1
|
Hasan IH, Badr A, Almalki H, Alhindi A, Mostafa HS. Podocin, mTOR, and CHOP dysregulation contributes to nephrotoxicity induced of lipopolysaccharide/diclofenac combination in rats: Curcumin and silymarin could afford protective effect. Life Sci 2023; 330:121996. [PMID: 37536613 DOI: 10.1016/j.lfs.2023.121996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
AIM Sepsis is a common cause of acute kidney injury (AKI). Lipopolysaccharides (LPS) are the main gram-negative bacterial cell wall component with a well-documented inflammatory impact. Diclofenac (DIC) is a non-steroidal anti-inflammatory drug with a potential nephrotoxic effect. Curcumin (CUR) and silymarin (SY) are natural products with a wide range of pharmacological activities, including antioxidant and anti-inflammatory ones. The objective of this study was to examine the protective impact of CUR and SY against kidney damage induced by LPS/DIC co-exposure. MATERIALS AND METHODS Four groups of rats were used; control; LPS/DIC, LPS/DIC + CUR, and LPS/DIC + SY group. LPS/DIC combination induced renal injury at an LPS dose much lower than a nephrotoxic one. KEY FINDING Nephrotoxicity was confirmed by histopathological examination and significant elevation of renal function markers. LPS/DIC induced oxidative stress in renal tissues, evidenced by decreasing reduced glutathione and superoxide dismutase, and increasing lipid peroxidation. Inflammatory response of LPS/DIC was associated with a significant increase of renal IL-1β and TNF-α. Treatment with either CUR or SY shifted measured parameters to the opposite side. Moreover, LPS/DIC exposure was associated with upregulation of mTOR and endoplasmic reticulum stress protein (CHOP) and downregulation of podocin These effects were accompanied by reduced gene expression of cystatin C and KIM-1. CUR and SY ameliorated LPS/DIC effect on the aforementioned genes and protein significantly. SIGNIFICANCE This study confirms the potential nephrotoxicity; mechanisms include upregulation of mTOR, CHOP, cystatin C, and KIM-1 and downregulation of podocin. Moreover, both CUR and SY are promising nephroprotective products against LPS/DIC co-exposure.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Haneen Almalki
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Alanoud Alhindi
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Hesham S Mostafa
- Statistics Deanship of Scientific Research, College of Humanities and Social Sciences, King Saud University, P.O. Box 2456, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Mast cells inhibit colorectal cancer development by inducing ER stress through secreting Cystatin C. Oncogene 2023; 42:209-223. [PMID: 36402931 DOI: 10.1038/s41388-022-02543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are abundantly distributed in the human intestinal mucosa and submucosa. However, their roles and mechanisms in the development of colorectal cancer (CRC) are still unclear. In the present research, we found that the infiltration density of MCs in CRC tissues was positively correlated with improved patients' prognoses. Moreover, MCs suppressed the growth and induced the apoptosis of CRC cells in vitro and in vivo but had no effect on normal colonic epithelial cells. The present study revealed that MCs specifically induced endoplasmic reticulum stress (ERS) and activated the unfolded protein response (UPR) in CRC cells but not in normal cells, which led to the suppression of CRC development in vivo. Furthermore, we found that the secreted Cystatin C protein was the key factor for the MC-induced ERS in CRC cells. This work is of significance for uncovering the antitumor function of MCs in CRC progression and identifying the potential of CRC to respond to MC-targeted immunotherapy.
Collapse
|
3
|
Endoplasmic Reticulum Stress in Diabetic Nephrology: Regulation, Pathological Role, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7277966. [PMID: 34394833 PMCID: PMC8355967 DOI: 10.1155/2021/7277966] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Recent progress has been made in understanding the roles and mechanisms of endoplasmic reticulum (ER) stress in the development and pathogenesis of diabetic nephropathy (DN). Hyperglycemia induces ER stress and apoptosis in renal cells. The induction of ER stress can be cytoprotective or cytotoxic. Experimental treatment of animals with ER stress inhibitors alleviated renal damage. Considering these findings, the normalization of ER stress by pharmacological agents is a promising approach to prevent or arrest DN progression. The current article reviews the mechanisms, roles, and therapeutic aspects of these findings.
Collapse
|
4
|
Abdel-Ghaffar A, Elhossary GG, Mahmoud AM, Elshazly AHM, Hassanin OA, Saleh A, Mansour SM, Metwally FG, Hanafy LK, Karam SH, Darweesh N, Ata AM. Effects of 4-phenylbutyric acid on the development of diabetic retinopathy in diabetic rats: regulation of endoplasmic reticulum stress-oxidative activation. Arch Physiol Biochem 2021:1-11. [PMID: 33653182 DOI: 10.1080/13813455.2021.1888302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There are good evidences suggesting that endoplasmic reticulum (ER) stress can be one of the contributing factors in the development of diabetic retinopathy. The present study was designed to investigate the effect of chemical chaperone 4-phenylbutyric acid (4-PBA) in alleviating the ER stress, and diabetic retinopathy in type 2 diabetic rats. Treatment of diabetic rats with 4-PBA, increased the antioxidant capacity, reduced the levels of lipid peroxidation, organised the state of apoptosis and regulated the ER stress - oxidative activation in retinal tissue. Also there was an improvement in the histological picture of retinal specimens compared to untreated diabetic rats. It was concluded that 4-PBA is a promising therapeutic agent for ER stress diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Amany Abdel-Ghaffar
- Department of Biochemistry, Research Institute of Ophthalmology, Giza, Egypt
| | - Ghada G Elhossary
- Department of Pharmacology, Research Institute of Ophthalmology, Giza, Egypt
| | - Atef M Mahmoud
- Department of Biochemistry, Research Institute of Ophthalmology, Giza, Egypt
| | - Amany H M Elshazly
- Department of Pharmacology, Research Institute of Ophthalmology, Giza, Egypt
| | - Olfat A Hassanin
- Departments of Ophthalmology, Research Institute of Ophthalmology, Giza, Egypt
| | - Anisa Saleh
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Sahar M Mansour
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Fatma G Metwally
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Laila K Hanafy
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Sawsan H Karam
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Neveen Darweesh
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Ahmed Mostafa Ata
- Department of Biochemistry, Research Institute of Ophthalmology, Giza, Egypt
| |
Collapse
|
5
|
Dedual MA, Wueest S, Challa TD, Lucchini FC, Aeppli TRJ, Borsigova M, Mauracher AA, Vavassori S, Pachlopnik Schmid J, Blüher M, Konrad D. Obesity-Induced Increase in Cystatin C Alleviates Tissue Inflammation. Diabetes 2020; 69:1927-1935. [PMID: 32616516 DOI: 10.2337/db19-1206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/20/2020] [Indexed: 11/13/2022]
Abstract
We recently demonstrated that removal of one kidney (uninephrectomy [UniNx]) in mice reduced high-fat diet (HFD)-induced adipose tissue inflammation, thereby improving adipose tissue and hepatic insulin sensitivity. Of note, circulating cystatin C (CysC) levels were increased in UniNx compared with sham-operated mice. Importantly, CysC may have anti-inflammatory properties, and circulating CysC levels were reported to positively correlate with obesity in humans and as shown here in HFD-fed mice. However, the causal relationship of such observation remains unclear. HFD feeding of CysC-deficient (CysC knockout [KO]) mice worsened obesity-associated adipose tissue inflammation and dysfunction, as assessed by proinflammatory macrophage accumulation. In addition, mRNA expression of proinflammatory mediators was increased, whereas markers of adipocyte differentiation were decreased. Similar to findings in adipose tissue, expression of proinflammatory cytokines was increased in liver and skeletal muscle of CysC KO mice. In line, HFD-induced hepatic insulin resistance and impairment of glucose tolerance were further aggravated in KO mice. Consistently, chow-fed CysC KO mice were more susceptible to lipopolysaccharide-induced adipose tissue inflammation. In people with obesity, circulating CysC levels correlated negatively with adipose tissue Hif1α as well as IL6 mRNA expression. Moreover, healthy (i.e., insulin-sensitive) subjects with obesity had significantly higher mRNA expression of CysC in white adipose tissue. In conclusion, CysC is upregulated under obesity conditions and thereby counteracts inflammation of peripheral insulin-sensitive tissues and, thus, obesity-associated deterioration of glucose metabolism.
Collapse
Affiliation(s)
- Mara A Dedual
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Tenagne D Challa
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Tim R J Aeppli
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Andrea A Mauracher
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Pediatric Immunology, University Children's Hospital, Zurich, Switzerland
| | - Stefano Vavassori
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Pediatric Immunology, University Children's Hospital, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Pediatric Immunology, University Children's Hospital, Zurich, Switzerland
| | - Matthias Blüher
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Sant’Anna MDL, Oliveira LT, Gomes DV, Marques STF, Provance DW, Sorenson MM, Salerno VP. Physical exercise stimulates salivary secretion of cystatins. PLoS One 2019; 14:e0224147. [PMID: 31648256 PMCID: PMC6874361 DOI: 10.1371/journal.pone.0224147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022] Open
Abstract
Physical exercise is known to activate the sympathetic nervous system, which influences the production of saliva from salivary glands. Our examination of saliva collected from highly trained athletes before and after a number of physical competititions showed an increase in the secretion of S-type cystatins and cystatin C as a subacute response to aerobic and anaerobic exercise. The elevation in salivary cystatins was transient and the recovery time course differed from that of amylase and other salivary proteins. An in vitro assay was developed based on a cell line from a human submandibular gland (HSG) that differentiated into acinus-like structures. Treatments with the β-adrenergic agonist isoproterenol caused a shift in the intracellular distribution of S-type cystatins and cystatin C, promoting their accumulation at the outer regions of the acinus prior to release and suggesting the activation of a directional transport involving co-migration of both molecules. In another treatment using non-differentiated HSG cells, it was evident that both expression and secretion of cystatin C increased upon addition of the β-adrenergic agonist, and these effects were essentially eliminated by the antagonist propranolol. The HSG cell line appears to have potential as a model for exploring the mechanism of cystatin secretion, particularly the S-type cystatins that originate primarily in the submandibular glands.
Collapse
Affiliation(s)
- Marcelo de Lima Sant’Anna
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil
- Department of Physical Activity Biosciences, Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil
- Almirante Sylvio de Carmargo Training Center, Brazilian Navy, Rio de
Janeiro, Brazil
| | | | - Diego Viana Gomes
- Department of Physical Activity Biosciences, Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil
| | | | - D. William Provance
- Center for Technological Development in Health, Oswaldo Cruz Insitute,
Rio de Janeiro, Brazil
| | | | - Verônica Pinto Salerno
- Department of Physical Activity Biosciences, Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Luo L, Ma J, Li Y, Hu Z, Jiang C, Cai H, Sun C. Cystatin C Induces Insulin Resistance in Hippocampal Neurons and Promotes Cognitive Dysfunction in Rodents. Neurosci Bull 2018; 34:543-545. [PMID: 29667002 DOI: 10.1007/s12264-018-0226-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/13/2018] [Indexed: 11/26/2022] Open
Affiliation(s)
- Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinyu Ma
- Co-innovation Center of Neuroregeneration, Key Laboratory for Neuroregeneration of Jiangsu Province and the Ministry of Education, Nantong University, Nantong, 226001, China
| | - Yue Li
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Zongkang Hu
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Chengfeng Jiang
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Hao Cai
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Cheng Sun
- Co-innovation Center of Neuroregeneration, Key Laboratory for Neuroregeneration of Jiangsu Province and the Ministry of Education, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Wu FL, Liu WY, Van Poucke S, Braddock M, Jin WM, Xiao J, Li XK, Zheng MH. Targeting endoplasmic reticulum stress in liver disease. Expert Rev Gastroenterol Hepatol 2016; 10:1041-52. [PMID: 27093595 DOI: 10.1080/17474124.2016.1179575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The accumulation of unfolded protein in the endoplasmic reticulum (ER) initiates an unfolded protein response (UPR) via three signal transduction cascades, which involve protein kinase RNA-like ER kinase (PERK), inositol requiring enzyme-1α (IRE1α) and activating transcription factor-6α (ATF6α). An ER stress response is observed in nearly all physiologies related to acute and chronic liver disease and therapeutic targeting of the mechanisms implicated in UPR signaling have attracted considerable attention. AREAS COVERED This review focuses on the correlation between ER stress and liver disease and the possible targets which may drive the potential for novel therapeutic intervention. Expert Commentary: We describe pathways which are involved in UPR signaling and their potential correlation with various liver diseases and underlying mechanisms which may present opportunities for novel therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Fa-Ling Wu
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| | - Wen-Yue Liu
- c Department of Endocrinology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sven Van Poucke
- d Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy , Ziekenhuis Oost-Limburg , Genk , Belgium
| | - Martin Braddock
- e Global Medicines Development , AstraZeneca R&D , Alderley Park , UK
| | - Wei-Min Jin
- f Department of Infection Diseases , People Hospital of Wencheng County , Wenzhou , China
| | - Jian Xiao
- g Institute of Biology Science , Wenzhou University , Wenzhou , China.,h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Xiao-Kun Li
- g Institute of Biology Science , Wenzhou University , Wenzhou , China.,h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Ming-Hua Zheng
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| |
Collapse
|