1
|
Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol 2024; 90:e0028624. [PMID: 38624196 PMCID: PMC11107170 DOI: 10.1128/aem.00286-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.
Collapse
Affiliation(s)
| | - Daniel Cazares
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Serena Johnson
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Emily J. Stevens
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - R. Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
3
|
Aguilera M, Tobar-Calfucoy E, Rojas-Martínez V, Norambuena R, Serrano MJ, Cifuentes O, Zamudio MS, San Martín D, Lara P, Sabag A, Zabner M, Tichy D, Camejo P, León L, Pino M, Ulloa S, Rojas F, Pieringer C, Muster C, Castillo D, Ferreira N, Avendaño C, Canaval M, Pieringer H, Cifuentes P, Cifuentes Muñoz N. Development and characterization of a bacteriophage cocktail with high lytic efficacy against field-isolated Salmonella enterica. Poult Sci 2023; 102:103125. [PMID: 37879168 PMCID: PMC10618821 DOI: 10.1016/j.psj.2023.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Salmonella spp. is a prevalent pathogen that causes great public health concern worldwide. Bacteriophage-based cocktails have arisen as an alternative to antibiotics to inhibit the growth of Salmonella. However, the bactericidal effect of bacteriophage cocktails in vivo largely differs from their observed effect in vitro. This is partly because in vitro developments of cocktails do not always consider the bacterial diversity nor the environmental conditions where bacteriophages will have to replicate. Here, we isolated and sequenced 47 bacteriophages that showed variable degrees of lytic activity against 258 Salmonella isolates from a commercial broiler company in Brazil. Three of these bacteriophages were characterized and selected to assemble a cocktail. In vitro quantitative assays determined the cocktail to be highly effective against multiple serovars of Salmonella, including Minnesota and Heidelberg. Remarkably, the in vitro lytic activity of the cocktail was retained or improved in conditions that more closely resembled the chicken gut, such as anaerobiosis, 42°C, and Salmonella mono-strain biofilms. Analysis of bacterial cross-resistance between the 3 bacteriophages composing the cocktail revealed limited or no generation of cross-resistance. Our results highlight the relevance of an optimized flux of work to develop bacteriophage cocktails against Salmonella with high lytic efficacy and strong potential to be applied in vivo in commercial broiler farms.
Collapse
Affiliation(s)
- Matías Aguilera
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Eduardo Tobar-Calfucoy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Victoria Rojas-Martínez
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Rodrigo Norambuena
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Jesús Serrano
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Onix Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Sofía Zamudio
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel San Martín
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pabla Lara
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Andrea Sabag
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Marcela Zabner
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Tichy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pamela Camejo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Luis León
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Michael Pino
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Soledad Ulloa
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Felipe Rojas
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Christian Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Cecilia Muster
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Castillo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Ferreira
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Camilo Avendaño
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Mauro Canaval
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Hans Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pablo Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Cifuentes Muñoz
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile..
| |
Collapse
|
4
|
Fajardo-Lubian A, Venturini C. Use of Bacteriophages to Target Intracellular Pathogens. Clin Infect Dis 2023; 77:S423-S432. [PMID: 37932114 DOI: 10.1093/cid/ciad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubian
- Faculty of Medicine and Health, Sydney ID Institute, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Cissell EC, McCoy SJ. Top-heavy trophic structure within benthic viral dark matter. Environ Microbiol 2023; 25:2303-2320. [PMID: 37381050 DOI: 10.1111/1462-2920.16457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
A better understanding of system-specific viral ecology in diverse environments is needed to predict patterns of virus-host trophic structure in the Anthropocene. This study characterised viral-host trophic structure within coral reef benthic cyanobacterial mats-a globally proliferating cause and consequence of coral reef degradation. We employed deep longitudinal multi-omic sequencing to characterise the viral assemblage (ssDNA, dsDNA, and dsRNA viruses) and profile lineage-specific host-virus interactions within benthic cyanobacterial mats sampled from Bonaire, Caribbean Netherlands. We recovered 11,012 unique viral populations spanning at least 10 viral families across the orders Caudovirales, Petitvirales, and Mindivirales. Gene-sharing network analyses provided evidence for extensive genomic novelty of mat viruses from reference and environmental viral sequences. Analysis of coverage ratios of viral sequences and computationally predicted hosts spanning 15 phyla and 21 classes revealed virus-host abundance (from DNA) and activity (from RNA) ratios consistently exceeding 1:1, suggesting a top-heavy intra-mat trophic structure with respect to virus-host interactions. Overall, our article contributes a curated database of viral sequences found in Caribbean coral reef benthic cyanobacterial mats (vMAT database) and provides multiple lines of field-based evidence demonstrating that viruses are active members of mat communities, with broader implications for mat functional ecology and demography.
Collapse
Affiliation(s)
- Ethan C Cissell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie J McCoy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
7
|
Abedon ST. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics (Basel) 2023; 12:245. [PMID: 36830158 PMCID: PMC9952518 DOI: 10.3390/antibiotics12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
8
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
9
|
Lisac A, Birsa E, Podgornik A. E. coli biofilm formation and its susceptibility towards T4 bacteriophages studied in a continuously operating mixing - tubular bioreactor system. Microb Biotechnol 2022; 15:2450-2463. [PMID: 35638465 PMCID: PMC9437887 DOI: 10.1111/1751-7915.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
A system consisting of a connected mixed and tubular bioreactor was designed to study bacterial biofilm formation and the effect of its exposure to bacteriophages under different experimental conditions. The bacterial biofilm inside silicone tubular bioreactor was formed during the continuous pumping of bacterial cells at a constant physiological state for 2 h and subsequent washing with a buffer for 24 h. Monitoring bacterial and bacteriophage concentration along the tubular bioreactor was performed via a piercing method. The presence of biofilm and planktonic cells was demonstrated by combining the piercing method, measurement of planktonic cell concentration at the tubular bioreactor outlet, and optical microscopy. The planktonic cell formation rate was found to be 8.95 × 10-3 h-1 and increased approximately four-fold (4×) after biofilm exposure to an LB medium. Exposure of bacterial biofilm to bacteriophages in the LB medium resulted in a rapid decrease of biofilm and planktonic cell concentration, to below the detection limit within < 2 h. When bacteriophages were supplied in the buffer, only a moderate decrease in the concentration of both bacterial cell types was observed. After biofilm washing with buffer to remove unadsorbed bacteriophages, its exposure to the LB medium (without bacteriophages) resulted in a rapid decrease in bacterial concentration: again below the detection limit in < 2 h.
Collapse
Affiliation(s)
- Ana Lisac
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
| | - Elfi Birsa
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
- COBIKMirce 215270AjdovščinaSlovenia
| |
Collapse
|
10
|
Sae-Ueng U, Bhunchoth A, Phironrit N, Treetong A, Sapcharoenkun C, Chatchawankanphanich O, Leartsakulpanich U, Chitnumsub P. Thermoresponsive C22 phage stiffness modulates the phage infectivity. Sci Rep 2022; 12:13001. [PMID: 35906255 PMCID: PMC9338302 DOI: 10.1038/s41598-022-16795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages offer a sustainable alternative for controlling crop disease. However, the lack of knowledge on phage infection mechanisms makes phage-based biological control varying and ineffective. In this work, we interrogated the temperature dependence of the infection and thermo-responsive behavior of the C22 phage. This soilborne podovirus is capable of lysing Ralstonia solanacearum, causing bacterial wilt disease. We revealed that the C22 phage could better infect the pathogenic host cell when incubated at low temperatures (25, 30 °C) than at high temperatures (35, 40 °C). Measurement of the C22 phage stiffness revealed that the phage stiffness at low temperatures was 2–3 times larger than at high temperatures. In addition, the imaging results showed that more C22 phage particles were attached to the cell surface at low temperatures than at high temperatures, associating the phage stiffness and the phage attachment. The result suggests that the structure and stiffness modulation in response to temperature change improve infection, providing mechanistic insight into the C22 phage lytic cycle. Our study signifies the need to understand phage responses to the fluctuating environment for effective phage-based biocontrol implementation.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chaweewan Sapcharoenkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
11
|
Virus-Host Interactions and Genetic Diversity of Antarctic Sea Ice Bacteriophages. mBio 2022; 13:e0065122. [PMID: 35532161 PMCID: PMC9239159 DOI: 10.1128/mbio.00651-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and Octadecabacter Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera Paraglaciecola or Octadecabacter. Although the phages are marine and cold-active, replicating at 0°C to 5°C, they all survived temporal incubations at ≥30°C and remained infectious without any salts or supplemented only with magnesium, suggesting a robust virion assembly maintaining integrity under a wide range of conditions. Host recognition in the cold proved to be effective, and the release of progeny viruses occurred as a result of cell lysis. The analysis of viral genome sequences showed that nearly one-half of the gene products of each virus are unique, highlighting that sea ice harbors unexplored virus diversity. Based on predicted genes typical for tailed double-stranded DNA phages, we suggest placing the four studied viruses in the class Caudoviricetes. Searching against viral sequences from metagenomic assemblies, we revealed that related viruses are not restricted to Antarctica but are also found in distant marine environments.
Collapse
|
12
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Titécat M, Pédron T, Sismeiro O, Legendre R, Varet H, Coppée JY, Bérard M, De Sordi L, Debarbieux L. The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host Microbe 2022; 30:556-569.e5. [PMID: 35421351 DOI: 10.1016/j.chom.2022.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Lorenzo Chaffringeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titécat
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, Centre de Gnotobiologie, 75724 Paris, France
| | - Luisa De Sordi
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France.
| |
Collapse
|
13
|
Silva J, Dias R, Junior JI, Marcelino M, Silva M, Carmo A, Sousa M, Silva C, de Paula S. A Rapid Method for Performing a Multivariate Optimization of Phage Production Using the RCCD Approach. Pathogens 2021; 10:1100. [PMID: 34578135 PMCID: PMC8468216 DOI: 10.3390/pathogens10091100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages can be used in various applications, from the classical approach as substitutes for antibiotics (phage therapy) to new biotechnological uses, i.e., as a protein delivery vehicle, a diagnostic tool for specific strains of bacteria (phage typing), or environmental bioremediation. The demand for bacteriophage production increases daily, and studies that improve these production processes are necessary. This study evaluated the production of a T4-like bacteriophage vB_EcoM-UFV09 (an E. coli-infecting phage with high potential for reducing environmental biofilms) in seven types of culture media (Luria-Bertani broth and the M9 minimal medium with six different carbon sources) employing four cultivation variables (temperature, incubation time, agitation, and multiplicity of infection). For this purpose, the rotatable central composite design (RCCD) methodology was used, combining and comparing all parameters to determine the ideal conditions for starting to scale up the production process. We used the RCCD to set up the experimental design by combining the cultivation parameters in a specific and systematic way. Despite the high number of conditions evaluated, the results showed that when specific conditions were utilized, viral production was effective even when using a minimal medium, such as M9/glucose, which is less expensive and can significantly reduce costs during large-scale phage production.
Collapse
Affiliation(s)
- Jessica Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Roberto Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - José Ivo Junior
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Maraísa Marcelino
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Mirelly Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Adriele Carmo
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Maira Sousa
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
- Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro 20230-010, Brazil
| | - Cynthia Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Sergio de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| |
Collapse
|
14
|
Hodges FE, Sicheritz-Pontén T, Clokie MR. The Effect of Oxygen Availability on Bacteriophage Infection: A Review. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:16-25. [PMID: 36148442 PMCID: PMC9041485 DOI: 10.1089/phage.2020.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages offer a viable solution to addressing the global issue of bacterial resistance to antimicrobials. Although knowledge of bacteriophages has increased greatly since their discovery in 1915, a significant amount of what is currently known is based on studies conducted in model conditions and aerobic environments. There are a variety of environments in which bacteriophages could be applied to successfully replace or supplement antimicrobials in agriculture, food production, and human medicine where the amount of oxygen is limited. There is a need to use phages in oxygen-limited environments, but few studies have examined the impact oxygen-limited environments have on the ability of phages to kill their hosts. The work that has been done is, however, insightful and will likely stimulate this area that is growing in importance as our need to use phages grows. This review summarizes the studies to date that have reported the characteristics of phages in both oxygen-rich and oxygen-limited environments. We also discuss the importance of considering the ultimate environment a phage will be applied to when designing experiments to isolate and characterize phages for use in phage-based antimicrobial products.
Collapse
Affiliation(s)
- Francesca E. Hodges
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
15
|
Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel) 2020; 10:antibiotics10010003. [PMID: 33374551 PMCID: PMC7822488 DOI: 10.3390/antibiotics10010003] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.
Collapse
|
16
|
Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob 2020; 19:45. [PMID: 32998720 PMCID: PMC7528332 DOI: 10.1186/s12941-020-00389-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Multi-Drug Resistant (MDR) Pseudomonas aeruginosa is one of the most important bacterial pathogens that causes infection with a high mortality rate due to resistance to different antibiotics. This bacterium prompts extensive tissue damage with varying factors of virulence, and its biofilm production causes chronic and antibiotic-resistant infections. Therefore, due to the non-applicability of antibiotics for the destruction of P. aeruginosa biofilm, alternative approaches have been considered by researchers, and phage therapy is one of these new therapeutic solutions. Bacteriophages can be used to eradicate P. aeruginosa biofilm by destroying the extracellular matrix, increasing the permeability of antibiotics into the inner layer of biofilm, and inhibiting its formation by stopping the quorum-sensing activity. Furthermore, the combined use of bacteriophages and other compounds with anti-biofilm properties such as nanoparticles, enzymes, and natural products can be of more interest because they invade the biofilm by various mechanisms and can be more effective than the one used alone. On the other hand, the use of bacteriophages for biofilm destruction has some limitations such as limited host range, high-density biofilm, sub-populate phage resistance in biofilm, and inhibition of phage infection via quorum sensing in biofilm. Therefore, in this review, we specifically discuss the use of phage therapy for inhibition of P. aeruginosa biofilm in clinical and in vitro studies to identify different aspects of this treatment for broader use.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Farahani
- Molecular and Medicine Research Center, Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Parham Jazireian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
The Protective Effect of Staphylococcus epidermidis Biofilm Matrix against Phage Predation. Viruses 2020; 12:v12101076. [PMID: 32992766 PMCID: PMC7601396 DOI: 10.3390/v12101076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus epidermidis is a major causative agent of nosocomial infections, mainly associated with the use of indwelling devices, on which this bacterium forms structures known as biofilms. Due to biofilms’ high tolerance to antibiotics, virulent bacteriophages were previously tested as novel therapeutic agents. However, several staphylococcal bacteriophages were shown to be inefficient against biofilms. In this study, the previously characterized S. epidermidis-specific Sepunavirus phiIBB-SEP1 (SEP1), which has a broad spectrum and high activity against planktonic cells, was evaluated concerning its efficacy against S. epidermidis biofilms. The in vitro biofilm killing assays demonstrated a reduced activity of the phage. To understand the underlying factors impairing SEP1 inefficacy against biofilms, this phage was tested against distinct planktonic and biofilm-derived bacterial populations. Interestingly, SEP1 was able to lyse planktonic cells in different physiological states, suggesting that the inefficacy for biofilm control resulted from the biofilm 3D structure and the protective effect of the matrix. To assess the impact of the biofilm architecture on phage predation, SEP1 was tested in disrupted biofilms resulting in a 2 orders-of-magnitude reduction in the number of viable cells after 6 h of infection. The interaction between SEP1 and the biofilm matrix was further assessed by the addition of matrix to phage particles. Results showed that the matrix did not inactivate phages nor affected phage adsorption. Moreover, confocal laser scanning microscopy data demonstrated that phage infected cells were less predominant in the biofilm regions where the matrix was more abundant. Our results provide compelling evidence indicating that the biofilm matrix can work as a barrier, allowing the bacteria to be hindered from phage infection.
Collapse
|
18
|
Wasfi R, Hamed SM, Amer MA, Fahmy LI. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front Cell Infect Microbiol 2020; 10:414. [PMID: 32923408 PMCID: PMC7456845 DOI: 10.3389/fcimb.2020.00414] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Proteus mirabilis is a Gram negative bacterium that is a frequent cause of catheter-associated urinary tract infections (CAUTIs). Its ability to cause such infections is mostly related to the formation of biofilms on catheter surfaces. In order to form biofilms, P. mirabilis expresses a number of virulence factors. Such factors may include adhesion proteins, quorum sensing molecules, lipopolysaccharides, efflux pumps, and urease enzyme. A unique feature of P. mirabilis biofilms that build up on catheter surfaces is their crystalline nature owing to their ureolytic biomineralization. This leads to catheter encrustation and blockage and, in most cases, is accompanied by urine retention and ascending UTIs. Bacteria embedded in crystalline biofilms become highly resistant to conventional antimicrobials as well as the immune system. Being refractory to antimicrobial treatment, alternative approaches for eradicating P. mirabilis biofilms have been sought by many studies. The current review focuses on the mechanism by which P. mirabilis biofilms are formed, and a state of the art update on preventing biofilm formation and reduction of mature biofilms. These treatment approaches include natural, and synthetic compounds targeting virulence factors and quorum sensing, beside other strategies that include carrier-mediated diffusion of antimicrobials into biofilm matrix. Bacteriophage therapy has also shown successful results in vitro for combating P. mirabilis biofilms either merely through their lytic effect or by acting as facilitators for antimicrobials diffusion.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mai A Amer
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lamiaa Ismail Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
19
|
Shebs-Maurine EL, Torres ES, Yeh-Parker Y, de Mello AS. Application of MS bacteriophages on contaminated trimmings reduces Escherichia coli O157 and non-O157 in ground beef. Meat Sci 2020; 170:108243. [PMID: 32688222 DOI: 10.1016/j.meatsci.2020.108243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
According to the United States Food and Drug Administration (FDA) agency, bacteriophage solutions targeting the serotype O157:H7 are Generally Recognized as Safe (GRAS) to control STEC during beef processing. However, outbreaks involving the "Big Six" STEC increased the industry concern about those serotypes. The objective of this study was to test the efficacy of MS bacteriophages to reduce the "Big Six" non-O157 STEC in beef. The lysing efficacy of phages isolated for each specific serotype varied from 96.2% to 99.9% in vitro. When applied to contaminated trim, reductions ranging from 0.7 to 1.3 Log of all STEC were observed in ground beef. Bacteriophages may provide an additional barrier against the "Big Six" STEC in ground beef. Results of this research provide support documentation to the FDA to extend GRAS status for bacteriophages as processing aids against all adulterant STEC.
Collapse
Affiliation(s)
- E L Shebs-Maurine
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - E S Torres
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - Y Yeh-Parker
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - A S de Mello
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America.
| |
Collapse
|
20
|
Kandel PP, Baltrus DA, Hockett KL. Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. J Bacteriol 2020; 202:e00142-20. [PMID: 32312747 PMCID: PMC7283598 DOI: 10.1128/jb.00142-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
21
|
Bumunang EW, Ateba CN, Stanford K, Niu YD, Wang Y, McAllister TA. Activity of Bacteriophage and Complex Tannins against Biofilm-Forming Shiga Toxin-Producing Escherichia coli from Canada and South Africa. Antibiotics (Basel) 2020; 9:E257. [PMID: 32429187 PMCID: PMC7277190 DOI: 10.3390/antibiotics9050257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing Escherichia coli (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log10 colony-forming units per square centimeter (CFU/cm2) and O154:H10; 5.4 log10 CFU/cm2), 3 h of exposure to phage (1013 plaque-forming units per milliliter (PFU/mL)) reduced (p ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log10 CFU/cm2 and O154:H10; 7 log10 CFU/cm2), reductions after the same duration of phage treatment were only 0.9 and 1.3 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive (p ≤ 0.05) to CT than PT over a concentration range of 25-400 µg/mL. Based on the lower activity of CT (25-400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited (p ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both E. coli O154:H10 and O113:H21 for up to 24 h.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (E.W.B.); (C.N.A.)
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (E.W.B.); (C.N.A.)
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Y. Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
| |
Collapse
|
22
|
Testa S, Berger S, Piccardi P, Oechslin F, Resch G, Mitri S. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa. Commun Biol 2019; 2:405. [PMID: 31701033 PMCID: PMC6828766 DOI: 10.1038/s42003-019-0633-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial viruses, or phage, are key members of natural microbial communities. Yet much research on bacterial-phage interactions has been conducted in liquid cultures involving single bacterial strains. Here we explored how bacterial diversity affects the success of lytic phage in structured communities. We infected a sensitive Pseudomonas aeruginosa strain PAO1 with a lytic phage Pseudomonas 352 in the presence versus absence of an insensitive P. aeruginosa strain PA14, in liquid culture versus colonies on agar. We found that both in liquid and in colonies, inter-strain competition reduced resistance evolution in the susceptible strain and decreased phage population size. However, while all sensitive bacteria died in liquid, bacteria in colonies could remain sensitive yet escape phage infection, due mainly to reduced growth in colony centers. In sum, spatial structure can protect bacteria against phage infection, while the presence of competing strains reduces the evolution of resistance to phage.
Collapse
Affiliation(s)
- Samuele Testa
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sarah Berger
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Piccardi
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec City, QC Canada
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
23
|
Padfield D, Castledine M, Buckling A. Temperature-dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. ISME JOURNAL 2019; 14:389-398. [PMID: 31628440 DOI: 10.1038/s41396-019-0526-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023]
Abstract
Thermal performance curves (TPCs) are used to predict changes in species interactions, and hence, range shifts, disease dynamics and community composition, under forecasted climate change. Species interactions might in turn affect TPCs. Here, we investigate how temperature-dependent changes in a microbial host-parasite interaction (the bacterium Pseudomonas fluorescens, and its lytic bacteriophage, SBW[Formula: see text]) changes the host TPC and the ecological and evolutionary mechanisms underlying these changes. The bacteriophage had a narrower thermal tolerance for infection, with their critical thermal maximum ~6 °C lower than those at which the bacteria still had high growth. Consequently, in the presence of phage, the host TPC changed, resulting in a lower maximum growth rate. These changes were not just driven by differences in thermal tolerance, with temperature-dependent costs of evolved resistance also playing a major role: the largest cost of resistance occurred at the temperature at which bacteria grew best in the absence of phage. Our work highlights how ecological and evolutionary mechanisms can alter the effect of a parasite on host thermal performance, even over very short timescales.
Collapse
Affiliation(s)
- Daniel Padfield
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK.
| | - Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| |
Collapse
|
24
|
Behera A, Rai D, Kushwaha D, Kulkarni SS. Total Synthesis of Trisaccharide Repeating Unit of O-Specific Polysaccharide of Pseudomonas fluorescens BIM B-582. Org Lett 2018; 20:5956-5959. [PMID: 30187759 DOI: 10.1021/acs.orglett.8b02669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first total synthesis of the trisaccharide repeating unit of the O-specific polysaccharide of Pseudomonas fluorescens BIM B-582 is reported. This efficient synthesis involves consecutive 1,2- cis glycosylations including β-l-rhamnosylation and α selective coupling of rare 4-deoxy-d- xylo-hexose as the key steps. The synthetic trisaccharide is equipped with an aminopropyl linker at the reducing end to allow for conjugation to proteins and microarrays for further immunological studies.
Collapse
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Diksha Rai
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Divya Kushwaha
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
25
|
Milho C, Silva MD, Melo L, Santos S, Azeredo J, Sillankorva S. Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. BIOFOULING 2018; 34:753-768. [PMID: 30270665 DOI: 10.1080/08927014.2018.1501475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Salmonella is one of the worldwide leading foodborne pathogens responsible for illnesses and hospitalizations, and its capacity to form biofilms is one of its many virulence factors. This work evaluated (bacterio)phage control of adhered and biofilm cells of Salmonella Enteritidis on three different substrata at refrigerated and room temperatures, and also a preventive approach in poultry skin. PVP-SE2 phage was efficient in reducing both 24- and 48-h old Salmonella biofilms from polystyrene and stainless steel causing 2 to 5 log CFU cm-2 reductions with a higher killing efficiency at room temperature. PVP-SE2 phage application on poultry skins reduced levels of Salmonella. Freezing phage-pretreated poultry skin samples had no influence on the viability of phage PVP-SE2 and their in vitro contamination with S. Enteritidis provided evidence that phages prevented their further growth. Although not all conditions favor phage treatment, this study endorses their use to prevent and control foodborne pathogen colonization of surfaces.
Collapse
Affiliation(s)
- Catarina Milho
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Maria Daniela Silva
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Luís Melo
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Sílvio Santos
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Joana Azeredo
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Sanna Sillankorva
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| |
Collapse
|
26
|
Melo LDR, França A, Brandão A, Sillankorva S, Cerca N, Azeredo J. Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiol Ecol 2018; 94:5061119. [DOI: 10.1093/femsec/fiy143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Angela França
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Brandão
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Sanna Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Cerca
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
Lourenço M, De Sordi L, Debarbieux L. The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity. Viruses 2018; 10:v10060327. [PMID: 29914064 PMCID: PMC6024678 DOI: 10.3390/v10060327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic value. Over decades of study, a large number of rather complex mechanisms that are used by phages to hijack bacterial resources and to produce their progeny have been deciphered. While these mechanisms have been identified and have been studied under optimal conditions in vitro, much less is known about the requirements for successful viral infections in relevant natural conditions. This is particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages as therapeutic tools.
Collapse
Affiliation(s)
- Marta Lourenço
- Department of Microbiology, Institut Pasteur, F-75015 Paris, France.
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France.
| | - Luisa De Sordi
- Department of Microbiology, Institut Pasteur, F-75015 Paris, France.
| | | |
Collapse
|
28
|
Scarascia G, Yap SA, Kaksonen AH, Hong PY. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions. Front Microbiol 2018; 9:875. [PMID: 29770130 PMCID: PMC5942161 DOI: 10.3389/fmicb.2018.00875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications.
Collapse
Affiliation(s)
- Giantommaso Scarascia
- Biological and Environmental Science & Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Scott A Yap
- Biological and Environmental Science & Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna H Kaksonen
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Pei-Ying Hong
- Biological and Environmental Science & Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Nabergoj D, Modic P, Podgornik A. Effect of bacterial growth rate on bacteriophage population growth rate. Microbiologyopen 2018; 7:e00558. [PMID: 29195013 PMCID: PMC5911998 DOI: 10.1002/mbo3.558] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/15/2023] Open
Abstract
It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr-1 . It was found that the burst size increases linearly from 8 PFU·cell-1 to 89 PFU·cell-1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10-9 ml·min-1 and 80 min to reach limiting values of 0.5 × 10-9 ml·min-1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr-1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed.
Collapse
Affiliation(s)
- Dominik Nabergoj
- Center of Excellence for BiosensorsInstrumentation and Process Control ‐ COBIKAjdovščinaSlovenia
| | - Petra Modic
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| | - Aleš Podgornik
- Center of Excellence for BiosensorsInstrumentation and Process Control ‐ COBIKAjdovščinaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
30
|
Yu X, Xu Y, Gu Y, Zhu Y, Liu X. Characterization and genomic study of "phiKMV-Like" phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 2017; 7:13068. [PMID: 29026171 PMCID: PMC5638911 DOI: 10.1038/s41598-017-13363-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Bacteriophage PAXYB1 was recently isolated from wastewater samples. This phage was chosen based on its lytic properties against clinical isolates of Pseudomonas aeruginosa (P. aeruginosa). In the present study, characterized PAXYB1, clarified its morphological and lytic properties, and analyzed its complete genome sequence. Based on the morphology of PAXYB1, it is a Podoviridae. The linear GC-rich (62.29%) double-stranded DNA genome of PAXYB1 is 43,337 bp including direct terminal repeats (DTRs) of 468 bp. It contains 60 open reading frames (ORFs) that are all encoded within the same strand. We also showed that PAXYB1 is a virulent phage and a new member of the phiKMV-like phages genus. Twenty-eight out of sixty predicted gene products (gps) showed significant homology to proteins of known function, which were confirmed by analyzing the structural proteome. Altogether, our work identified a novel lytic bacteriophage that lyses P. aeruginosa PAO1 and efficiently infects and kills several clinical isolates of P. aeruginosa. This phage has potential for development as a biological disinfectant to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Gu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yefei Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
31
|
Pires DP, Melo L, Vilas Boas D, Sillankorva S, Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 2017; 39:48-56. [PMID: 28964986 DOI: 10.1016/j.mib.2017.09.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023]
Abstract
The complex heterogeneous structure of biofilms confers to bacteria an important survival strategy. Biofilms are frequently involved in many chronic infections in consequence of their low susceptibility to antibiotics as well as resistance to host defences. The increasing need of novel and effective treatments to target these complex structures has led to a growing interest on bacteriophages (phages) as a strategy for biofilm control and prevention. Phages can be used alone, as a cocktail to broaden the spectra of activity, or in combination with other antimicrobials to improve their efficacy. Here, we summarize the studies involving the use of phages for the treatment or prevention of bacterial biofilms, highlighting the biofilm features that can be tackled with phages or combined therapy approaches.
Collapse
Affiliation(s)
- D P Pires
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ldr Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - D Vilas Boas
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - S Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - J Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
32
|
Fred ALDB, Rúbia KMM, Luiz FCJ, Daniel GC, Marcos RDSV, Sérgio LFDS, Adriano DNS. Changes in phenol metabolism of minimally processed baby cassava under different temperatures: An alternative to commercialization. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Sunthornthummas S, Doi K, Rangsiruji A, Sarawaneeyaruk S, Pringsulaka O. Isolation and characterization of Lactobacillus paracasei LPC and phage ΦT25 from fermented milk. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Duncan AB, Dusi E, Jacob F, Ramsayer J, Hochberg ME, Kaltz O. Hot spots become cold spots: coevolution in variable temperature environments. J Evol Biol 2016; 30:55-65. [PMID: 27711983 DOI: 10.1111/jeb.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
Antagonistic coevolution between hosts and parasites is a key process in the genesis and maintenance of biological diversity. Whereas coevolutionary dynamics show distinct patterns under favourable environmental conditions, the effects of more realistic, variable conditions are largely unknown. We investigated the impact of a fluctuating environment on antagonistic coevolution in experimental microcosms of Pseudomonas fluorescens SBW25 and lytic phage SBWΦ2. High-frequency temperature fluctuations caused no deviations from typical coevolutionary arms race dynamics. However, coevolution was stalled during periods of high temperature under intermediate- and low-frequency fluctuations, generating temporary coevolutionary cold spots. Temperature variation affected population density, providing evidence that eco-evolutionary feedbacks act through variable bacteria-phage encounter rates. Our study shows that environmental fluctuations can drive antagonistic species interactions into and out of coevolutionary cold and hot spots. Whether coevolution persists or stalls depends on the frequency of change and the environmental optima of both interacting players.
Collapse
Affiliation(s)
- A B Duncan
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France
| | - E Dusi
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France.,Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - F Jacob
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France
| | - J Ramsayer
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France.,INRA, UMR 0320 Quantitative Genetics and Evolution, Gif-sur-Yvette, France
| | - M E Hochberg
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France.,Santa Fe Institute, Santa Fe, NM, USA
| | - O Kaltz
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Sasikala D, Srinivasan P. Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathog 2016; 101:24-35. [PMID: 27793690 DOI: 10.1016/j.micpath.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
Abstract
Vibrio alginolyticus is a leading cause of vibriosis, presenting opportunistic infections to humans associated with raw seafood contamination. At present, phage therapy that acts as an alternative sanitizing agent is explored for targeting V. alginolyticus. The study outcome revealed that the phage VP01 with its extreme lytic effect showed a high potential impact on the growth of V. alginolyticus as well as biofilm formation. Electron microscopy revealed the phage resemblance to Myoviridae, based on its morphology. Further study clarified that the phage VP01 possesses a broad host spectrum and amazing phage sensitivity at different pH, high thermal stability, and high burst size of 415 PFU/cell. In addition, the investigation of phage co-culturing against this pathogen resulted in a significant growth reduction even at less MOIs 0.1 and 1. These results suggest that the phage could be a promising candidate for the control of V. alginolyticus infections.
Collapse
Affiliation(s)
- Dakshinamurthy Sasikala
- Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Pappu Srinivasan
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
36
|
Gouvêa DM, Mendonça RCS, Lopez MES, Batalha LS. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Colangelo-Lillis J, Wing BA, Whyte LG. Low viral predation pressure in cold hypersaline Arctic sediments and limits on lytic replication. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:250-260. [PMID: 26743115 DOI: 10.1111/1758-2229.12375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Viruses are ubiquitous drivers of microbial ecology and evolution and contribute to biogeochemical cycling. Attention to these attributes has been more substantial for marine viruses than viruses of other environments. Microscopy-based investigation of the viral communities from two cold, hypersaline Arctic springs was undertaken to explore the effects of these conditions on microbe-viral ecology. Sediments and water samples were collected along transects from each spring, from anoxic spring outlets through oxygenated downstream channels. Viral abundance, virus-microbe ratios and modelled virus-microbe contact rates were lower than comparable aqueous and sedimentary environments and most similar to deep subsurface sediments. No individual cell from either spring was visibly infected. Viruses in these springs appear to play a smaller role in controlling microbial populations through lytic activity than in marine water column or surface sedimentary environments. Relief from viral predation indicates the microbial communities are primarily controlled by nutrient limitation. The similarity of these springs to deep subsurface sediments suggests a biogeographic divide in viral replication strategy in marine sediments.
Collapse
Affiliation(s)
- Jesse Colangelo-Lillis
- Earth and Planetary Science, McGill University, Montreal, Quebec, H3A 0E8, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, H3A 2A7, Canada
| | - Boswell A Wing
- Earth and Planetary Science, McGill University, Montreal, Quebec, H3A 0E8, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, H3A 2A7, Canada
| | - Lyle G Whyte
- McGill Space Institute, McGill University, Montreal, Quebec, H3A 2A7, Canada
- Natural Resource Science, McGill University, St-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
38
|
Rombouts S, Volckaert A, Venneman S, Declercq B, Vandenheuvel D, Allonsius CN, Van Malderghem C, Jang HB, Briers Y, Noben JP, Klumpp J, Van Vaerenbergh J, Maes M, Lavigne R. Characterization of Novel Bacteriophages for Biocontrol of Bacterial Blight in Leek Caused by Pseudomonas syringae pv. porri. Front Microbiol 2016; 7:279. [PMID: 27014204 PMCID: PMC4791379 DOI: 10.3389/fmicb.2016.00279] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/22/2016] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.
Collapse
Affiliation(s)
- Sofie Rombouts
- Laboratory of Gene Technology, Department of Biosystems, KU LeuvenLeuven, Belgium
- Unit Plant— Crop Protection, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | | | - Sofie Venneman
- Research Station for Vegetable ProductionSint-Katelijne-Waver, Belgium
| | | | - Dieter Vandenheuvel
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of AntwerpAntwerpen, Belgium
| | - Camille N. Allonsius
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of AntwerpAntwerpen, Belgium
| | - Cinzia Van Malderghem
- Unit Plant— Crop Protection, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Ho B. Jang
- Laboratory of Gene Technology, Department of Biosystems, KU LeuvenLeuven, Belgium
| | - Yves Briers
- Laboratory of Gene Technology, Department of Biosystems, KU LeuvenLeuven, Belgium
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Jean P. Noben
- School of Life Sciences, Biomedical Research Institute and Transnational University Limburg, Hasselt UniversityDiepenbeek, Belgium
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH ZurichZurich, Switzerland
| | - Johan Van Vaerenbergh
- Unit Plant— Crop Protection, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Martine Maes
- Unit Plant— Crop Protection, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
- Lab. of Microbiology, Department of Biochemistry and Microbiology, Ghent UniversityGent, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU LeuvenLeuven, Belgium
| |
Collapse
|
39
|
Maslov S, Sneppen K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci Rep 2015; 5:10523. [PMID: 26035282 PMCID: PMC4451807 DOI: 10.1038/srep10523] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/16/2015] [Indexed: 11/09/2022] Open
Abstract
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. "Well-temperate" phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system's environmental, ecological, and biophysical parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.
Collapse
Affiliation(s)
- Sergei Maslov
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
40
|
Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2015; 78:510-43. [PMID: 25184564 DOI: 10.1128/mmbr.00013-14] [Citation(s) in RCA: 784] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
Collapse
|
41
|
Ji X, Zhang C, Fang Y, Zhang Q, Lin L, Tang B, Wei Y. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virol Sin 2015; 30:52-8. [PMID: 25680445 DOI: 10.1007/s12250-014-3529-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhang Y, Hunt HK, Hu Z. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems. WATER RESEARCH 2013; 47:4507-4518. [PMID: 23764600 DOI: 10.1016/j.watres.2013.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial organisms from attached growth systems for effluent quality improvement.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA
| | | | | |
Collapse
|
43
|
|
44
|
Abstract
The broad-host-range lytic Pseudomonas phage Φ-S1 possess a 40,192 bp double-stranded DNA (dsDNA) genome of 47 open reading frames (ORFs) and belongs to the family Podoviridae, subfamily Autographivirinae, genus T7likevirus.
Collapse
|
45
|
Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. mBio 2012; 3:mBio.00373-12. [PMID: 23111870 PMCID: PMC3487772 DOI: 10.1128/mbio.00373-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ocean viruses are ubiquitous and abundant and play important roles in global biogeochemical cycles by means of their mortality, horizontal gene transfer, and manipulation of host metabolism. However, the obstacles involved in linking viruses to their hosts in a high-throughput manner bottlenecks our ability to understand virus-host interactions in complex communities. We have developed a method called viral tagging (VT), which combines mixtures of host cells and fluorescent viruses with flow cytometry. We investigated multiple viruses which infect each of two model marine bacteria that represent the slow-growing, photoautotrophic genus Synechococcus (Cyanobacteria) and the fast-growing, heterotrophic genus Pseudoalteromonas (Gammaproteobacteria). Overall, viral tagging results for viral infection were consistent with plaque and liquid infection assays for cyanobacterial myo-, podo- and siphoviruses and some (myo- and podoviruses) but not all (four siphoviruses) heterotrophic bacterial viruses. Virus-tagged Pseudoalteromonas organisms were proportional to the added viruses under varied infection conditions (virus-bacterium ratios), while no more than 50% of the Synechococcus organisms were virus tagged even at viral abundances that exceeded (5 to 10×) that of their hosts. Further, we found that host growth phase minimally impacts the fraction of virus-tagged Synechococcus organisms while greatly affecting phage adsorption to Pseudoalteromonas. Together these findings suggest that at least two contrasting viral life strategies exist in the oceans and that they likely reflect adaptation to their host microbes. Looking forward to the point at which the virus-tagging signature is well understood (e.g., for Synechococcus), application to natural communities should begin to provide population genomic data at the proper scale for predictively modeling two of the most abundant biological entities on Earth. Viral study suffers from an inability to link viruses to hosts en masse, and yet delineating “who infects whom” is fundamental to viral ecology and predictive modeling. This article describes viral tagging—a high-throughput method to investigate virus-host interactions by combining the fluorescent labeling of viruses for “tagging” host cells that can be analyzed and sorted using flow cytometry. Two cultivated hosts (the cyanobacterium Synechococcus and the gammaproteobacterium Pseudoalteromonas) and their viruses (podo-, myo-, and siphoviruses) were investigated to validate the method. These lab-based experiments indicate that for most virus-host pairings, VT (viral tagging) adsorption is equivalent to traditional infection by liquid and plaque assays, with the exceptions being confined to promiscuous adsorption by Pseudoalteromonas siphoviruses. These experiments also reveal variability in life strategies across these oceanic virus-host systems with respect to infection conditions and host growth status, which highlights the need for further model system characterization to break open this virus-host interaction “black box.”
Collapse
|
46
|
Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc Natl Acad Sci U S A 2012; 109:12828-33. [PMID: 22807479 DOI: 10.1073/pnas.1200771109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness, bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly. We show how bacterial density-dependent, or quorum-sensing, mechanisms such as the formation of biofilm can produce such refuges and edges in a self-organized manner. Coexistence on these edges exhibits the following properties, all of which are observed in real phage-bacteria ecosystems but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv) stability over evolutionary timescales despite imbalances in the rates of phage vs. bacterial evolution.
Collapse
|
47
|
Augustine J, Varghese SM, Bhat SG. ΦSP-3, a Salmonella-specific lytic phage capable of infecting its host under nutrient-deprived states. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0485-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
48
|
Valueva OA, Rakhuba D, Shashkov AS, Zdorovenko EL, Kiseleva E, Novik G, Knirel YA. Structure of the major O-specific polysaccharide from the lipopolysaccharide of Pseudomonas fluorescens BIM B-582: identification of 4-deoxy-D-xylo-hexose as a component of bacterial polysaccharides. JOURNAL OF NATURAL PRODUCTS 2011; 74:2161-2167. [PMID: 21942882 DOI: 10.1021/np200472p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel constituent of bacterial polysaccharides, 4-deoxy-D-xylo-hexose (D-4dxylHex), was found in the major O-specific polysaccharide from the lipopolysaccharide of Pseudomonas fluorescens BIM B-582. D-4dxylHex was isolated in the free state by paper chromatography after full acid hydrolysis of the polysaccharide and identified by GLC-mass spectrometry, 1H and 13C NMR spectroscopy, and specific rotation. It occurs as a lateral substituent in ∼40% of the oligosaccharide repeating units, making the polysaccharide devoid of strict regularity. The structure of the polysaccharide was established by sugar analysis, Smith degradation, and two-dimensional 1H and 13C NMR spectroscopy. In addition, a minor polysaccharide was isolated from the same lipopolysaccharide and found to contain 4-O-methylrhamnose.
Collapse
Affiliation(s)
- Olga A Valueva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
In Vitro Management of Hospital Pseudomonas aeruginosa Biofilm Using Indigenous T7-Like Lytic Phage. Curr Microbiol 2010; 62:335-40. [DOI: 10.1007/s00284-010-9710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 06/27/2010] [Indexed: 11/25/2022]
|