune-mediated glomerular diseases with highly variable prognosis. Current guidelines recommend that greater immunologic activity and worse prognosis should guide towards the best treatment in an individualized approach. Nevertheless, proteinuria and glomerular filtration rate, the current gold standards for prognosis assessment and treatment guidance in primary glomerular diseases, may be altered with chronic damage and nephron scarring, conditions that are not related to immune activity. In recent years, thanks to the development of new molecular technologies, among them genome-wide genotyping, RNA sequencing techniques, and mass spectrometry, we have witnessed an outstanding improvement in understanding the pathogenesis of IgAN and MN. In addition, recent genome-wide association studies have suggested potential targets for immunomodulating agents, stressing the need for the identification of specific biomarkers of immune activity. In this work, we aim to review current evidence and recent progress, including the more recent use of omics techniques, in the identification of potential biomarkers for immune monitoring in IgAN and MN.
Collapse
Affiliation(s)
- Francesca Zanoni
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Matteo Abinti
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mirco Belingheri
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Giuseppe Castellano
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
5
|
Erger F, Aryal RP, Reusch B, Matsumoto Y, Meyer R, Zeng J, Knopp C, Noel M, Muerner L, Wenzel A, Kohl S, Tschernoster N, Rappl G, Rouvet I, Schröder-Braunstein J, Seibert FS, Thiele H, Häusler MG, Weber LT, Büttner-Herold M, Elbracht M, Cummings SF, Altmüller J, Habbig S, Cummings RD, Beck BB. Germline C1GALT1C1 mutation causes a multisystem chaperonopathy. Proc Natl Acad Sci U S A 2023; 120:e2211087120. [PMID: 37216524 PMCID: PMC10235935 DOI: 10.1073/pnas.2211087120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (C1GALT1), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans. The T-synthase function is dependent on its specific molecular chaperone Cosmc, which is encoded by X-chromosomal C1GALT1C1. Both patients carry the hemizygous variant c.59C>A (p.Ala20Asp; A20D-Cosmc) in C1GALT1C1. They exhibit developmental delay, immunodeficiency, short stature, thrombocytopenia, and acute kidney injury (AKI) resembling atypical hemolytic uremic syndrome. Their heterozygous mother and maternal grandmother show an attenuated phenotype with skewed X-inactivation in blood. AKI in the male patients proved fully responsive to treatment with the complement inhibitor Eculizumab. This germline variant occurs within the transmembrane domain of Cosmc, resulting in dramatically reduced expression of the Cosmc protein. Although A20D-Cosmc is functional, its decreased expression, though in a cell or tissue-specific manner, causes a large reduction of T-synthase protein and activity, which accordingly leads to expression of varied amounts of pathological Tn-antigen (GalNAcα1-O-Ser/Thr/Tyr) on multiple glycoproteins. Transient transfection of patient lymphoblastoid cells with wild-type C1GALT1C1 partially rescued the T-synthase and glycosylation defect. Interestingly, all four affected individuals have high levels of galactose-deficient IgA1 in sera. These results demonstrate that the A20D-Cosmc mutation defines a novel O-glycan chaperonopathy and causes the altered O-glycosylation status in these patients.
Collapse
Affiliation(s)
- Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Rajindra P. Aryal
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Yasuyuki Matsumoto
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Robert Meyer
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Junwei Zeng
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080Guangzhou, China
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Maxence Noel
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Lukas Muerner
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Institute of Pharmacology, University of Bern, 3010Bern, Switzerland
| | - Andrea Wenzel
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Stefan Kohl
- Children’s and Adolescents’ Hospital, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50931Cologne, Germany
| | - Gunter Rappl
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Isabelle Rouvet
- Centre de Biotechnologie Cellulaire and CBC BioTec Biobank, Centre de Ressources Biologiques, Hospices Civils de Lyon, 69229Lyon, France
| | | | - Felix S. Seibert
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University Bochum, 44625Herne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50931Cologne, Germany
| | - Martin G. Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Lutz T. Weber
- Children’s and Adolescents’ Hospital, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937Cologne, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054Erlangen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Sandra F. Cummings
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50931Cologne, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, 10178Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125Berlin, Germany
| | - Sandra Habbig
- Children’s and Adolescents’ Hospital, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937Cologne, Germany
| | - Richard D. Cummings
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| |
Collapse
|
6
|
Mucha K, Pac M, Pączek L. Omics are Getting Us Closer to Understanding IgA Nephropathy. Arch Immunol Ther Exp (Warsz) 2023; 71:12. [PMID: 37060455 PMCID: PMC10105675 DOI: 10.1007/s00005-023-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
During the last decade, thanks to omics technologies, new light has been shed on the pathogenesis of many diseases. Genomics, epigenomics, transcriptomics, and proteomics have helped to provide a better understanding of the origin and heterogeneity of several diseases. However, the risk factors for most autoimmune diseases remain unknown. The successes and pitfalls of omics have also been observed in nephrology, including immunoglobulin A nephropathy (IgAN), the most common form of glomerulonephritis and a principal cause of end-stage renal disease worldwide. Unfortunately, the immense progress in basic research has not yet been followed by the satisfactory development of a targeted treatment. Although, most omics studies describe changes in the immune system, there is still insufficient data to apply their results in the constantly evolving multi-hit pathogenesis model and thus do to provide a complete picture of the disease. Here, we describe recent findings regarding the pathophysiology of IgAN and link omics studies with immune system dysregulation. This review provides insights into specific IgAN markers, which may lead to the identification of potential targets for personalised treatment in the future.
Collapse
Affiliation(s)
- Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Michał Pac
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Du Y, Cheng T, Liu C, Zhu T, Guo C, Li S, Rao X, Li J. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics (Basel) 2023; 13:diagnostics13020303. [PMID: 36673113 PMCID: PMC9857562 DOI: 10.3390/diagnostics13020303] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, with varied clinical and histopathological features between individuals, particularly across races. As an autoimmune disease, IgAN arises from consequences of increased circulating levels of galactose-deficient IgA1 and mesangial deposition of IgA-containing immune complexes, which are recognized as key events in the widely accepted "multi-hit" pathogenesis of IgAN. The emerging evidence further provides insights into the role of genes, environment, mucosal immunity and complement system. These developments are paralleled by the increasing availability of diagnostic tools, potential biomarkers and therapeutic agents. In this review, we summarize current evidence and outline novel findings in the prognosis, clinical trials and translational research from the updated perspectives of IgAN pathogenesis.
Collapse
|
8
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
9
|
Noncoding RNAs associated with IgA nephropathy. J Nephrol 2022; 36:911-923. [PMID: 36495425 DOI: 10.1007/s40620-022-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is one of the most common glomerulonephritides. The disease is characterized by haematuria, proteinuria, deposition of galactose-deficient IgA1 in the glomerular mesangium and mesangial hypercellularity, further leading to extracellular matrix expansion. Kidney biopsy is the gold standard for IgAN diagnosis. Due to the invasiveness of renal biopsy, there is an unmet need for noninvasive biomarkers to diagnose and estimate the severity of IgAN. Understanding the role of RNA molecules as genetic markers to target diseases may allow developing therapeutic and diagnostic markers. In this review we have focused on intrarenal, extrarenal and extracellular noncoding RNAs involved in the progression of IgAN. This narrative review summarizes the pathogenesis of IgAN along with the correlation of noncoding RNA molecules such as microRNAs, small interfering RNAs, circular RNAs and long non-coding RNAs that play an important role in regulating gene expression, and that represent another type of regulation affecting the expression of specific glycosyltranferases, a key element contributing to the development of IgAN.
Collapse
|
10
|
Matsumoto Y, Aryal RP, Heimburg-Molinaro J, Park SS, Wever WJ, Lehoux S, Stavenhagen K, van Wijk JAE, Van Die I, Chapman AB, Chaikof EL, Cummings RD. Identification and characterization of circulating immune complexes in IgA nephropathy. SCIENCE ADVANCES 2022; 8:eabm8783. [PMID: 36306365 PMCID: PMC9616497 DOI: 10.1126/sciadv.abm8783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/12/2022] [Indexed: 05/14/2023]
Abstract
The underlying pathology of immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is driven by the deposition of immune complexes containing galactose-deficient IgA1 [Tn(+)IgA1] in the glomerular mesangium. Here, we report that novel anti-Tn circulating immune complexes (anti-Tn CICs) contain predominantly IgM, representing large macromolecular complexes of ~1.2 megadaltons to several megadalton sizes together with Tn(+)IgA1 and some IgG. These complexes are significantly elevated in sera of patients with IgAN, which contains higher levels of complement C3, compared to healthy individuals. Anti-Tn CICs are bioactive and induce specific proliferation of human renal mesangial cells. We found that these anti-Tn CICs can be dissociated with small glycomimetic compounds, which mimic the Tn antigen of Tn(+)IgA1, releasing IgA1 from anti-Tn CICs. This glycomimetic compound can also significantly inhibit the proliferative activity of anti-Tn CICs of patients with IgAN. These findings could enhance both the diagnosis of IgAN and its treatment, as specific drug treatments are now unavailable.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon S. Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Walter J. Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna A. E. van Wijk
- Department of Pediatric Nephrology, Amsterdam University Medical Centre, location VUmc, Amsterdam, Netherlands
| | - Irma Van Die
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arlene B. Chapman
- Department of Medicine, Section of Nephrology, University of Chicago School of Medicine, Chicago, IL, USA
| | - Elliot L. Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Person T, King RG, Rizk DV, Novak J, Green TJ, Reily C. Cytokines and Production of Aberrantly O-Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. J Interferon Cytokine Res 2022; 42:301-315. [PMID: 35793525 PMCID: PMC9536348 DOI: 10.1089/jir.2022.0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Taylor Person
- Department of Microbiology and Birmingham, Alabama, USA
| | - R. Glenn King
- Department of Microbiology and Birmingham, Alabama, USA
| | - Dana V. Rizk
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology and Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology and Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology and Birmingham, Alabama, USA
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Guan X, Peng Q, Wang J. Sevoflurane activates MEF2D-mediated Wnt/β-catenin signaling pathway via microRNA-374b-5p to affect renal ischemia/reperfusion injury. Immunopharmacol Immunotoxicol 2022; 44:603-612. [PMID: 35481398 DOI: 10.1080/08923973.2022.2071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The inhaled sevoflurane (Sev) has been demonstrated to protect multiple organs against ischemia/reperfusion injury (IRI). However, the mechanisms of Sev in renal IRI remain largely unknown. This study intends to explore the effect of Sev on renal IRI and the molecular mechanism behind. METHODS Following Sev preconditioning, a mouse model with renal IRI was established. The effects of Sev on IRI in mice were assessed by BUN, Scr, MDA and SOD kits, Western blot, HE staining, and TUNEL. Subsequently, we performed microarray analysis on renal tissues from mice with Sev to identify differentially expressed microRNAs (miRNAs). Then, the mice were treated with agomiR-374b-5p combined with Sev to observe the renal histopathology after IRI. The targeting mRNA of miR-374b-5p was verified using bioinformatics analysis and dual-luciferase assay, followed by KEGG enrichment analysis. Rescue experiments were implemented with simultaneous miR-374b-5p and MEF2D overexpression to detect renal histopathology and Wnt/β-catenin pathway activity in the mice. RESULTS Sev significantly reduced the levels of BUN and Scr in mouse serum, prevented cell apoptosis, decreased MDA content and increased SOD levels in renal tissues. Moreover, Sev downregulated the miR-374b-5p expression in the renal tissues. Overexpression of miR-374b-5p attenuated the protective effects of Sev on mouse renal tissues. miR-374b-5p targeted MEF2D and blocked the Wnt/β-catenin pathway. Overexpression of MEF2D activated the Wnt/β-catenin pathway and attenuated the supporting effects of miR-374b-5p on renal IRI. CONCLUSION Sev promotes MEF2D and activates the Wnt/β-catenin pathway through inhibition of miR-374b-5p expression to affect renal IRI.
Collapse
Affiliation(s)
- Xiaohong Guan
- Department of Anesthesiology, The First Hospital of Changsha, Hunan, P.R. China
| | - Qingxiong Peng
- Department of Anesthesiology, The First Hospital of Changsha, Hunan, P.R. China
| | - Jiansong Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, P.R. China
| |
Collapse
|
14
|
Jiang Y, Zhao L, Wu Y, Deng S, Cao P, Lei X, Yang X. The Role of NcRNAs to Regulate Immune Checkpoints in Cancer. Front Immunol 2022; 13:853480. [PMID: 35464451 PMCID: PMC9019622 DOI: 10.3389/fimmu.2022.853480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
At present, the incidence of cancer is becoming more and more common, but its treatment has always been a problem. Although a small number of cancers can be treated, the recurrence rates are generally high and cannot be completely cured. At present, conventional cancer therapies mainly include chemotherapy and radiotherapy, which are the first-line therapies for most cancer patients, but there are palliatives. Approaches to cancer treatment are not as fast as cancer development. The current cancer treatments have not been effective in stopping the development of cancer, and cancer treatment needs to be imported into new strategies. Non-coding RNAs (ncRNAs) is a hot research topic at present. NcRNAs, which include microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), participate in all aspects of cancer biology. They are involved in the progression of tumors into a new form, including B-cell lymphoma, glioma, or the parenchymal tumors such as gastric cancer and colon cancer, among others. NcRNAs target various immune checkpoints to affect tumor proliferation, differentiation, and development. This might represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Yicun Jiang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Leilei Zhao
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijun Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Pu Cao
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| |
Collapse
|
15
|
Nagasawa Y, Misaki T, Ito S, Naka S, Wato K, Nomura R, Matsumoto-Nakano M, Nakano K. Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis. Int J Mol Sci 2022; 23:725. [PMID: 35054910 PMCID: PMC8775524 DOI: 10.3390/ijms23020725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
A relationship between IgA nephropathy (IgAN) and bacterial infection has been suspected. As IgAN is a chronic disease, bacteria that could cause chronic infection in oral areas might be pathogenetic bacteria candidates. Oral bacterial species related to dental caries and periodontitis should be candidates because these bacteria are well known to be pathogenic in chronic dental disease. Recently, several reports have indicated that collagen-binding protein (cnm)-(+) Streptococcs mutans is relate to the incidence of IgAN and the progression of IgAN. Among periodontal bacteria, Treponema denticola, Porphyromonas gingivalis and Campylobacte rectus were found to be related to the incidence of IgAN. These bacteria can cause IgAN-like histological findings in animal models. While the connection between oral bacterial infection, such as infection with S. mutans and periodontal bacteria, and the incidence of IgAN remains unclear, these bacterial infections might cause aberrantly glycosylated IgA1 in nasopharynx-associated lymphoid tissue, which has been reported to cause IgA deposition in mesangial areas in glomeruli, probably through the alteration of microRNAs related to the expression of glycosylation enzymes. The roles of other factors related to the incidence and progression of IgA, such as genes and cigarette smoking, can also be explained from the perspective of the relationship between these factors and oral bacteria. This review summarizes the relationship between IgAN and oral bacteria, such as cnm-(+) S. mutans and periodontal bacteria.
Collapse
Affiliation(s)
- Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Shizuoka, Japan;
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu 433-8558, Shizuoka, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Gifu Hospital, Kakamigahara 502-0817, Gifu, Japan;
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| |
Collapse
|
16
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Wei SY, Guo S, Feng B, Ning SW, Du XY. Identification of miRNA-mRNA network and immune-related gene signatures in IgA nephropathy by integrated bioinformatics analysis. BMC Nephrol 2021; 22:392. [PMID: 34823491 PMCID: PMC8620631 DOI: 10.1186/s12882-021-02606-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, and its diagnosis depends mainly on renal biopsy. However, there is no specific treatment for IgAN. Moreover, its causes and underlying molecular events require further exploration. METHODS The expression profiles of GSE64306 and GSE93798 were downloaded from the Gene Expression Omnibus (GEO) database and used to identify the differential expression of miRNAs and genes, respectively. The StarBase and TransmiR databases were employed to predict target genes and transcription factors of the differentially expressed miRNAs (DE-miRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict biological functions. A comprehensive analysis of the miRNA-mRNA regulatory network was constructed, and protein-protein interaction (PPI) networks and hub genes were identified. CIBERSORT was used to examine the immune cells in IgAN, and correlation analyses were performed between the hub genes and infiltrating immune cells. RESULTS Four downregulated miRNAs and 16 upregulated miRNAs were identified. Forty-five and twelve target genes were identified for the upregulated and downregulated DE-miRNAs, respectively. CDKN1A, CDC23, EGR1, HIF1A, and TRIM28 were the hub genes with the highest degrees of connectivity. CIBERSORT revealed increases in the numbers of activated NK cells, M1 and M2 macrophages, CD4 naive T cells, and regulatory T cells in IgAN. Additionally, HIF1A, CDC23, TRIM28, and CDKN1A in IgAN patients were associated with immune cell infiltration. CONCLUSIONS A potential miRNA-mRNA regulatory network contributing to IgAN onset and progression was successfully established. The results of the present study may facilitate the diagnosis and treatment of IgAN by targeting established miRNA-mRNA interaction networks. Infiltrating immune cells may play significant roles in IgAN pathogenesis. Future studies on these immune cells may help guide immunotherapy for IgAN patients.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Bei Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shang-Wei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| | - Xuan-Yi Du
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China.
| |
Collapse
|
18
|
Xu Y, He Y, Hu H, Xu R, Liao Y, Dong X, Song H, Chen X, Chen J. The increased miRNA-150-5p expression of the tonsil tissue in patients with IgA nephropathy may be related to the pathogenesis of disease. Int Immunopharmacol 2021; 100:108124. [PMID: 34600394 DOI: 10.1016/j.intimp.2021.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The microRNA (miRNA) expression of the tonsil tissues in patients with immunoglobulin A (IgA) nephropathy (IgAN) has not been reported in the literature. METHODS In this study, the expression of nine miRNAs was measured in the tonsil tissues of patients with IgAN, including miRNA-21-5p, miRNA-29a-3p, miRNA-34a-5p, miRNA-146a-5p, miRNA-146b-5p, miRNA-148b-3p, miRNA-150-5p, miRNA-155-5p, and miRNA-181a-5p. Forty patients with proved primary IgA nephropathy were enrolled in our study, 20 IgAN patients with gross hematuria, which induced by tonsillitis (GH-IgAN group) and 20 IgAN patients without gross hematuria in the history (non-GH-IgAN group). Another 20 patients recruited as the control group (CT group) were chronic tonsillitis without kidney disease. RESULTS Compared to the CT group, the expression level of miRNA-150-5p in the tonsils was significantly upregulated in the GH-IgAN group, but not in the non-GH-IgAN group (P = 0.031 and P = 0.122, respectively). A correlation analysis was performed between the expression of miRNAs in the tonsils and the clinical data of IgAN patients. The results showed that in the GH-IgAN group, the miRNA-150 expression was positively correlated with systolic blood pressure (β = 2.36, 95% CI 1.11-3.61, P = 0.0016), diastolic blood pressure (β = 1.02, 95% CI 0.22-1.82, P = 0.0224), uric acid (β = 7.43, 95% CI 1.81-13.04, P = 0.0184), leukocyte count (β = 0.22, 95% CI 0.09-0.35, P = 0039), neutrophil count (β = 0.19, 95% CI 0.06-0.32, P = 0.0096), cholesterol (β = 0.09, 95% CI 0.02-0.16, P = 0.0207) and triglyceride level (β = 0.16, 95% CI 0.10-0.22, P < 0.000). Besides, it was negatively correlated with the estimated glomerular filtration rate (eGFR) (β = -2.06, 95% CI: -3.90 - -0.21, P = 0.0421) in the GH-IgAN group; however, no significant correlation was found in the non-GH-IgAN group. CONCLUSION The present findings suggest that miRNA-150-5p may be important in the pathogenesis of IgAN, especially in mucosal immunity against the disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, 518102, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ricong Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ying Liao
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xu Dong
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Haiying Song
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiaojie Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Jia Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
19
|
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. It is considered that the pathogenesis of IgAN involves the ‘multiple hit theory’ and the immune-inflammatory mechanism; however, these theories have certain limitations. The gold standard for diagnosing IgAN is still renal biopsy. Although renal biopsy is accurate, it is traumatic and is associated with some risks and limitations, so there is a need for non-invasive diagnostic methods. According to recent studies, microRNAs (miRNAs) play important roles in the occurrence and development of IgAN; thus, they provide the possibility of the noninvasive diagnosis of IgAN and also have some value in predicting prognosis. This review summarizes the current research status of miRNAs in the occurrence, development, diagnosis, and prognosis of IgAN. We also highlight some interesting and challenging points that require further study.
Collapse
Affiliation(s)
- Xingchen Yao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Yaling Zhai
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Huanping An
- Medicine Experiment Center, Hanzhong Vocational and Technical College, Hanzhong, China
| | - Jingge Gao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Yazhuo Chen
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Wenhui Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Chancharoenthana W, Leelahavanichkul A, Ariyanon W, Vadcharavivad S, Phumratanaprapin W. Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study. J Clin Med 2021; 10:jcm10173939. [PMID: 34501386 PMCID: PMC8432075 DOI: 10.3390/jcm10173939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
Recurrent IgA nephropathy (IgAN) remains an important cause of allograft loss in renal transplantation. Due to the limited efficacy of corticosteroid in the treatment of recurrent glomerulonephritis, rituximab was used in kidney transplant (KT) recipients with severe recurrent IgAN. A retrospective cohort study was conducted between January 2015 and December 2020. Accordingly, there were 64 KT recipients with biopsy-proven recurrent IgAN with similar baseline characteristics that were treated with the conventional standard therapy alone (controls, n = 43) or together with rituximab (cases, n = 21). All of the recipients had glomerular endocapillary hypercellularity and proteinuria (>1 g/d) with creatinine clearance (CrCl) > 30 mL/min/1.73 m2 and well-controlled blood pressure using renin–angiotensin–aldosterone blockers. The treatment outcomes were renal allograft survival rate, proteinuria, and post-treatment allograft pathology. During 3.8 years of follow-up, the rituximab-based regimen rapidly decreased proteinuria within 12 months after rituximab administration and maintained renal allograft function—the primary endpoint—for approximately 3 years. There were eight recipients in the case group (38%), and none in the control group reached a complete remission (proteinuria < 250 mg/d) at 12 months after treatment. Notably, renal allograft histopathology from patients with rituximab-based regimen showed the less severe endocapillary hypercellularity despite the remaining strong IgA deposition. In conclusion, adjunctive treatment with rituximab potentially demonstrated favorable outcomes for treatment of recurrent severe IgAN post-KT as demonstrated by proteinuria reduction and renal allograft function in our cohort. Further in-depth mechanistic studies with the longer follow-up periods are recommended.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Correspondence: ; Tel.: +66-2256-4132; Fax: +66-2252-5952
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Translational Research in Inflammatory and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wassawon Ariyanon
- Cardiometabolic Centre, Department of Medicine, Bangkok Nursing Hospital, Bangkok 10500, Thailand;
| | - Somratai Vadcharavivad
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Weerapong Phumratanaprapin
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
21
|
The Non-Coding RNA Landscape in IgA Nephropathy-Where Are We in 2021? J Clin Med 2021; 10:jcm10112369. [PMID: 34071162 PMCID: PMC8198207 DOI: 10.3390/jcm10112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
IgA nephropathy (IgAN) is the most commonly diagnosed primary glomerulonephritis worldwide. It is a slow progressing disease with approximately 30% of cases reaching end-stage kidney disease within 20 years of diagnosis. It is currently only diagnosed by an invasive biopsy and treatment options are limited. However, the current surge in interest in RNA interference is opening up new horizons for the use of this new technology in the field of IgAN management. A greater understanding of the fundamentals of RNA interference offers exciting possibilities both for biomarker discovery and, more importantly, for novel therapeutic approaches to target key pathogenic pathways in IgAN. This review aims to summarise the RNA interference literature in the context of microRNAs and their association with the multifaceted aspects of IgA nephropathy.
Collapse
|
22
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
23
|
Masi LN, Lotufo PA, Ferreira FM, Rodrigues AC, Serdan TDA, Souza‐Siqueira T, Braga AA, Saldarriaga MEG, Alba‐Loureiro TC, Borges FT, Cury DP, Hirata MH, Gorjão R, Pithon‐Curi TC, Lottenberg SA, Fedeli LMG, Nakaya HTI, Bensenor IJM, Curi R, Hirabara SM. Profiling plasma-extracellular vesicle proteins and microRNAs in diabetes onset in middle-aged male participants in the ELSA-Brasil study. Physiol Rep 2021; 9:e14731. [PMID: 33587339 PMCID: PMC7883809 DOI: 10.14814/phy2.14731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
We measured plasma-derived extracellular vesicle (EV) proteins and their microRNA (miRNA) cargos in normoglycemic (NG), glucose intolerant (GI), and newly diagnosed diabetes mellitus (DM) in middle-aged male participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brazil). Mass spectrometry revealed decreased IGHG-1 and increased ITIH2 protein levels in the GI group compared with that in the NG group and higher serotransferrin in EVs in the DM group than in those in the NG and GI groups. The GI group also showed increased serum ferritin levels, as evaluated by biochemical analysis, compared with those in both groups. Seventeen miRNAs were differentially expressed (DEMiRs) in the plasma EVs of the three groups. DM patients showed upregulation of miR-141-3p and downregulation of miR-324-5p and -376c-3p compared with the NG and GI groups. The DM and GI groups showed increased miR-26b-5p expression compared with that in the NG group. The DM group showed decreased miR-374b-5p levels compared with those in the GI group and higher concentrations than those in the NG group. Thus, three EV proteins and five DEMiR cargos have potential prognostic importance for diabetic complications mainly associated with the immune function and iron status of GI and DM patients.
Collapse
Affiliation(s)
- Laureane N. Masi
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Paulo A. Lotufo
- Center for Clinical and Epidemiologic ResearchUniversity of Sao PauloSao PauloBrazil
| | | | - Alice C. Rodrigues
- Department of PharmacologyInstitute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Tamires D. A. Serdan
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Talita Souza‐Siqueira
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Aécio A. Braga
- Faculty of Pharmaceutical SciencesUniversity of São PauloSao PauloBrazil
| | | | - Tatiana C. Alba‐Loureiro
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Fernanda T. Borges
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Diego P. Cury
- Department of AnatomyInstitute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Mario H. Hirata
- Faculty of Pharmaceutical SciencesUniversity of São PauloSao PauloBrazil
| | - Renata Gorjão
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Tania C. Pithon‐Curi
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Simão A. Lottenberg
- Faculty of MedicineUniversity of Sao PauloHospital das ClínicasSao PauloBrazil
| | - Ligia M. G. Fedeli
- Center for Clinical and Epidemiologic ResearchUniversity of Sao PauloSao PauloBrazil
| | - Helder T. I. Nakaya
- Department of PharmacologyInstitute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | | | - Rui Curi
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
- Butantan InstituteSão PauloBrazil
| | - Sandro M. Hirabara
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| |
Collapse
|
24
|
Alghamdi MA, AL-Eitan LN, Tarkhan AH, Al-Qarqaz FA. Global gene methylation profiling of common warts caused by human papillomaviruses infection. Saudi J Biol Sci 2021; 28:612-622. [PMID: 33424347 PMCID: PMC7783806 DOI: 10.1016/j.sjbs.2020.10.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Infection with the human papillomaviruses (HPV) often involves the epigenetic modification of the host genome. Despite its prevalence among the population, host genome methylation in HPV-induced warts is not clearly understood. In this study, genome-wide methylation profiling was carried out on paired healthy skin and wart samples in order to investigate the effects that benign HPV infection has on gene methylation status. To overcome this gap in knowledge, paired wart (n = 12) and normal skin (n = 12) samples were obtained from Arab males in order to perform DNA extraction and subsequent genome-wide methylation profiling on the Infinium Methylation EPIC Bead Chip microarray. Analysis of differential methylation revealed a clear pattern of discrimination between the wart and normal skin samples. In warts, the most differentially methylated (DM) genes included long non-coding RNAs (AC005884, AL049646.2, AC126121.2, AP001790.1, and AC107959.3), microRNAs (MIR374B, MIR596, MIR1255B1, MIR26B, and MIR196A2),snoRNAs (SNORD114-22, SNORD70, and SNORD114-31), pseudogenes (AC069366.1, RNU4ATAC11P, AC120057.1, NANOGP3, AC106038.2, TPT1P2, SDC4P, PKMP3, and VN2R3P), and protein-coding genes (AREG, GJB2, C12orf71, AC020909.2, S100A8, ZBED2, FABP7, and CYSLTR1). In addition, pathway analysis revealed that, among the most differentially methylated genes, STAT5A, RARA, MEF2D, MAP3K8, and THRA were the common regulators. It can be observed that HPV-induced warts involve a clear and unique epigenetic alteration to the host genome.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
25
|
Luo ZF, Tang D, Xu HX, Lai LS, Chen JJ, Lin H, Yan Q, Zhang XZ, Wang G, Dai Y, Sui WG. Differential expression of transfer RNA-derived small RNAs in IgA nephropathy. Medicine (Baltimore) 2020; 99:e23437. [PMID: 33235128 PMCID: PMC7710249 DOI: 10.1097/md.0000000000023437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is one of the most common forms of primary glomerulonephritis. Recent studies have indicated that small noncoding RNAs, such as tRNA-derived small RNAs (tsRNAs), might be novel biomarkers for glomerulonephritis. We therefore investigated the potential roles and possible functions of the tsRNAs in IgAN. METHOD Peripheral blood mononuclear cells (PBMCs) were extracted from blood samples of the patients with IgAN and healthy control groups. The expression profiles of tsRNAs were assessed by small RNA sequencing (RNA-Seq) in PBMCs of the IgAN and control groups. Dysregulated tsRNAs were selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). Target gene prediction and enrichment were performed by bioinformatics analysis. RESULTS The results revealed that 143 significantly upregulated and 202 significantly downregulated tsRNAs were differentially altered in the IgAN group compared with the control group. Five upregulated tsRNAs (tRF-Val-AAC-007, tRF-Ala-AGC-063, tRF-Gln-CTG-010, tRF-Tyr-GTA-011 and tRF-Thr-AGT-007) and 3 downregulated tsRNAs (tiRNA-Val-TAC-004, tRF-Gly-CCC-005 and tRF-His-GTG-006) were selected for validation by qRT-PCR; the results were consistent with the sequencing data. Gene Ontology (GO) analysis revealed that the target genes predicted by upregulated tsRNAs were mostly enriched in "nucleic acid metabolic process,' "intracellular part,' and "ion binding,' whereas the target genes predicted by downregulated tsRNAs were mostly enriched in "regulation of cellular component organization,' "membrane-bound organelle,' and "ion binding.' Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes predicted by upregulated tsRNAs were mostly enriched in "herpes simplex virus 1 infection,' whereas the target genes predicted by downregulated tsRNAs were mostly enriched in "circadian rhythm CONCLUSIONS:: The present study confirmed the differential expression of tsRNAs in patients with IgAN, and these dysregulated tsRNAs might be novel potential targets for the diagnosis and treatment of IgAN.
Collapse
Affiliation(s)
- Zhi-Feng Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Donge Tang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Hui-Xuan Xu
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Liu-Sheng Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Jie-Jing Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Hua Lin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Qiang Yan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Xin-Zhou Zhang
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Gang Wang
- University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, Guangdong, China
| | - Yong Dai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Wei-Guo Sui
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| |
Collapse
|
26
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
27
|
Wang Z, Liao Y, Wang L, Lin Y, Ye Z, Zeng X, Liu X, Wei F, Yang N. Small RNA deep sequencing reveals novel miRNAs in peripheral blood mononuclear cells from patients with IgA nephropathy. Mol Med Rep 2020; 22:3378-3386. [PMID: 32945407 PMCID: PMC7453501 DOI: 10.3892/mmr.2020.11405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) contribute to the deposition of immunoglobulin A (IgA) and progression of IgA nephropathy (IgAN). This study was performed to identify novel microRNAs (miRNAs/miRs) associated with IgAN. Small RNAs were isolated from PBMCs collected from 10 healthy participants and 10 patients with IgAN; the RNAs were then subjected to high‑throughput small RNA sequencing. The results showed that miRNAs constituted 70.33 and 69.83% of small RNAs in PBMCs from healthy participants and patients with IgAN, respectively. In total, 44 differentially expressed miRNAs were identified, of which 34 were upregulated and 10 were downregulated. Among these differentially expressed miRNAs, most showed novel associations with IgAN, except miR‑148a‑3p, miR‑184 and miR‑200a. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes of the differentially expressed miRNAs were primarily enriched in cancer pathways, the PI3K‑Akt signaling pathway and MAPK pathways, all of which control cell proliferation and gene expression. Moreover, miR‑3121‑3p, miR‑203a‑3p and miR‑200a‑3p may regulate core 1 synthase, glycoprotein‑N‑acetylgalactosamine 3‑β‑galactosyltransferase 1 (C1GALT1) expression by binding to its 3' untranslated region. In conclusion, 44 differentially expressed miRNAs were discovered, 41 of which were newly found to be associated with IgAN. The differentially expressed miRNAs may regulate the progression of IgAN by controlling the behavior of PBMCs or deposition of IgA via targeting of signaling pathways or expression of C1GALT1. These findings may provide a basis for further research regarding IgAN diagnosis and therapy.
Collapse
Affiliation(s)
- Ziyan Wang
- Blood Purification Center, Air Force Hospital of Southern Theater, PLA, Guangzhou, Guangdong 510062, P.R. China
| | - Yu Liao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lixin Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yanzhao Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ziyi Ye
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xufang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaorou Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fangning Wei
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Nizhi Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
28
|
Tang Y, He H, Hu P, Xu X. T lymphocytes in IgA nephropathy. Exp Ther Med 2020; 20:186-194. [PMID: 32509008 PMCID: PMC7271719 DOI: 10.3892/etm.2020.8673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN), the most common primary glomerulonephritis worldwide, is the main cause of end-stage renal disease. IgAN is characterized by the accumulation of immune complexes in the circulation, which contain abnormal levels of IgA. IgAN primarily results from galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1 deposition in the renal mesangium, causing local proliferation and matrix expansion. Gd-IgA1 has been confirmed as one of the key effectors in the pathogenesis of IgAN, but the origin of Gd-IgA1 is not clear. Recent studies have shown that Gd-IgA1 deposition could be the result of mucosally primed plasma cells and is associated with T cell dysregulation. T cells contribute to the IgA response and play an important role in the development of IgAN. In the present review, the latest discoveries regarding the role of T lymphocytes in the pathogenesis of IgAN have been summarized. Understanding these advances will allow novel therapeutic strategies for the treatment of IgAN.
Collapse
Affiliation(s)
- Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Pin Hu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
29
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
30
|
MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol 2019; 33:551-560. [PMID: 31863364 DOI: 10.1007/s40620-019-00682-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have revealed abnormal lymphocyte subsets in IgA nephropathy (IgAN). Some microRNAs have been reported to influence T helper differentiation. Here, we explored the underlying mechanism regarding how miRNAs regulate lymphocyte subsets in IgAN. METHODS First, miRNA and mRNA profiles in PBMCs from IgAN patients and controls were obtained by next-generation sequencing and gene expression array. The target miRNAs and mRNAs were identified through combined analysis. Then, in an independent population, we detected the expression of target miRNA in CD3+ T cells and CD19+ B cells. Next, we detected T helper cell subgroups and plasma IgA1 levels in another independent population and analyzed the correlations between them. RESULTS In total, 22 differentially expressed miRNAs were identified between IgAN patients and controls. Among them, microRNA-21-5p (miR-21) showed the highest expression, and SPRY1, SPRY2, and FASLG were chosen as miR-21 target genes. Then, we confirmed elevated miR-21 levels in CD3+ T cells of IgAN patients. Accordingly, decreased mRNA levels of SPRY1, SPRY2, and FASLG were found, and miR-21 showed a significant negative correlation with SPRY1 levels in CD3+ T cells of IgAN patients. Finally, we revealed that the proportion of Th17 cells was significantly elevated in IgAN patients and negatively correlated with SPRY1 expression. Furthermore, the proportion of Th17 cells showed a positive correlation trend with plasma IgA1 levels. CONCLUSIONS Our results suggested that in IgAN, the upregulated miR-21 expression in T lymphocytes inhibited SPRY1 expression and thereby induced Th17 polarization, which might influence the characteristic feature of IgA1 overproduction in IgAN patients.
Collapse
|
31
|
Schena FP, Serino G, Sallustio F, Falchi M, Cox SN. Omics studies for comprehensive understanding of immunoglobulin A nephropathy: state-of-the-art and future directions. Nephrol Dial Transplant 2019; 33:2101-2112. [PMID: 29905852 DOI: 10.1093/ndt/gfy130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common worldwide primary glomerulonephritis with a strong autoimmune component. The disease shows variability in both clinical phenotypes and endpoints and can be potentially subdivided into more homogeneous subtypes through the identification of specific molecular biomarkers. This review focuses on the role of omics in driving the identification of potential molecular subtypes of the disease through the integration of multilevel data from genomics, transcriptomics, epigenomics, proteomics and metabolomics. First, the identification of molecular biomarkers, including mapping of the full spectrum of common and rare IgAN risk alleles, could permit a more precise stratification of IgAN patients. Second, the analysis of transcriptomic patterns and their modulation by epigenetic factors like microRNAs has the potential to increase our understanding in the pathogenic mechanisms of the disease. Third, the specificity of urinary proteomic and metabolomic signatures and the understanding of their functional relevance may contribute to the development of new non-invasive biomarkers for a better molecular characterization of the renal damage and its follow-up. All these approaches can give information for targeted therapeutic decisions and will support novel clinical decision making. In conclusion, we offer a framework of omic studies and outline barriers and potential solutions that should be used for improving the diagnosis and treatment of the disease. The ongoing decade is exploiting novel high-throughput molecular technologies and computational analyses for improving the diagnosis (precision nephrology) and treatment (personalized therapy) of the IgAN subtypes.
Collapse
Affiliation(s)
- Francesco Paolo Schena
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.,Schena Foundation, Valenzano, Bari, Italy
| | - Grazia Serino
- National Institute of Gastroenterology 'S. de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Fabio Sallustio
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sharon N Cox
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.,Schena Foundation, Valenzano, Bari, Italy
| |
Collapse
|
32
|
The Role of MicroRNAs in Selected Forms of Glomerulonephritis. Int J Mol Sci 2019; 20:ijms20205050. [PMID: 31614644 PMCID: PMC6834307 DOI: 10.3390/ijms20205050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Glomerulonephritis (GN) represents a collection of kidney diseases characterized by inflammation within the renal glomeruli and small blood vessels. The lesions that occur in other nephron structures mainly result from the harmful effects of proteinuria. In recent years, an emphasis has been placed on gaining a better insight into the pathogenesis and pathophysiology of GN in order to facilitate diagnoses and provide efficient and targeted treatments of the disease. Owing to the advanced molecular and genetic diagnostic techniques available today, researchers have been able to elucidate that most cases of GN are determined by genetic risk factors and are associated with the abnormal functioning of the immune system (the immunologically mediated forms of GN). MicroRNAs (miRNAs) are a group of single-stranded, non-coding molecules, approximately 20 nucleotides in length, that act as regulatory factors in the post-transcriptional processes capable of regulating the expression of multiple genes. In this paper we present the available research aiming to determine effects of miRNAs on the development and progression of GN and discuss the potential role of miRNAs as new diagnostic markers and therapeutic targets.
Collapse
|
33
|
Liu Y, Liu X, Jia J, Zheng J, Yan T. Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy. J Transl Med 2019; 17:320. [PMID: 31547815 PMCID: PMC6757375 DOI: 10.1186/s12967-019-2064-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 09/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the leading cause of end-stage kidney disease. Previous mRNA microarray profiling studies of IgAN revealed inconsistent data. We sought to identify the aberrantly expressed genes and biological pathways by integrating IgAN gene expression datasets in blood cells and performing systematically experimental validation. We also explored the relationship between target genes and galactose-deficient IgA1 (Gd-IgA1) in IgAN. Methods We retrieved Gene Expression Omnibus (GEO) datasets of IgAN. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for functional analysis. Deep sequencing on RNA isolated from B cells was used for microarray validation. The relationship between target mRNA expressions and Gd-IgA1 levels in serum were also studied. Results Three studies with microarray expression profiling datasets met our inclusion criteria. We identified 655 dyregulated genes, including 319 up-regulated and 336 down-regulated genes in three GEO datasets with a total of 35 patients of IgAN and 19 healthy controls. Based on biological process in GO term, these dyregulated genes are mainly related to pentose-phosphate shunt, non-oxidative branch, post-embryonic camera-type eye development and leukocyte activation. KEGG pathway analysis of microarray data revealed that these aberrantly expressed genes were enriched in human T-cell leukemia virus 1 infection, proteoglycans in cancer, intestinal immune network for IgA production and autophagy. We further performed deep sequencing on mRNAs isolated from B cells of an independent set of five patients with IgAN and three healthy persons with the same clinical and demographic characteristics. Seventy-seven genes overlapped with 655 differentially regulated genes mentioned above, including 43 up-regulated and thirty-four down-regulated genes. We next investigated whether these genes expression correlated with Gd-IgA1 levels in IgAN patients. Pearson correlation analyses showed PTEN (phosphatase and tensin homolog) was the most powerful gene negatively correlated with Gd-IgA1 levels. Conclusions These results demonstrated that dyregulated genes in patients with IgAN were enriched in intestinal immune network for IgA production and autophagy process, and PTEN in B cells might be involved in the mechanism of Gd-IgA1 production.
Collapse
Affiliation(s)
- Youxia Liu
- Department of Nephrology, Tianjin Medical University General Hospital, NO. 154, Anshan Road, Heping District, Tianjin, People's Republic of China.
| | - Xiangchun Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, NO. 154, Anshan Road, Heping District, Tianjin, People's Republic of China
| | - Jie Zheng
- Radiology Department, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, NO. 154, Anshan Road, Heping District, Tianjin, People's Republic of China.
| |
Collapse
|
34
|
Bai L, Li H, Li J, Song J, Zhou Y, Liu B, Lu R, Zhang P, Chen J, Chen D, Pang Y, Liu X, Wu J, Liang C, Zhou J. Immunosuppressive effect of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via regulating the differentiation of CD4+ T cell subsets in rats. Int Immunopharmacol 2019; 70:313-323. [DOI: 10.1016/j.intimp.2019.02.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
|
35
|
Bian H, Zhou Y, Zhou D, Zhang Y, Shang D, Qi J. The latest progress on miR-374 and its functional implications in physiological and pathological processes. J Cell Mol Med 2019; 23:3063-3076. [PMID: 30772950 PMCID: PMC6484333 DOI: 10.1111/jcmm.14219] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non‐coding RNAs (ncRNAs) have been emerging players in cell development, differentiation, proliferation and apoptosis. Based on their differences in length and structure, they are subdivided into several categories including long non‐coding RNAs (lncRNAs >200nt), stable non‐coding RNAs (60‐300nt), microRNAs (miRs or miRNAs, 18‐24nt), circular RNAs, piwi‐interacting RNAs (26‐31nt) and small interfering RNAs (about 21nt). Therein, miRNAs not only directly regulate gene expression through pairing of nucleotide bases between the miRNA sequence and a specific mRNA that leads to the translational repression or degradation of the target mRNA, but also indirectly affect the function of downstream genes through interactions with lncRNAs and circRNAs. The latest studies have highlighted their importance in physiological and pathological processes. MiR‐374 family member are located at the X‐chromosome inactivation center. In recent years, numerous researches have uncovered that miR‐374 family members play an indispensable regulatory role, such as in reproductive disorders, cell growth and differentiation, calcium handling in the kidney, various cancers and epilepsy. In this review, we mainly focus on the role of miR‐374 family members in multiple physiological and pathological processes. More specifically, we also summarize their promising potential as novel prognostic biomarkers and therapeutic targets from bench to bedside.
Collapse
Affiliation(s)
- Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dawei Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yongsheng Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Deya Shang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
36
|
Zhao H, Ma SX, Shang YQ, Zhang HQ, Su W. microRNAs in chronic kidney disease. Clin Chim Acta 2019; 491:59-65. [PMID: 30639583 DOI: 10.1016/j.cca.2019.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) results in high morbidity and mortality worldwide causing a huge socioeconomic burden. MicroRNA (miRNA) exert critical regulatory functions by targeting downstream genes and have been associated with many pathophysiologic processes including CKD. In fact, many studies have shown that the expression of various miRNAs was significantly changed in CKD. Current investigations have focused on revealing the relationship between miRNAs and CKD states including diabetic nephropathy, lupus nephritis, focal segmental glomerulosclerosis and IgA nephropathy. In this review, we summarize the latest advances elucidating miRNA involvement in the progression of CKD and demonstrate that miRNAs have the potential to be effective biomarkers and therapeutic targets for subsequent treatment.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China.
| |
Collapse
|
37
|
Strycharz J, Świderska E, Wróblewski A, Podolska M, Czarny P, Szemraj J, Balcerczyk A, Drzewoski J, Kasznicki J, Śliwińska A. Hyperglycemia Affects miRNAs Expression Pattern during Adipogenesis of Human Visceral Adipocytes-Is Memorization Involved? Nutrients 2018; 10:E1774. [PMID: 30445791 PMCID: PMC6266776 DOI: 10.3390/nu10111774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023] Open
Abstract
microRNAs are increasingly analyzed in adipogenesis, whose deregulation, especially visceral, contributes to the development of diabetes. Hyperglycemia is known to affect cells while occurring acutely and chronically. Therefore, we aimed to evaluate the effect of hyperglycemia on human visceral pre/adipocytes from the perspective of microRNAs. The relative expression of 78 microRNAs was determined by TaqMan Low Density Arrays at three stages of HPA-v adipogenesis conducted under normoglycemia, chronic, and intermittent hyperglycemia (30 mM). Hierarchical clustering/Pearson correlation revealed the relationship between various microRNAs' expression profiles, while functional analysis identified the genes and signaling pathways regulated by differentially expressed microRNAs. Hyperglycemia affected microRNAs' expression patterns during adipogenesis, and at the stage of pre-adipocytes, differentiated and matured adipocytes compared to normoglycemia. Interestingly, the changes that were evoked upon hyperglycemic exposure during one adipogenesis stage resembled those observed upon chronic hyperglycemia. At least 15 microRNAs were modulated during normoglycemic and/or hyperglycemic adipogenesis and/or upon intermittent/chronic hyperglycemia. Bioinformatics analysis revealed the involvement of these microRNAs in cell cycles, lipid metabolism, ECM⁻receptor interaction, oxidative stress, signaling of insulin, MAPK, TGF-β, p53, and more. The obtained data suggests that visceral pre/adipocytes exposed to chronic/intermittent hyperglycemia develop a microRNAs' expression pattern, which may contribute to further visceral dysfunction, the progression of diabetic phenotype, and diabetic complications possibly involving "epi"-memory.
Collapse
Affiliation(s)
- Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Marta Podolska
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 90-236 Lodz, Poland.
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland.
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213, 92-213 Lodz, Poland.
| |
Collapse
|
38
|
Hu S, Han R, Shi J, Zhu X, Qin W, Zeng C, Bao H, Liu Z. The long noncoding RNA LOC105374325 causes podocyte injury in individuals with focal segmental glomerulosclerosis. J Biol Chem 2018; 293:20227-20239. [PMID: 30389788 DOI: 10.1074/jbc.ra118.005579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Indexed: 01/18/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common kidney disease that results in nephrotic syndrome. FSGS arises from dysfunction and apoptosis of podocytes in the glomerulus of the kidney, leading to podocytopathy. The molecular mechanisms underlying podocyte apoptosis remain incompletely understood. Using an array of gene expression profiling, PCR, and in situ hybridization assay, we found here that the levels of the long noncoding RNA LOC105374325 were elevated in the renal podocytes of individuals with FSGS. We also observed that the microRNAs miR-34c and miR-196a/b down-regulated the expression of the apoptosis regulators BCL2-associated X, apoptosis regulator (Bax), and BCL2 antagonist/killer 1 (Bak) in podocytes. Competitive binding between LOC105374325 and miR-34c or miR-196a/b increased Bax and Bak levels and caused podocyte apoptosis. Of note, the mitogen-activated protein kinase P38 and the transcription factor CCAAT enhancer-binding protein β (C/EBPβ) up-regulated LOC105374325 expression. P38 inhibition or C/EBPβ silencing decreased LOC105374325 levels and inhibited apoptosis in adriamycin-treated podocytes. LOC105374325 overexpression decreased miR-34c and miR-196a/b levels, increased Bax and Bak levels, and induced proteinuria and focal segmental lesions in mice. In conclusion, activation of the P38/C/EBPβ pathway stimulates the expression of LOC105374325, which, in turn, increases Bax and Bak levels and causes apoptosis by competitively binding to miR-34c and miR-196a/b in the podocytes of individuals with FSGS.
Collapse
Affiliation(s)
- Shuai Hu
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Runhong Han
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and; the School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingsong Shi
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Xiaodong Zhu
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Weisong Qin
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Caihong Zeng
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Hao Bao
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and.
| | - Zhihong Liu
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and.
| |
Collapse
|
39
|
Wu X, Zhao X, Miao X. MicroRNA-374b promotes the proliferation and differentiation of neural stem cells through targeting Hes1. Biochem Biophys Res Commun 2018; 503:593-599. [DOI: 10.1016/j.bbrc.2018.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 02/07/2023]
|
40
|
Tang Y, He H, Sun W, Hu P, Chen X, Xu X. Corticosteroid therapy in IgA nephropathy with minimal proteinuria and high renal pathological score: A single‑center cohort study. Mol Med Rep 2018; 18:4103-4112. [PMID: 30132546 DOI: 10.3892/mmr.2018.9413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/12/2018] [Indexed: 11/06/2022] Open
Abstract
Currently, there is no clear evidence that advocates the widespread use of corticosteroids for the treatment of immunoglobulin A nephropathy (IgAN) with minimal proteinuria (<1 g/day). The recent Kidney Disease: Improving Global Outcomes Clinical Practice Guideline recommends supportive corticosteroid treatment. In the present study, 45 IgAN patients with high renal pathological scores and minimal proteinuria were enrolled. The patients were randomly divided into two groups. The treatment group received methylprednisolone tablets in addition to angiotensin‑converting‑enzyme inhibitor (ACE‑I) and/or angiotensin‑receptor blocker (ARB) treatment. The control group only received ACE‑I and/or ARB treatment. In the treatment group, a single dose of 1 mg/kg (maximum 60 mg/day) methylprednisolone tablets was given daily followed by gradually decreasing dosage. The follow‑up time of the patients was 3 years. In addition, the underlying mechanisms were investigated. The results indicated that there was a significant reduction in the amount of urinary proteins in the treatment group compared with the control group. At the end of the follow‑up, the endpoint event rate of moderate or severe proteinuria and decrease in estimated glomerular filtration rate (eGFR) in the treatment group was significantly lower than the control group. Furthermore, higher levels of serum cytokines, interleukin (IL)‑4, IL‑17, transforming growth factor‑β1 and IL‑21, were detected in patients with IgAN compared with a group of healthy controls. There was no significant difference in IFN‑γ expression between the IgAN and healthy control groups. Furthermore, the expression of Janus kinase (Jak)1, Jak3, signal transducer and activator of transcription (STAT)3 and STAT6 was significantly upregulated in patients with IgAN compared with healthy controls. However, the expression levels of STAT5 and chaperone protein, C1GALT1 specific chaperone 1, in IgAN patients were significantly reduced compared with healthy controls. In addition, there was no significant difference in the expression of Jak2, tyrosine kinase 2, STAT1 and STAT4 between the two groups. In conclusion, for IgAN patients with minimal proteinuria and high renal pathological score corticosteroid therapy is likely to be effective. The dysregulation of serum cytokine levels in these patients with IgAN may have a role in the pathogenesis and progression of disease, which is associated with the activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Yuyan Tang
- Department of Nephrology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Haidong He
- Department of Nephrology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Weiqian Sun
- Department of Nephrology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Pin Hu
- Department of Nephrology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xia Chen
- Department of Nephrology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xudong Xu
- Department of Nephrology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
41
|
Long ZW, Wu JH, Cai-Hong, Wang YN, Zhou Y. MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway. Mol Cells 2018; 41:532-544. [PMID: 29902839 PMCID: PMC6030239 DOI: 10.14348/molcells.2018.2211] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/30/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR-374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.
Collapse
Affiliation(s)
- Zi-Wen Long
- Department of Surgery, Shigatse People’s Hospital, Shigatse 857000, P.R.
China
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R.
China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.
China
| | - Jiang-Hong Wu
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R.
China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.
China
| | - Cai-Hong
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R.
China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.
China
| | - Ya-Nong Wang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R.
China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.
China
| | - Ye Zhou
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R.
China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.
China
| |
Collapse
|
42
|
Sun D, Wang X, Sui G, Chen S, Yu M, Zhang P. Downregulation of miR-374b-5p promotes chemotherapeutic resistance in pancreatic cancer by upregulating multiple anti-apoptotic proteins. Int J Oncol 2018; 52:1491-1503. [PMID: 29568910 PMCID: PMC5873836 DOI: 10.3892/ijo.2018.4315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Resistance to first-line chemotherapeutic drugs such as gemcitabine contributes to the poor prognosis of patients with pancreatic cancer. MicroRNAs (miRNA) regulate chemoresistance in pancreatic cancer. By analyzing the miRNA sequencing dataset of pancreatic cancer from The Cancer Genome Atlas, it was demonstrated that miR-374b-5p expression was dramatically reduced in pancreatic cancer tissues compared with adjacent normal tissues, as well as decreased in chemoresistant compared with chemosensitive pancreatic carcinoma tissues. The decreased expression of miR-374-5p was associated with poor overall and progression-free survival in patients with pancreatic cancer. Furthermore, increased expression of miR-374b-5p abrogated, while the silencing miR-374b-5p increased the chemoresistance of pancreatic cancer cells to gemcitabine in vitro. Importantly, the upregulation of miR-374b-5p ameliorated the chemoresistance of pancreatic cancer cells to gemcitabine in vivo. It was also demonstrated that miR-374b-5p targeted several anti-apoptotic proteins, including B-cell lymphoma 2, Baculoviral IAP Repeat Containing 3 and X-linked inhibitor of apoptosis in pancreatic cancer cells, which further attenuated chemo-resistance in pancreatic cancer. Therefore, the results of the current study indicate that miR-374b-5p serves as a potential diagnostic marker. It also suggests that miR-374b-5p sensitizes cells to chemotherapy and may be used in combination with chemotherapeutic agents such as gemcitabine to treat patients with pancreatic cancer.
Collapse
Affiliation(s)
- Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guoqing Sui
- Department of Ultrasound, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Si Chen
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Miao Yu
- Center for Private Medical Service and Healthcare, The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
43
|
Li C, Shi J, Zhao Y. MiR-320 promotes B cell proliferation and the production of aberrant glycosylated IgA1 in IgA nephropathy. J Cell Biochem 2018; 119:4607-4614. [PMID: 29266359 DOI: 10.1002/jcb.26628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis. However, the etiology of this disease is complex and the pathogenesis of IgAN is still unknown. MicroRNAs (miRNAs) play important roles in a lot of pathological and physiological processes. In this study, we showed that the expression of miR-320 was significantly upregulated in renal tissues and urinary of IgAN patients. Moreover, the intra-renal expression level of miR-320 had significant correlation with miR-320 expression in the urinary of IgAN patients. Overexpression of miR-320 increased B cell proliferation and promoted cyclin D1 expression. Furthermore, we identified that PTEN was direct target gene of miR-320 in the B cell. Ectopic expression of miR-320 suppressed PTEN expression. Overexpression of miR-320 decreased Cosmc expression in the B cell. In addition, we demonstrated that Cosmc expression was significantly downregulated in the renal tissues and urinary of IgAN patients. The intra-renal expression level of Cosmc had significant correlation with Cosmc expression of urinary in IgAN patients. We proved that the expression level of Cosmc was negatively correlated with the expression of miR-320 in the renal tissues of IgAN patients. Overexpression of miR-320 promoted the B cell proliferation through suppressing PTEN expression. Taken together, these data suggested that miR-320 acted an important role in the development of IgAN.
Collapse
Affiliation(s)
- Chunmei Li
- The Second Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Shi
- Department of Geriatrics, Daqing Fifth Hospital, Daqing, Heilongjiang, China
| | - Yu Zhao
- Department of Nephrology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| |
Collapse
|
44
|
Huang F, Wang B, Zeng J, Sang S, Lei J, Lu Y. MicroRNA-374b inhibits liver cancer progression via down regulating programmed cell death-1 expression on cytokine-induced killer cells. Oncol Lett 2018; 15:4797-4804. [PMID: 29552119 PMCID: PMC5840577 DOI: 10.3892/ol.2018.7951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Programmed cell death-1 (PD-1) is an oncogene associated with suppressing proliferation and cytokine production of T cells in the progression of liver cancer. microRNAs (miRs) regulate gene expression via specific binding to the target 3′untranslated region of mRNA. In the present study, miR-374b was indicated to interact with PD-1 and affect the tumor-targeting capacity of cytokine-induced killer (CIK) cells. miR-374b inhibitor significantly increased PD-1 expression in CIK cells. A synthetic small interfering (si)RNA targeting PD-1 was employed to silence the expression level of PD-1 in CIK cells. Then, the antitumor effect of siPD-1 in CIK cells was investigated. In vitro study demonstrated that IFN-γ secretion and the concentration of lactate dehydrogenase were significantly increased in the PD-1 knockdown group; however, the viability of HepG2 cells in the PD-1 knockdown group had significantly decreased, compared with the HepG2 cells in the negative control group. In vivo study indicated that mice inoculated with HepG2 cells and CIK cells with PD-1 knocked down had a significantly smaller tumor volume, compared with the control group. To conclude, human CIK cells transfected with siPD-1 can target liver cancer cells and enhance immunotherapy efficacy, and therefore they have potential in the immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Fen Huang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Bo Wang
- Department of Emergency, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Jiangzheng Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Shenggang Sang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Junhua Lei
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yanda Lu
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
45
|
Selvaskandan H, Pawluczyk I, Barratt J. MicroRNAs: a new avenue to understand, investigate and treat immunoglobulin A nephropathy? Clin Kidney J 2018; 11:29-37. [PMID: 29423198 PMCID: PMC5798124 DOI: 10.1093/ckj/sfx096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common cause of primary glomerulonephritis worldwide. Up to 30% of cases develop the progressive form of the disease, eventually requiring renal replacement therapy. Diagnosis and risk stratification relies on an invasive kidney biopsy and management options are limited, with recurrence following renal transplantation being common. Thus the quest to understand the pathophysiology of IgAN has been one of great importance. MicroRNAs (miRs) are short nucleotides that suppress gene expression by hybridizing to the 3' untranslated region of messenger RNA (mRNAs), promoting mRNA degradation or disrupting translation. First discovered in 1993, miRs have since been implicated in a number of chronic conditions, including cancer, heart disease and kidney disease. The mounting interest in the field of miRs has led to fascinating developments in the field of nephrology, ranging from their roles as biomarkers for disease to the development of miR antagonists as avenues for treatment. The translational potential for miRs in IgAN is thus well grounded and may represent a paradigm shift in current approaches to the disease. This review aims to summarize the literature with regard to miRs and their roles in IgAN.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Izabella Pawluczyk
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
46
|
Wang S, Zhang Z, Wang J, Miao H. MiR-107 induces TNF-α secretion in endothelial cells causing tubular cell injury in patients with septic acute kidney injury. Biochem Biophys Res Commun 2017; 483:45-51. [PMID: 28063928 DOI: 10.1016/j.bbrc.2017.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022]
Abstract
Activation of endothelial cells plays a key role in septic acute kidney injury (AKI). This study investigated the role of miRNA in endothelial-induced tubular cell injury in sepsis. Circulating endothelial cells (CECs) from septic AKI, non-septic AKI, septic non-AKI patients and healthy volunteers were isolated and cultured, and HK2 cells were exposed to CEC-conditioned medium. CEC-conditioned medium prepared from septic AKI patients led to cell shrinkage, decreased E-cadherin, the release of NAG and cell apoptosis in HK2 cells. TNF-α mediated the tubular cell injury induced by CEC-conditioned medium prepared from septic AKI patients. PCR array analysis detected that miR-107 was significantly increased in the CECs of septic AKI patients. MiR-107 was verified to target the 3'UTR of Dual-specificity phosphatase 7(DUSP7). Transfection of miR-107 ASO recovered the expression of DUSP7, suppressed the phosphorylation of ERK, and decreased the secretion of TNF-α in the CECs of septic AKI patients and in the peritubular endothelial cells of septic AKI mice. The inhibition of miR-107 prevented the decrease of E-cadherin, the release of NAG and cell apoptosis in HK2 cells exposed to CEC-conditioned medium prepared from septic AKI patients, and preserved the normal renal morphology and decreased the serum creatinine level in septic AKI mice. In conclusion, our study suggests that the increased miR-107 induces TNF-α secretion by targeting DUSP7 in endothelial cells, which may directly cause tubular cell injury in septic AKI.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zengdi Zhang
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jun Wang
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hongjun Miao
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
47
|
Kamyshova ES, Bobkova IN. MicroRNAs in chronic glomerulonephritis: Promising biomarkers for diagnosis and prognosis estimation. TERAPEVT ARKH 2017; 89:89-96. [DOI: 10.17116/terarkh201789689-96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|