1
|
Kim J, Kwak S, Lee J, Park IH, Lee SH, Shin JM, Kim TH. Eosinophilic Chronic Rhinosinusitis and Pathogenic Role of Protease. Int J Mol Sci 2023; 24:17372. [PMID: 38139201 PMCID: PMC10744023 DOI: 10.3390/ijms242417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammation of the nasal and paranasal sinus mucosa, and eosinophilic CRS (eCRS) is a subtype characterized by significant eosinophil infiltration and immune response by T-helper-2 cells. The pathogenesis of eCRS is heterogeneous and involves various environmental and host factors. Proteases from external sources, such as mites, fungi, and bacteria, have been implicated in inducing type 2 inflammatory reactions. The balance between these proteases and endogenous protease inhibitors (EPIs) is considered important, and their imbalance can potentially lead to type 2 inflammatory reactions, such as eCRS. In this review, we discuss various mechanisms by which exogenous proteases influence eCRS and highlight the emerging role of endogenous protease inhibitors in eCRS pathogenesis.
Collapse
Affiliation(s)
- Jaehyeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sooun Kwak
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Jae Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Oda K, Wlodawer A. Overview of the Properties of Glutamic Peptidases That Are Present in Plant and Bacterial Pathogens and Play a Role in Celiac Disease and Cancer. Biochemistry 2023; 62:672-694. [PMID: 36705990 DOI: 10.1021/acs.biochem.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven peptidase (proteinase) families─aspartic, cysteine, metallo, serine, glutamic, threonine, and asparagine─are in the peptidase database MEROPS, version 12.4 (https://www.ebi.ac.uk/merops/). The glutamic peptidase family is assigned two clans, GA and GB, and comprises six subfamilies. This perspective summarizes the unique features of their representatives. (1) G1, scytalidoglutamic peptidase, has a β-sandwich structure containing catalytic residues glutamic acid (E) and glutamine (Q), thus the name eqolisin. Most family members are pepstatin-insensitive and act as plant pathogens. (2) G2, preneck appendage protein, originates in phages, is a transmembrane protein, and its catalytic residues consist of glutamic and aspartic acids. (3) G3, strawberry mottle virus glutamic peptidase, originates in viruses and has a β-sandwich structure with catalytic residues E and Q. Neprosin has propyl endopeptidase activity, is associated with celiac disease, has a β-sandwich structure, and contains catalytic residues E-E and Q-tryptophan. (4) G4, Tiki peptidase, of the erythromycin esterase family, is a transmembrane protein, and its catalytic residues are E-histidine pairs. (5) G5, RCE1 peptidase, is associated with cancer, is a transmembrane protein, and its catalytic residues are E-histidine and asparagine-histidine. Microcystinase, a bacterial toxin, is a transmembrane protein with catalytic residues E-histidine and asparagine-histidine. (6) G6, Ras/Rap1-specific peptidase, is a bacterial pathogen, a transmembrane protein, and its catalytic residues are E-histidine pairs. This family's common features are that their catalytic residues consist of a glutamic acid and another (variable) amino acid and that they exhibit a diversity of biological functions─plant and bacterial pathogens and involvement in celiac disease and cancer─that suggests they are viable drug targets.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat Commun 2022; 13:4446. [PMID: 35915115 PMCID: PMC9343461 DOI: 10.1038/s41467-022-32215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-β pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded β-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase. Celiac disease is characterized by intolerance to gluten, a cereal protein. Here, the authors show that neprosin, a glutamate peptidase from the pitcher plant, efficiently cleaves gluten components under physiological conditions in vitro and in the gut of mice.
Collapse
|
4
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
5
|
Ning Y, Yang H, Weng P, Wu Z. Zymogram Analysis and Identification of the Extracellular Proteases from Bacillus velezensis SW5. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
7
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
8
|
Paschkowsky S, Hsiao JM, Young JC, Munter LM. The discovery of proteases and intramembrane proteolysis. Biochem Cell Biol 2019; 97:265-269. [DOI: 10.1139/bcb-2018-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Jacqueline Melissa Hsiao
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
9
|
Kumakura K, Hori C, Matsuoka H, Igarashi K, Samejima M. Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:529-535. [PMID: 29931755 DOI: 10.1002/jsfa.9211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/30/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mushrooms have been widely considered as health foods as their extracts have anti-hypertensive and anti-tumor activities. After a thorough literature survey, we hypothesized that enzymes in mushroom extracts play an important role in synthesizing functional molecules. Therefore, in this study, proteins extracted from reishi mushroom (Ganoderma lucidum), which is used in oriental medicine, were identified by the proteomic approach, and appropriate extraction methods for improving angiotensin-converting enzyme (ACE) inhibitory activities were investigated. RESULTS Various glycoside hydrolases (GHs), such as β-N-acetylhexosaminidase (GH family 20), α-1,2-mannosidase (GH family 47), endo-β-1,3-glucanase (GH family 128), and β-1,3-glucanase (GH152), that degrade glycans in the fruiting body were identified. The residual glucanase activities generated β-oligosaccharides. Additionally, the glutamic acid protease of the peptidase G1 family was determined as the major protein in the extract, and the residual peptidase activity of the extracts was found to improve ACE inhibitory activities. Finally, it was observed that extraction at 50 °C is suitable for yielding functional molecules with high ACE inhibitory activities. CONCLUSION Water extraction is generally believed to extract only functional macromolecules that exist in mushroom fruiting bodies. This study proposed a new concept that describes how functional molecules are produced by enzymes, including proteases and GHs, during extraction. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kei Kumakura
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki-shi, Japan
| | - Chiaki Hori
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo-shi, Japan
| | - Hiroki Matsuoka
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki-shi, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S. A systematic reconsideration on proteases. Int J Biol Macromol 2019; 128:254-267. [PMID: 30664968 DOI: 10.1016/j.ijbiomac.2019.01.081] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Proteases are a group of large complex enzyme molecules that perform highly focused proteolysis functions. A vast quantity of the protease enzymes is predominantly sourced from microbial fermentation process, although proteases tend to natively present in plant, animals and humans. Proteases possess a pervasive importance in medical and pharmaceutical sector, because of its enriched specificity towards biomolecules. They are also actively encompassed in regulating certain physiological pathways. A distinct territory of human disorders is treated by substrate specific proteases. Enormous numbers of catalytic activities in habitual metabolism process of a living organism are protease dependent. Pilot scale researches and product development in industrial biotechnology sectors are wholly based on any one of the protease enzymes. The applications of the protease enzymes and its economic benefits of being an eco-friendly material are far-reaching. This review presents a brief overview on the classification and sources of various types of proteases. We describe the essential evidences of role of protease in different sectors. The proteases could be a potential relieves to harmful synthetic chemicals in distinctive industrial processes and thus gains global perception.
Collapse
Affiliation(s)
- Poorani Gurumallesh
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Kamalini Alagu
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Baskar Ramakrishnan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India.
| | | |
Collapse
|
11
|
Stocchi N, Revuelta MV, Castronuovo PAL, Vera DMA, Ten Have A. Molecular dynamics and structure function analysis show that substrate binding and specificity are major forces in the functional diversification of Eqolisins. BMC Bioinformatics 2018; 19:338. [PMID: 30249179 PMCID: PMC6154417 DOI: 10.1186/s12859-018-2348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
Background Eqolisins are rare acid proteases found in archaea, bacteria and fungi. Certain fungi secrete acids as part of their lifestyle and interestingly these also have many eqolisin paralogs, up to nine paralogs have been recorded. This suggests a process of functional redundancy and diversification has occurred, which was the subject of the research we performed and describe here. Results We identified eqolisin homologs by means of iterative HMMER analysis of the NR database. The identified sequences were scrutinized for which new hallmarks were identified by molecular dynamics simulations of mutants in highly conserved positions, using the structure of an eqolisin that was crystallized in the presence of a transition state inhibitor. Four conserved glycines were shown to be important for functionality. A substitution of W67F is shown to be accompanied by the L105W substitution. Molecular dynamics shows that the W67 binds to the substrate via a π-π stacking and a salt bridge, the latter being stronger in a virtual W67F/L105W double mutant of the resolved structure of Scytalido-carboxyl peptidase-B (PDB ID: 2IFW). Additional problematic mutations are discussed. Upon sequence scrutiny we obtained a set of 233 sequences that was used to reconstruct a Bayesian phylogenetic tree. We identified 14 putative specificity determining positions (SDPs) of which four are explained by mere structural explanations and nine seem to correspond to functional diversification related with substrate binding and specificity. A first sub-network of SDPs is related to substrate specificity whereas the second sub-network seems to affect the dynamics of three loops that are involved in substrate binding. Conclusion The eqolisins form a small superfamily of acid proteases with nevertheless many paralogs in acidic fungi. Functional redundancy has resulted in diversification related to substrate specificity and substrate binding. Electronic supplementary material The online version of this article (10.1186/s12859-018-2348-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolás Stocchi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina
| | - María Victoria Revuelta
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina.,Pressent address: Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Priscila Ailín Lanza Castronuovo
- QUIAMM-INBIOTEC-CONICET, Department of Chemistry - Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
| | - D Mariano A Vera
- QUIAMM-INBIOTEC-CONICET, Department of Chemistry - Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
12
|
Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K, Ueda M. Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease. PLoS One 2012; 7:e32513. [PMID: 22384266 PMCID: PMC3287985 DOI: 10.1371/journal.pone.0032513] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/27/2012] [Indexed: 01/12/2023] Open
Abstract
Background Candida albicans, a commensal organism, is a part of the normal flora of healthy individuals. However, once the host immunity is compromised, C. albicans opportunistically causes recurrent superficial or fatal systemic candidiasis. Secreted aspartic proteases (Sap), encoded by 10 types of SAP genes, have been suggested to contribute to various virulence processes. Thus, it is important to elucidate their biochemical properties for better understanding of the molecular mechanisms that how Sap isozymes damage host tissues. Methodology/Principal Findings The SAP7 gene was cloned from C. albicans SC5314 and heterogeneously produced by Pichia pastoris. Measurement of Sap7 proteolytic activity using the FRETS-25Ala library showed that Sap7 was a pepstatin A-insensitive protease. To understand why Sap7 was insensitive to pepstatin A, alanine substitution mutants of Sap7 were constructed. We found that M242A and T467A mutants had normal proteolytic activity and sensitivity to pepstatin A. M242 and T467 were located in close proximity to the entrance to an active site, and alanine substitution at these positions widened the entrance. Our results suggest that this alteration might allow increased accessibility of pepstatin A to the active site. This inference was supported by the observation that the T467A mutant has stronger proteolytic activity than the wild type. Conclusions/Significance We found that Sap7 was a pepstatin A-insensitive protease, and that M242 and T467 restricted the accessibility of pepstatin A to the active site. This finding will lead to the development of a novel protease inhibitor beyond pepstatin A. Such a novel inhibitor will be an important research tool as well as pharmaceutical agent for patients suffering from candidiasis.
Collapse
Affiliation(s)
- Wataru Aoki
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Nao Kitahara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Natsuko Miura
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hironobu Morisaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Yamamoto
- Industrial Technology Center, Kyoto Municipal Institute of Industrial Technology and Culture, Simogyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Oda K. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem 2011; 151:13-25. [PMID: 22016395 DOI: 10.1093/jb/mvr129] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptidases or proteinases are now classified into seven families based on the nature of the catalytic residues [MEROPS-the peptidase database (http://merops.sanger.ac.uk/)]. They are aspartic- (first described in 1993), cysteine- (1993), serine- (1993) metallo- (1993), threonine- (1997), glutamic- (2004) and asparagine-peptidase (2010). By using an S-PI (pepstatin Ac) as a probe, a new subfamily of serine peptidase, serine-carboxyl peptidase (sedolisin) was discovered in 2001. In addition, the sixth family of peptidase, glutamic peptidase (eqolisin) was also discovered in 2004. The former peptidase is widely distributed in nature from archea to mammals, including humans. One of these enzymes is related to a human fatal hereditable disease, Batten disease. In contrast, the distribution of the latter peptidases is limited, with most of them found in human or plant pathogenic fungi. One such enzyme was isolated from a fungal infection in an HIV-infected patient. In this review, the background of the findings, and crystal structures, catalytic mechanisms, substrates specificities and distribution of the new peptidase families are described.
Collapse
Affiliation(s)
- Kohei Oda
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
14
|
Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, Brigido MM, Ferreira MEDS, Garcia AM, Grynberg M, Gujja S, Heiman DI, Henn MR, Kodira CD, León-Narváez H, Longo LVG, Ma LJ, Malavazi I, Matsuo AL, Morais FV, Pereira M, Rodríguez-Brito S, Sakthikumar S, Salem-Izacc SM, Sykes SM, Teixeira MM, Vallejo MC, Walter MEMT, Yandava C, Young S, Zeng Q, Zucker J, Felipe MS, Goldman GH, Haas BJ, McEwen JG, Nino-Vega G, Puccia R, San-Blas G, Soares CMDA, Birren BW, Cuomo CA. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet 2011; 7:e1002345. [PMID: 22046142 PMCID: PMC3203195 DOI: 10.1371/journal.pgen.1002345] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.
Collapse
Affiliation(s)
| | - Mia D. Champion
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason W. Holder
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jonathan Goldberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Alexandre M. Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Ana Maria Garcia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - David I. Heiman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Matthew R. Henn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chinnappa D. Kodira
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Henry León-Narváez
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Larissa V. G. Longo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Li-Jun Ma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Iran Malavazi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alisson L. Matsuo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Flavia V. Morais
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Pesquisa y Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Rodríguez-Brito
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Sharadha Sakthikumar
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Silvia M. Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sean M. Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Milene C. Vallejo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Chandri Yandava
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeremy Zucker
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Maria Sueli Felipe
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, São Paulo, Brazil
| | - Brian J. Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Juan G. McEwen
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gustavo Nino-Vega
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gioconda San-Blas
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
15
|
Abstract
OBJECTIVES The role of proteases in the regulation of apoptosis is becoming increasingly apparent. Whilst many of these proteases are already characterised, some have yet to be identified. Traditionally caspases held the traditional role as the prime mediators of apoptosis; however, attention is now turning towards the contribution made by serine proteases. KEY FINDINGS As unregulated apoptosis is implicated in various disease states, the emergence of this proteolytic family as apoptotic regulators offers novel and alterative opportunities for therapeutic targets. SUMMARY This review presents a brief introduction and overview of proteases in general with particular attention given to those involved in apoptotic processing.
Collapse
Affiliation(s)
- Kelly L Moffitt
- Biomolecular Sciences Group, School of Pharmacy, Queen's University of Belfast, Belfast BT97BL, Northern Ireland, UK.
| | | | | |
Collapse
|
16
|
Fungal proteases and their pathophysiological effects. Mycopathologia 2011; 171:299-323. [PMID: 21259054 DOI: 10.1007/s11046-010-9386-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Proteolytic enzymes play an important role in fungal physiology and development. External digestion of protein substrates by secreted proteases is required for survival and growth of both saprophytic and pathogenic species. Extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. New findings focus on novel membrane-associated proteases such as yapsins and ADAMs and their role in pathology. Proteases from fungi induce inflammatory responses by altering the permeability of epithelial barrier and by induction of proinflammatory cytokines through protease-activated receptors. Many fungal allergens possess proteolytic activity that appears to be essential in eliciting Th2 responses. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system as well as the coagulation and fibrinolytic cascades. Their effect on the host protease-antiprotease balance results from activation of endogenous proteases and degradation of protease inhibitors. Recent studies of the role of fungi in human health point to the growing importance of proteases not only as pathogenic agents in fungal infections but also in asthma, allergy, and damp building related illnesses. Proteolytic enzymes from fungi are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. The involvement of fungal proteases in diverse pathological mechanisms makes them potential targets of therapeutic intervention and candidates for biomarkers of disease and exposure.
Collapse
|
17
|
Jensen K, Østergaard PR, Wilting R, Lassen SF. Identification and characterization of a bacterial glutamic peptidase. BMC BIOCHEMISTRY 2010; 11:47. [PMID: 21122090 PMCID: PMC3009609 DOI: 10.1186/1471-2091-11-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/01/2010] [Indexed: 11/29/2022]
Abstract
Background Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Conclusions Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.
Collapse
|
18
|
Kondo MY, Okamoto DN, Santos JAN, Juliano MA, Oda K, Pillai B, James MNG, Juliano L, Gouvea IE. Studies on the catalytic mechanism of a glutamic peptidase. J Biol Chem 2010; 285:21437-45. [PMID: 20442413 DOI: 10.1074/jbc.m110.122432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scytalidoglutamic peptidase (SGP) is the prototype of fungal glutamic peptidases that are characteristically pepstatin insensitive. These enzymes have a unique catalytic dyad comprised of Gln(53) and Glu(136) that activate a bound water molecule for nucleophilic attack on the carbonyl carbon atom of the scissile peptide bond. The hydrolysis by SGP at peptide bonds with proline in the P(1)' position is a rare event among peptidases that we investigated using the series of fluorescence resonance energy transfer peptides, Abz-KLXPSKQ-EDDnp, compared with the series Abz-KLXSSKQ-EDDnp. The preference observed in these two series for Phe and His over Leu, Ile, Val, Arg, and Lys, seems to be related to the structure of the S(1) subsite of SGP. These results and the pH profiles of SGP activity showed that its S(1) subsite can accommodate the benzyl group of Phe at pH 4 as well as the positively charged imidazolium group of His. In the pH range 2 to 7, SGP maintains its structure and activity, but at pH 8 or higher it is irreversibly denatured. The intrinsic fluorescence of the Trp residues of SGP were sensitive to the titration of carboxyl groups having low pK values; this can be attributed to the buried Asp(57) and/or Asp(43) as described in SGP three-dimensional structure. The solvent kinetic isotope effects and the proton inventory experiments support a mechanism for the glutamic peptidase SGP that involves the nucleophilic attack of the general base (Glu(136)) activated water, and establish a fundamental role of the S(1) subsite interactions in promoting catalysis.
Collapse
Affiliation(s)
- Márcia Y Kondo
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Timotijević GS, Milisavljević MD, Radović SR, Konstantinović MM, Maksimović VR. Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:61-8. [PMID: 19643510 DOI: 10.1016/j.jplph.2009.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 05/04/2023]
Abstract
The aspartic protease (FeAP9) gene from buckwheat resembles the exon-intron structure characteristic for typical aspartic proteinases, including the presence of the leader intron in the 5'-UTR. RT PCR experiments and gel protein blot analysis indicated that FeAP9 was present in all analyzed organs: developing seeds, seedlings, flowers, leaves, roots and stems. Using Real-time PCR, we found that FeAP9 expression is upregulated in buckwheat leaves under the influence of different abiotic stresses, including dark, drought and UV-B light, as well as wounding and salicylic acid.
Collapse
Affiliation(s)
- Gordana S Timotijević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
20
|
Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 2009; 75:4058-68. [PMID: 19376920 DOI: 10.1128/aem.00314-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or peptide sequences of the secreted proteins. Under nitrogen or carbon limitation, lignin and manganese peroxidase expression increased relative to nutrient replete medium. Various extracellular oxidases were also secreted in these media, supporting a physiological connection based on peroxide generation. Numerous genes presumed to be involved in mobilizing and recycling nitrogen were expressed under nitrogen limitation, and among these were several secreted glutamic acid proteases not previously observed. In medium containing microcrystalline cellulose as the sole carbon source, numerous genes encoding carbohydrate-active enzymes were upregulated. Among these were six members of the glycoside hydrolase family 61, as well as several polysaccharide lyases and carbohydrate esterases. Presenting a daunting challenge for future research, more than 190 upregulated genes are predicted to encode proteins of unknown function. Of these hypothetical proteins, approximately one-third featured predicted secretion signals, and 54 encoded proteins detected in extracellular filtrates. Our results affirm the importance of certain oxidative enzymes and, underscoring the complexity of lignocellulose degradation, also support an important role for many new proteins of unknown function.
Collapse
|
21
|
Rolland S, Bruel C, Rascle C, Girard V, Billon-Grand G, Poussereau N. pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea. MICROBIOLOGY-SGM 2009; 155:2097-2105. [PMID: 19359322 DOI: 10.1099/mic.0.025999-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During pathogenesis, the ascomycete Botrytis cinerea secretes a range of cell-wall-degrading enzymes such as polygalacturonases, glucanases and proteases. We report the identification of a new member of the G1 family of proteases, BcACP1, which is secreted by B. cinerea during infection. The production of BcACP1 correlates with the acidification of the plant tissue, and transcriptional analysis of the Bcacp1 gene showed that it is only expressed under acidic growth conditions. Using a transcriptional reporter system, we showed that pH regulation of Bcacp1 is not mediated by the canonical PacC transcription factor binding site. Like other G1 proteases, BcACP1 is produced as a pro-enzyme. Trapping of the zymogen form allowed investigation of its maturation process. Evidence is presented for an autocatalytic proteolysis of the enzyme that is triggered by acidic pH. Environmental pH therefore controls Bcacp1 production at both the transcriptional and post-translational level.
Collapse
Affiliation(s)
- Stéphane Rolland
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Christophe Bruel
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Christine Rascle
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Vincent Girard
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Geneviève Billon-Grand
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Nathalie Poussereau
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| |
Collapse
|
22
|
O'Donoghue AJ, Mahon CS, Goetz DH, O'Malley JM, Gallagher DM, Zhou M, Murray PG, Craik CS, Tuohy MG. Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersonii. J Biol Chem 2008; 283:29186-95. [PMID: 18687686 DOI: 10.1074/jbc.m802366200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1' such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (k(cat)/K(m)=2 x 10(5) m(-1) s(-1)). Maximum hydrolysis occurs at pH 3.4 and 50 degrees C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (K(i)=1.5 nM), as well as a portion of the propeptide sequence, PT1 (K(i)=32 nM). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii.
Collapse
Affiliation(s)
- Anthony J O'Donoghue
- Department of Biochemistry, National University of Ireland, University Road, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Xue W, Sims AH, Zhao C, Wang A, Tang G, Qin J, Wang H. Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 2008; 45:17-27. [DOI: 10.1016/j.fgb.2007.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
24
|
Fretwell JF, K. Ismail SM, Cummings JM, Selby TL. Characterization of a randomized FRET library for protease specificity determination. MOLECULAR BIOSYSTEMS 2008; 4:862-70. [DOI: 10.1039/b709290c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Pillai B, Cherney MM, Hiraga K, Takada K, Oda K, James MNG. Crystal structure of scytalidoglutamic peptidase with its first potent inhibitor provides insights into substrate specificity and catalysis. J Mol Biol 2006; 365:343-61. [PMID: 17069854 DOI: 10.1016/j.jmb.2006.09.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 09/20/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
Scytalidoglutamic peptidase (SGP) from Scytalidium lignicolum is the founding member of the newly discovered\ family of peptidases, G1, so far found exclusively in fungi. The crystal structure of SGP revealed a previously undescribed fold for peptidases and a unique catalytic dyad of residues Gln53 and Glu136. Surprisingly, the beta-sandwich structure of SGP is strikingly similar to members of the carbohydrate-binding concanavalin A-like lectins/glucanases superfamily. By analogy with the active sites of aspartic peptidases, a mechanism employing nucleophillic attack by a water molecule activated by the general base functionality of Glu136 has been proposed. Here, we report the first crystal structures of SGP in complex with two transition state peptide analogs designed to mimic the tetrahedral intermediate of the proteolytic reaction. Of these two analogs, the one containing a central S-hydroxyl group is a potent sub-nanomolar inhibitor of SGP. The inhibitor binds non-covalently to the concave surface of the upper beta-sheet and enables delineation of the S4 to S3' substrate specificity pockets of the enzyme. Structural differences in these pockets account for the unique substrate preferences of SGP among peptidases having an acidic pH optimum. Inhibitor binding is accompanied by a structuring of the region comprising residues Tyr71-Gly80 from being mostly disordered in the apoenzyme and leading to positioning of crucial active site residues for establishing enzyme-inhibitor contacts. In addition, conformational rearrangements are seen in a disulfide bridged surface loop (Cys141-Cys148), which moves inwards, partially closing the open substrate binding cleft of the native enzyme. The non-hydrolysable scissile bond analog of the inhibitor is located in the active site forming close contacts with Gln53 and Glu136. The nucleophilic water molecule is displaced and a unique mode of binding is observed with the S-OH of the inhibitor occupying the oxyanion binding site of the proposed tetrahedral intermediate. Details of the enzyme-inhibitor interactions and mechanistic interpretations are discussed.
Collapse
Affiliation(s)
- B Pillai
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Vanden Wymelenberg A, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 2006; 72:4871-7. [PMID: 16820482 PMCID: PMC1489383 DOI: 10.1128/aem.00375-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences with significant similarity to GLX and designated cro1 through cro6. The predicted mature protein sequences diverge substantially from one another, but the residues coordinating copper and constituting the radical redox site are conserved. Transcript profiles, microscopic examination, and lignin analysis of inoculated thin wood sections are consistent with differential regulation as decay advances. The cro2-encoded protein was detected by liquid chromatography-tandem mass spectrometry in defined medium. The cro2 cDNA was successfully expressed in Aspergillus nidulans under the control of the A. niger glucoamylase promoter and secretion signal. The recombinant CRO2 protein had a substantially different substrate preference than GLX. The role of structurally and functionally diverse cro genes in lignocellulose degradation remains to be established.
Collapse
Affiliation(s)
- Amber Vanden Wymelenberg
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Grzegorz Sabat
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael Mozuch
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Philip J. Kersten
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Dan Cullen
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
- Corresponding author. Mailing address: Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726. Phone: (608) 231-9468. Fax: (608) 231-9262. E-mail:
| | - Robert A. Blanchette
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
27
|
Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 2006; 43:343-56. [PMID: 16524749 DOI: 10.1016/j.fgb.2006.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/30/2005] [Accepted: 01/11/2006] [Indexed: 11/28/2022]
Abstract
The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 'computational secretome,' 43% showed no significant similarity to known proteins, but were structurally related to other hypothetical protein sequences. In contrast, 53% showed significant similarity to known protein sequences including 87 models assigned to 33 glycoside hydrolase families and 52 sequences distributed among 13 peptidase families. When grown under standard ligninolytic conditions, peptides corresponding to 11 peptidase genes were identified in culture filtrates by mass spectrometry (LS-MS/MS). Five peptidases were members of a large family of aspartyl proteases, many of which were localized to gene clusters. Consistent with a role in dephosphorylation of lignin peroxidase, a mannose-6-phosphatase (M6Pase) was also identified in carbon-starved cultures. Beyond proteases and M6Pase, 28 specific gene products were identified including several representatives of gene families. These included 4 lignin peroxidases, 3 lipases, 2 carboxylesterases, and 8 glycosyl hydrolases. The results underscore the rich genetic diversity and complexity of P. chrysosporium's extracellular enzyme systems.
Collapse
|
28
|
Wymelenberg AV, Sabat G, Martinez D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D. The Phanerochaete chrysosporium secretome: Database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 2005; 118:17-34. [PMID: 15888348 DOI: 10.1016/j.jbiotec.2005.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/03/2005] [Accepted: 03/26/2005] [Indexed: 11/28/2022]
Abstract
The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome predictions and to evaluate the usefulness of the current database, we performed shotgun LC-MS/MS on cultures grown on standard cellulose-containing medium. A total of 182 unique peptide sequences were matched to 50 specific genes, of which 24 were among the secretome subset. Underscoring the rich genetic diversity of P. chrysosporium, identifications included 32 glycosyl hydrolases. Functionally interconnected enzyme groups were recognized. For example, the multiple endoglucanases and processive exocellobiohydrolases observed quite probably attack cellulose in a synergistic manner. In addition, a hemicellulolytic system included endoxylanases, alpha-galactosidase, acetyl xylan esterase, and alpha-l-arabinofuranosidase. Glucose and cellobiose metabolism likely involves cellobiose dehydrogenase, glucose oxidase, and various inverting glycoside hydrolases, all perhaps enhanced by an epimerase. To evaluate the completeness of the current database, mass spectroscopy analysis was performed on a larger and more inclusive dataset containing all possible ORFs. This allowed identification of a previously undetected hypothetical protein and a putative acid phosphatase. The expression of several genes was supported by RT-PCR amplification of their cDNAs.
Collapse
|
29
|
Sims AH, Gent ME, Lanthaler K, Dunn-Coleman NS, Oliver SG, Robson GD. Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 2005; 71:2737-47. [PMID: 15870366 PMCID: PMC1087583 DOI: 10.1128/aem.71.5.2737-2747.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi have a high capacity for producing large amounts of secreted proteins, a property that has been exploited for commercial production of recombinant proteins. However, the secretory pathway, which is key to the production of extracellular proteins, is rather poorly characterized in filamentous fungi compared to yeast. We report the effects of recombinant protein secretion on gene expression levels in Aspergillus nidulans by directly comparing a bovine chymosin-producing strain with its parental wild-type strain in continuous culture by using expressed sequence tag microarrays. This approach demonstrated more subtle and specific changes in gene expression than those observed when mimicking the effects of protein overproduction by using a secretion blocker. The impact of overexpressing a secreted recombinant protein more closely resembles the unfolded-protein response in vivo.
Collapse
Affiliation(s)
- Andrew H Sims
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
30
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|