1
|
Gupta Y, Ernst AL, Vorobyev A, Beltsiou F, Zillikens D, Bieber K, Sanna-Cherchi S, Christiano AM, Sadik CD, Ludwig RJ, Sezin T. Impact of diet and host genetics on the murine intestinal mycobiome. Nat Commun 2023; 14:834. [PMID: 36788222 PMCID: PMC9929102 DOI: 10.1038/s41467-023-36479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The mammalian gut is home to a diverse microbial ecosystem, whose composition affects various physiological traits of the host. Next-generation sequencing-based metagenomic approaches demonstrated how the interplay of host genetics, bacteria, and environmental factors shape complex traits and clinical outcomes. However, the role of fungi in these complex interactions remains understudied. Here, using 228 males and 363 females from an advanced-intercross mouse line, we provide evidence that fungi are regulated by host genetics. In addition, we map quantitative trait loci associated with various fungal species to single genes in mice using whole genome sequencing and genotyping. Moreover, we show that diet and its' interaction with host genetics alter the composition of fungi in outbred mice, and identify fungal indicator species associated with different dietary regimes. Collectively, in this work, we uncover an association of the intestinal fungal community with host genetics and a regulatory role of diet in this ecological niche.
Collapse
Affiliation(s)
- Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Lara Ernst
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | - Tanya Sezin
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Laihonen M, Saikkonen K, Helander M, Vázquez de Aldana BR, Zabalgogeazcoa I, Fuchs B. Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Front Microbiol 2022; 12:786619. [PMID: 35087489 PMCID: PMC8787217 DOI: 10.3389/fmicb.2021.786619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plants host taxonomically and functionally complex communities of microbes. However, ecological studies on plant-microbe interactions rarely address the role of multiple co-occurring plant-associated microbes. Here, we contend that plant-associated microbes interact with each other and can have joint consequences for higher trophic levels. In this study we recorded the occurrence of the plant seed pathogenic fungus Claviceps purpurea and aphids (Sitobion sp.) on an established field experiment with red fescue (Festuca rubra) plants symbiotic to a seed transmitted endophytic fungus Epichloë festucae (E+) or non-symbiotic (E-). Both fungi are known to produce animal-toxic alkaloids. The study was conducted in a semi-natural setting, where E+ and E- plants from different origins (Spain and Northern Finland) were planted in a randomized design in a fenced common garden at Kevo Subarctic Research Station in Northern Finland. The results reveal that 45% of E+ plants were infected with Claviceps compared to 31% of E- plants. Uninfected plants had 4.5 times more aphids than Claviceps infected plants. By contrast, aphid infestation was unaffected by Epichloë symbiosis. Claviceps alkaloid concentrations correlated with a decrease in aphid numbers, which indicates their insect deterring features. These results show that plant mutualistic fungi can increase the infection probability of a pathogenic fungus, which then becomes beneficial to the plant by controlling herbivorous insects. Our study highlights the complexity and context dependency of species-species and multi-trophic interactions, thus challenging the labeling of species as plant mutualists or pathogens.
Collapse
Affiliation(s)
| | | | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | |
Collapse
|
3
|
Genomic and Metabolomic Analyses of the Marine Fungus Emericellopsis cladophorae: Insights into Saltwater Adaptability Mechanisms and Its Biosynthetic Potential. J Fungi (Basel) 2021; 8:jof8010031. [PMID: 35049971 PMCID: PMC8780691 DOI: 10.3390/jof8010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
The genus Emericellopsis is found in terrestrial, but mainly in marine, environments with a worldwide distribution. Although Emericellopsis has been recognized as an important source of bioactive compounds, the range of metabolites expressed by the species of this genus, as well as the genes involved in their production are still poorly known. Untargeted metabolomics, using UPLC- QToF–MS/MS, and genome sequencing (Illumina HiSeq) was performed to unlock E. cladophorae MUM 19.33 chemical diversity. The genome of E. cladophorae is 26.9 Mb and encodes 8572 genes. A large set of genes encoding carbohydrate-active enzymes (CAZymes), secreted proteins, transporters, and secondary metabolite biosynthetic gene clusters were identified. Our analysis also revealed genomic signatures that may reflect a certain fungal adaptability to the marine environment, such as genes encoding for (1) the high-osmolarity glycerol pathway; (2) osmolytes’ biosynthetic processes; (3) ion transport systems, and (4) CAZymes classes allowing the utilization of marine polysaccharides. The fungal crude extract library constructed revealed a promising source of antifungal (e.g., 9,12,13-Trihydroxyoctadec-10-enoic acid, hymeglusin), antibacterial (e.g., NovobiocinA), anticancer (e.g., daunomycinone, isoreserpin, flavopiridol), and anti-inflammatory (e.g., 2’-O-Galloylhyperin) metabolites. We also detected unknown compounds with no structural match in the databases used. The metabolites’ profiles of E. cladophorae MUM 19.33 fermentations were salt dependent. The results of this study contribute to unravel aspects of the biology and ecology of this marine fungus. The genome and metabolome data are relevant for future biotechnological exploitation of the species.
Collapse
|
4
|
Liu M, Findlay W, Dettman J, Wyka SA, Broders K, Shoukouhi P, Dadej K, Kolařík M, Basnyat A, Menzies JG. Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model. Toxins (Basel) 2021; 13:toxins13110799. [PMID: 34822583 PMCID: PMC8625505 DOI: 10.3390/toxins13110799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.
Collapse
Affiliation(s)
- Miao Liu
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
- Correspondence: ; Tel.: +1-613-759-1385
| | - Wendy Findlay
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Jeremy Dettman
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Stephen A. Wyka
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA;
| | - Parivash Shoukouhi
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Kasia Dadej
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences CAS, 14220 Prague, Czech Republic;
| | - Arpeace Basnyat
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Jim G. Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| |
Collapse
|
5
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021. [PMID: 34835312 DOI: 10.1007/10.3390/microorganisms9112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021; 9:2186. [PMID: 34835312 PMCID: PMC8623577 DOI: 10.3390/microorganisms9112186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
7
|
Effects of ergotamine on the central nervous system using untargeted metabolomics analysis in a mouse model. Sci Rep 2021; 11:19542. [PMID: 34599239 PMCID: PMC8486802 DOI: 10.1038/s41598-021-98870-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/15/2021] [Indexed: 01/02/2023] Open
Abstract
The ergot alkaloid ergotamine is produced by Claviceps purpurea, a parasitic fungus that commonly infects crops and pastures of high agricultural and economic importance. In humans and livestock, symptoms of ergotism include necrosis and gangrene, high blood pressure, heart rate, thermoregulatory dysfunction and hallucinations. However, ergotamine is also used in pharmaceutical applications to treat migraines and stop post-partum hemorrhage. To define its effects, metabolomic profiling of the brain was undertaken to determine pathways perturbed by ergotamine treatment. Metabolomic profiling identified the brainstem and cerebral cortex as regions with greatest variation. In the brainstem, dysregulation of the neurotransmitter epinephrine, and the psychoactive compound 2-arachidonylglycerol was identified. In the cerebral cortex, energy related metabolites isobutyryl-L-carnitine and S-3-oxodecanoyl cysteamine were affected and concentrations of adenylosuccinate, a metabolite associated with mental retardation, were higher. This study demonstrates, for the first time, key metabolomic pathways involved in the behavioural and physiological dysfunction of ergot alkaloid intoxicated animals.
Collapse
|
8
|
The Impact of Alkaloid-Producing Epichloë Endophyte on Forage Ryegrass Breeding: A New Zealand Perspective. Toxins (Basel) 2021; 13:toxins13020158. [PMID: 33670470 PMCID: PMC7922046 DOI: 10.3390/toxins13020158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/02/2022] Open
Abstract
For 30 years, forage ryegrass breeding has known that the germplasm may contain a maternally inherited symbiotic Epichloë endophyte. These endophytes produce a suite of secondary alkaloid compounds, dependent upon strain. Many produce ergot and other alkaloids, which are associated with both insect deterrence and livestock health issues. The levels of alkaloids and other endophyte characteristics are influenced by strain, host germplasm, and environmental conditions. Some strains in the right host germplasm can confer an advantage over biotic and abiotic stressors, thus acting as a maternally inherited desirable ‘trait’. Through seed production, these mutualistic endophytes do not transmit into 100% of the crop seed and are less vigorous than the grass seed itself. This causes stability and longevity issues for seed production and storage should the ‘trait’ be desired in the germplasm. This makes understanding the precise nature of the relationship vitally important to the plant breeder. These Epichloë endophytes cannot be ‘bred’ in the conventional sense, as they are asexual. Instead, the breeder may modulate endophyte characteristics through selection of host germplasm, a sort of breeding by proxy. This article explores, from a forage seed company perspective, the issues that endophyte characteristics and breeding them by proxy have on ryegrass breeding, and outlines the methods used to assess the ‘trait’, and the application of these through the breeding, production, and deployment processes. Finally, this article investigates opportunities for enhancing the utilisation of alkaloid-producing endophytes within pastures, with a focus on balancing alkaloid levels to further enhance pest deterrence and improving livestock outcomes.
Collapse
|
9
|
Genetic Manipulation of the Ergot Alkaloid Pathway in Epichloë festucae var. lolii and Its Effect on Black Beetle Feeding Deterrence. Toxins (Basel) 2021; 13:toxins13020076. [PMID: 33498584 PMCID: PMC7909537 DOI: 10.3390/toxins13020076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Epichloë endophytes are filamentous fungi (family Clavicipitaceae) that live in symbiotic associations with grasses in the sub family Poöideae. In New Zealand, E. festucae var. lolii confers significant resistance to perennial ryegrass (Lolium perenne) against insect and animal herbivory and is an essential component of pastoral agriculture, where ryegrass is a major forage species. The fungus produces in planta a range of bioactive secondary metabolites, including ergovaline, which has demonstrated bioactivity against the important pasture pest black beetle, but can also cause mammalian toxicosis. We genetically modified E. festucae var. lolii strain AR5 to eliminate key enzymatic steps in the ergovaline pathway to determine if intermediate ergot alkaloid compounds can still provide insecticidal benefits in the absence of the toxic end product ergovaline. Four genes (dmaW, easG, cloA, and lpsB) spanning the pathway were deleted and each deletion mutant was inoculated into five different plant genotypes of perennial ryegrass, which were later harvested for a full chemical analysis of the ergot alkaloid compounds produced. These associations were also used in a black beetle feeding deterrence study. Deterrence was seen with just chanoclavine present, but was cumulative as more intermediate compounds in the pathway were made available. Ergovaline was not detected in any of the deletion associations, indicating that bioactivity towards black beetle can be obtained in the absence of this mammalian toxin.
Collapse
|
10
|
Biosynthesis, total synthesis, and biological profiles of Ergot alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2021; 85:1-112. [DOI: 10.1016/bs.alkal.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Antimicrobial Activity and Metabolite Analysis of Ganoderma boninense Fruiting Body. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Selvasekaran P, Chidambaram R. Agriculturally Important Fungi for Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Role of Algae–Fungi Relationship in Sustainable Agriculture. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Decreased Root-Knot Nematode Gall Formation in Roots of the Morning Glory Ipomoea tricolor Symbiotic with Ergot Alkaloid-Producing Fungal Periglandula Sp. J Chem Ecol 2019; 45:879-887. [PMID: 31686336 DOI: 10.1007/s10886-019-01109-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
Many species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor. The goal of this study was to determine if infection of I. tricolor by the Periglandula sp. endosymbiont affects Southern root-knot nematode (Meloidogyne incognita) gall formation and host plant biomass. We hypothesized that I. tricolor plants infected by Periglandula (E+) would develop fewer nematode-induced galls compared to non-symbiotic plants (E-). E+ or E- status of plant lines was confirmed by testing methanol extracts from individual seeds for endosymbiont-produced ergot alkaloids. To test the effects of Periglandula on nematode colonization, E+ and E- I. tricolor seedlings were grown in soil infested with high densities of M. incognita nematodes (N+) or no nematodes (N-) for four weeks in the greenhouse before harvesting. After harvest, nematode colonization of roots was visualized microscopically, and total gall number and plant biomass were quantified. Four ergot alkaloids were detected in roots of E+ plants, but no alkaloids were found in E- plants. Gall formation was reduced by 50% in E+ plants compared to E- plants, independent of root biomass. Both N+ plants and E+ plants had significantly reduced biomass compared to N- and E- plants, respectively. These results demonstrate Periglandula's defensive role against biotic enemies, albeit with a potential trade-off with host plant growth.
Collapse
|
15
|
Finch SC, Munday JS, Sprosen JM, Bhattarai S. Toxicity Studies of Chanoclavine in Mice. Toxins (Basel) 2019; 11:toxins11050249. [PMID: 31052510 PMCID: PMC6563201 DOI: 10.3390/toxins11050249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Epichloë endophytes have been used successfully in pastoral grasses providing protection against insect pests through the expression of secondary metabolites. This approach could be extended to other plant species, such as cereals, reducing reliance on pesticides. To be successful, the selected endophyte must express secondary metabolites that are active against cereal insect pests without any secondary metabolite, which is harmful to animals. Chanoclavine is of interest as it is commonly expressed by endophytes and has potential insecticidal activity. Investigation of possible mammalian toxicity is therefore required. An acute oral toxicity study showed the median lethal dose of chanoclavine to be >2000 mg/kg. This allows it to be classified as category 5 using the globally harmonized system of classification and labelling of chemicals, and category 6.1E using the New Zealand Hazardous Substances and New Organisms (HSNO) hazard classes, the lowest hazard class under both systems of classification. A three-week feeding study was also performed, which showed chanoclavine, at a dose rate of 123.9 mg/kg/day, initially reduced food consumption but was resolved by day seven. No toxicologically significant effects on gross pathology, histology, hematology, or blood chemistry were observed. These experiments showed chanoclavine to be of low toxicity and raised no food safety concerns.
Collapse
Affiliation(s)
- Sarah C Finch
- AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand.
| | - John S Munday
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Jan M Sprosen
- AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand.
| | - Sweta Bhattarai
- AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand.
| |
Collapse
|
16
|
Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis. Sci Rep 2017; 7:8930. [PMID: 28827626 PMCID: PMC5567044 DOI: 10.1038/s41598-017-09107-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Neosartorya fumigata (Aspergillus fumigatus) is the most common cause of invasive aspergillosis, a frequently fatal lung disease primarily affecting immunocompromised individuals. This opportunistic fungal pathogen produces several classes of specialised metabolites including products of a branch of the ergot alkaloid pathway called fumigaclavines. The biosynthesis of the N. fumigata ergot alkaloids and their relation to those produced by alternate pathway branches in fungi from the plant-inhabiting Clavicipitaceae have been well-characterised, but the potential role of these alkaloids in animal pathogenesis has not been studied extensively. We investigated the contribution of ergot alkaloids to virulence of N. fumigata by measuring mortality in the model insect Galleria mellonella. Larvae were injected with conidia (asexual spores) of two different wild-type strains of N. fumigata and three different ergot alkaloid mutants derived by previous gene knockouts and differing in ergot alkaloid profiles. Elimination of all ergot alkaloids significantly reduced virulence of N. fumigata in G. mellonella (P < 0.0001). Mutants accumulating intermediates but not the pathway end product fumigaclavine C also were less virulent than the wild type (P < 0.0003). The data indicate that ergot alkaloids contribute to virulence of N. fumigata in this insect model and that fumigaclavine C is important for full virulence.
Collapse
|
17
|
Coufal-Majewski S, Stanford K, McAllister T, Wang Y, Blakley B, McKinnon J, Chaves AV. Effects of pelleting diets containing cereal ergot alkaloids on nutrient digestibility, growth performance and carcass traits of lambs. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Abstract
Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.
Collapse
|
19
|
Coyle CM, Kenaley SC, Rittenour WR, Panaccione DG. Association of ergot alkaloids with conidiation inAspergillus fumigatus. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Daniel G. Panaccione
- Division of Plant & Soil Sciences, West Virginia University, P.O. Box 6108, Morgantown, West Virginia 26506-6108
| |
Collapse
|
20
|
Hu D, Li M. Three New Ergot Alkaloids from the Fruiting Bodies of Xylaria nigripes
(Kl
.) Sacc
. Chem Biodivers 2016; 14. [PMID: 27448231 DOI: 10.1002/cbdv.201600173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Dongbao Hu
- College of Resource and Environment; Yuxi Normal University; Yuxi 653100 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Lanhei Road 132 Kunming 650201 P. R. China
| | - Ming Li
- College of Resource and Environment; Yuxi Normal University; Yuxi 653100 P. R. China
| |
Collapse
|
21
|
Mulinti P, Florea S, Schardl CL, Panaccione DG. Modulation of Ergot Alkaloids in a Grass-Endophyte Symbiosis by Alteration of mRNA Concentrations of an Ergot Alkaloid Synthesis Gene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4982-4989. [PMID: 27248330 DOI: 10.1021/acs.jafc.6b01604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The profile of ergot alkaloids in perennial ryegrass (Lolium perenne) containing the endophytic fungus Epichloë typhina × festucae includes high concentrations of the early pathway metabolites ergotryptamine and chanoclavine-I in addition to the pathway end-product ergovaline. Because these alkaloids differ in activity, we investigated strategies to alter their relative concentrations. An RNAi-based approach reduced the concentration of mRNA from the gene easA, which encodes an enzyme required for a ring closure that separates ergotryptamine and chanoclavine-I from ergovaline. Lower easA mRNA concentrations correlated with lower concentrations of ergovaline and higher concentrations of ergotryptamine and chanoclavine-I. Overexpression of easA led to higher concentrations of ergovaline in leaf blades but not in pseudostems; concentrations of the early pathway metabolites were not altered in overexpression strains. The data indicate that altering the concentration of mRNA from a single gene can change alkaloid flux, but the magnitude of the change was limited and variable.
Collapse
Affiliation(s)
- Prashanthi Mulinti
- Genetics and Developmental Biology Program, Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506-6108, United States
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky , Lexington, Kentucky 40546-0312, United States
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky , Lexington, Kentucky 40546-0312, United States
| | - Daniel G Panaccione
- Genetics and Developmental Biology Program, Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506-6108, United States
| |
Collapse
|
22
|
McCabe SR, Wipf P. Total synthesis, biosynthesis and biological profiles of clavine alkaloids. Org Biomol Chem 2016; 14:5894-913. [PMID: 27215547 DOI: 10.1039/c6ob00878j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights noteworthy synthetic and biological aspects of the clavine subfamily of ergot alkaloids. Recent biosynthetic insights have laid the groundwork for a better understanding of the diverse biological pathways leading to these indole derivatives. Ergot alkaloids were among the first fungal-derived natural products identified, inspiring pharmaceutical applications in CNS disorders, migraine, infective diseases, and cancer. Pergolide, for example, is a semi-synthetic clavine alkaloid that has been used to treat Parkinson's disease. Synthetic activities have been particularly valuable to facilitate access to rare members of the Clavine family and empower medicinal chemistry research. Improved molecular target identification tools and a better understanding of signaling pathways can now be deployed to further extend the biological and medical utility of Clavine alkaloids.
Collapse
Affiliation(s)
- Stephanie R McCabe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
23
|
Reed KFM, Mace WJ, Walker LV, Fletcher LR. Endophyte metabolites associated with perennial ryegrass toxicosis. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Perennial ryegrass (PRG) was analysed for alkaloids associated with the expression of perennial ryegrass endophyte toxicosis (PRGT) in south-east Australia. Over two seasons, the PRG cultivar Samson (‘high endophyte’, viz. naturally infected with a wild-type strain of Epichloë festucae var. lolii) was sampled on five occasions during November to May at four farms in Victoria and at Lincoln, New Zealand. Endophyte frequency in the populations was 77–100%. PRG was also sampled from 20 Victorian and Tasmanian farm pastures where stock were experiencing PRGT (endophyte infection frequencies of 87–100%). The Victorian summer of 2010–11 was atypically moist; pasture remained green. Lolitrem B was consistently high at Lincoln and 2–3 times that observed in Victorian samples of isogenetic PRG, or in PRG causing PRGT; it was the dominant toxin in 2011 with concentrations commonly exceeding the tolerance level of 1.8 mg/kg. In the following year, one with a more typical summer, ergovaline was the dominant toxin. Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (LC-MS/MS) was carried out to determine indole diterpene intermediates in the lolitrem B biosynthesis pathway and for ergot alkaloid intermediates in the ergovaline pathway. The values for lolitrem B determined by LC-MS/MS correlated strongly with those obtained using high pressure liquid chromatography. In both Years 1 and 2, significantly higher expression was observed in the Lincoln relative to Victorian samples of PRG for paspaline, terpendole C, lolitrem E, lolitrem B and lolitrem F. For the ergot alkaloids, significant differences were not apparent between Victorian and Lincoln samples in Year 1. In Year 2, LC-MS/MS results showed ergovaline concentrations were greater in Victorian samples. In addition to endophyte-produced toxins, ergot alkaloids produced by Claviceps purpurea (ergotamine, ergocryptine and ergocornine) were detected in grass samples on 6/27 occasions. Some unidentified metabolites were noted in both Victorian and Lincoln samples. The effects of ingested vaso-constrictive ergot alkaloids combined with that of high solar radiation on ruminants’ heat load are considered most important with respect to the occasionally severe expression of PRGT in Australia.
Collapse
|
24
|
Immunochemical analysis of fumigaclavine mycotoxins in respiratory tissues and in blood serum of birds with confirmed aspergillosis. Mycotoxin Res 2015; 31:177-83. [PMID: 26388046 DOI: 10.1007/s12550-015-0228-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022]
Abstract
The ergoline alkaloid fumigaclavine A (FuA) is one of the major mycotoxins produced by Aspergillus fumigatus, the main causative fungal agent of avian aspergillosis. To study in situ production of FuA, post-mortem respiratory tissues of various avian species, as well as blood samples of falcons (Falco sp.), were analysed by enzyme immunoassay (EIA). At a detection limit of 1.5 ng/ml, FuA EIA positive results were obtained for tissue samples from seven (64%) out of 11 birds with confirmed aspergillosis, with a maximum concentration of 38 ng/g, while all controls (n = 7) were negative. No FuA could be detected in blood serum (detection limit 0.7 ng/ml) of 15 falcons, experimentally inoculated with A. fumigatus conidia. Fungal mycelium material from tissue of clinical aspergillosis cases, cultured on malt extract agar, was highly positive in the FuA EIA in milligrams per gram range. Chromatographic analysis of mycelium extracts revealed the co-presence of FuA and the structurally related fumigaclavine C (FuC). Alkaline hydrolysis of FuA and FuC yielded the corresponding deacetylation products, FuB and FuE. This is the first report showing that fumigaclavine alkaloids are produced by A. fumigatus in situ during the course of clinical aspergillosis in birds; however, the role of these compounds in the pathogenesis of this disease is still unknown.
Collapse
|
25
|
Negård M, Uhlig S, Kauserud H, Andersen T, Høiland K, Vrålstad T. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex. Toxins (Basel) 2015; 7:1431-56. [PMID: 25928134 PMCID: PMC4448156 DOI: 10.3390/toxins7051431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/24/2022] Open
Abstract
The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.
Collapse
Affiliation(s)
- Mariell Negård
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Silvio Uhlig
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
- Department of the Chemical and Biological Working Environment, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Tom Andersen
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Klaus Høiland
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Trude Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
26
|
Genetics, genomics and evolution of ergot alkaloid diversity. Toxins (Basel) 2015; 7:1273-302. [PMID: 25875294 PMCID: PMC4417967 DOI: 10.3390/toxins7041273] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/18/2023] Open
Abstract
The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.
Collapse
|
27
|
Kumari S, Jain P, Sharma B, Kadyan P, Dabur R. In vitro antifungal activity and probable fungicidal mechanism of aqueous extract of Barleria grandiflora. Appl Biochem Biotechnol 2015; 175:3571-84. [PMID: 25672323 DOI: 10.1007/s12010-015-1527-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Abstract
Barleria grandiflora Dalz. (Acanthaceae) is being used in India to treat different types of disorders including skin infections. Therefore, there are good possibilities to find antifungal compounds in its extracts with novel mechanism of action. The main objectives of the present study were to evaluate the antifungal activity of plant extracts and to study its effects on metabolic pathways of A. fumigatus. The microbroth dilution assay was used to explore antifungal activity and MIC of various extracts. Metabolic profiles of control and treated cultures were collected from Q-TOF-MS interfaced with HPLC. Affected metabolic pathways of A. fumigatus after the treatment were analyzed by discrimination analysis of mass data. Antifungal activities were observed in hot and cold water extracts of the plant. Hot water extract of B. grandiflora showed significant activity against tested fungi in the range 0.625-1.25 mg/mL. Partial least discrimination analysis revealed that the hot water plant extract downregulated amino acid, glyoxylate pathway, and methylcitrate pathways at the same time due to the synergistic effects of secondary metabolites. Hot water extract also downregulated several other metabolic pathways unique to fungi indicating its specific activity toward fungi. B. grandiflora showed promising antifungal activity which can further be exploited by identification of active compounds, to inhibit the specific fungal pathways and development of novel therapeutic antifungal drugs.
Collapse
Affiliation(s)
- Suman Kumari
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | | | | | | | | |
Collapse
|
28
|
Morton JB, Benedito VA, Panaccione DG, Jenks MA. Potential for Industrial Application of Microbes in Symbioses that Influence Plant Productivity and Sustainability in Agricultural, Natural, or Restored Ecosystems. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2014.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joseph B. Morton
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| | - Vagner A. Benedito
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| | - Matthew A. Jenks
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| |
Collapse
|
29
|
Leuchtmann A, Bacon CW, Schardl CL, White JF, Tadych M. Nomenclatural realignment of Neotyphodium species with genus Epicholë. Mycologia 2014; 106:202-15. [PMID: 24459125 DOI: 10.3852/13-251] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nomenclatural rule changes in the International Code of Nomenclature for algae, fungi and plants, adopted at the 18th International Botanical Congress in Melbourne, Australia, in 2011, provide for a single name to be used for each fungal species. The anamorphs of Epichloë species have been classified in genus Neotyphodium, the form genus that also includes most asexual Epichloë descendants. A nomenclatural realignment of this monophyletic group into one genus would enhance a broader understanding of the relationships and common features of these grass endophytes. Based on the principle of priority of publication we propose to classify all members of this clade in the genus Epichloë. We have reexamined classification of several described Epichloë and Neotyphodium species and varieties and propose new combinations and states. In this treatment we have accepted 43 unique taxa in Epichloë, including distinct species, subspecies, and varieties. We exclude from Epichloë the two taxa Neotyphodium starrii, as nomen dubium, and Neotyphodium chilense, as an unrelated taxon.
Collapse
|
30
|
Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. mBio 2014; 5:e01390-14. [PMID: 25006230 PMCID: PMC4161253 DOI: 10.1128/mbio.01390-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (−) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. The U.S. FDA reported that yogurt products were contaminated with M. circinelloides, a mucoralean fungal pathogen, and >200 consumers complained of symptoms, including vomiting, nausea, and diarrhea. The manufacturer voluntarily withdrew the affected yogurt products from the market. Compared to other food-borne pathogens, including bacteria, viruses, and parasites, less focus has been placed on the risk of fungal pathogens. This study evaluates the potential risk from the food-borne fungal pathogen M. circinelloides that was isolated from the contaminated commercial yogurt. We successfully cultured an M. circinelloides isolate and found that the isolate belongs to the species M. circinelloides f. circinelloides, which is often associated with human infections. In murine and insect host models, the isolate was virulent. While information disseminated in the popular press would suggest this fungal contaminant poses little or no risk to consumers, our results show instead that it is capable of causing significant infections in animals.
Collapse
|
31
|
Rouah E, Maho W, Mehta J, Saeger SD, Covaci A, Dorst BV, Blust R, Robbens J. Aptamer-Based Extraction of Ergot Alkaloids from Ergot Contaminated Rye Feed. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.58082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Wakimoto T, Tan KC, Abe I. Ergot alkaloid from the sea slug Pleurobranchus forskalii. Toxicon 2013; 72:1-4. [DOI: 10.1016/j.toxicon.2013.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
33
|
Mulinti P, Allen NA, Coyle CM, Gravelat FN, Sheppard DC, Panaccione DG. Accumulation of ergot alkaloids during conidiophore development in Aspergillus fumigatus. Curr Microbiol 2013; 68:1-5. [PMID: 23925951 DOI: 10.1007/s00284-013-0434-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/30/2013] [Indexed: 12/26/2022]
Abstract
Production of ergot alkaloids in the opportunistic fungal pathogen Aspergillus fumigatus is restricted to conidiating cultures. These cultures typically accumulate several pathway intermediates at concentrations comparable to that of the pathway end product. We investigated the contribution of different cell types that constitute the multicellular conidiophore of A. fumigatus to the production of ergot alkaloid pathway intermediates versus the pathway end product, fumigaclavine C. A relatively minor share (11 %) of the ergot alkaloid yield on a molar basis was secreted into the medium, whereas the remainder was associated with the conidiating colonies. Entire conidiating cultures (containing hyphae, vesicle of conidiophore, phialides of conidiophore, and conidia) accumulated higher levels of the pathway intermediate festuclavine and lower levels of the pathway end product fumigaclavine C than did isolated, abscised conidia, indicating that conidiophores and/or hyphae have a quantitatively different ergot alkaloid profile compared to that of conidia. Differences in alkaloid accumulation among cell types also were indicated by studies with conidiophore development mutants. A ∆medA mutant, in which conidiophores are numerous but develop poorly, accumulated higher levels of pathway intermediates than did the wildtype or a complemented ∆medA mutant. A ∆stuA mutant, which grows mainly as hyphae and produces very few, abnormal conidiophores, produced no detectable ergot alkaloids. The data indicated heterogeneous spatial distribution of ergot alkaloid pathway intermediates versus pathway end product in conidiating cultures of A. fumigatus. This skewed distribution may reflect differences in abundance or activity of pathway enzymes among cell types of those conidiating cultures.
Collapse
Affiliation(s)
- Prashanthi Mulinti
- Genetics & Developmental Biology Program, Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, 26506-6108, USA
| | | | | | | | | | | |
Collapse
|
34
|
Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ. The epichloae: alkaloid diversity and roles in symbiosis with grasses. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:480-8. [PMID: 23850071 PMCID: PMC3874428 DOI: 10.1016/j.pbi.2013.06.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 05/20/2023]
Abstract
Epichloae (Epichloë and Neotyphodium species; Clavicipitaceae) are fungi that live in systemic symbioses with cool-season grasses, and many produce alkaloids that are deterrent or toxic to herbivores. The epichloae colonize much of the aerial plant tissues, and most benignly colonize host seeds to transmit vertically. Of their four chemical classes of alkaloids, the ergot alkaloids and indole-diterpenes are active against mammals and insects, whereas peramine and lolines specifically affect insects. Comparative genomic analysis of Clavicipitaceae reveals a distinctive feature of the epichloae, namely, large repeat blocks in their alkaloid biosynthesis gene loci. Such repeat blocks can facilitate gene losses, mutations, and duplications, thus enhancing diversity of alkaloid structures within each class. We suggest that alkaloid diversification is selected especially in the vertically transmissible epichloae.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wight WD, Labuda R, Walton JD. Conservation of the genes for HC-toxin biosynthesis in Alternaria jesenskae. BMC Microbiol 2013; 13:165. [PMID: 23865912 PMCID: PMC3729494 DOI: 10.1186/1471-2180-13-165] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
Background HC-toxin, a cyclic tetrapeptide, is a virulence determinant for the plant pathogenic fungus Cochliobolus carbonum. It was recently discovered that another fungus, Alternaria jesenskae, also produces HC-toxin. Results The major genes (collectively known as AjTOX2) involved in the biosynthesis of HC-toxin were identified from A. jesenskae by genomic sequencing. The encoded orthologous proteins share 75-85% amino acid identity, and the genes for HC-toxin biosynthesis are duplicated in both fungi. The genomic organization of the genes in the two fungi show a similar but not identical partial clustering arrangement. A set of representative housekeeping proteins show a similar high level of amino acid identity between C. carbonum and A. jesenskae, which is consistent with the close relatedness of these two genera within the family Pleosporaceae (Dothideomycetes). Conclusions This is the first report that the plant virulence factor HC-toxin is made by an organism other than C. carbonum. The genes may have moved by horizontal transfer between the two species, but it cannot be excluded that they were present in a common ancestor and lost from other species of Alternaria and Cochliobolus.
Collapse
Affiliation(s)
- Wanessa D Wight
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Road, Room 210, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
36
|
Differential allocation of seed-borne ergot alkaloids during early ontogeny of morning glories (Convolvulaceae). J Chem Ecol 2013; 39:919-30. [PMID: 23835852 DOI: 10.1007/s10886-013-0314-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/10/2023]
Abstract
Ergot alkaloids are mycotoxins that can increase host plant resistance to above- and below-ground herbivores. Some morning glories (Convolvulaceae) are infected by clavicipitaceous fungi (Periglandula spp.) that produce high concentrations of ergot alkaloids in seeds-up to 1000-fold greater than endophyte-infected grasses. Here, we evaluated the diversity and distribution of alkaloids in seeds and seedlings and variation in alkaloid distribution among species. We treated half the plants with fungicide to differentiate seed-borne alkaloids from alkaloids produced de novo post-germination and sampled seedling tissues at the cotyledon and first-leaf stages. Seed-borne alkaloids in Ipomoea amnicola, I. argillicola, and I. hildebrandtii remained primarily in the cotyledons, whereas I. tricolor allocated lysergic acid amides to the roots while retaining clavines in the cotyledons. In I. hildebrandtii, almost all festuclavine was found in the cotyledons. These observations suggest differential allocation of individual alkaloids. Intraspecific patterns of alkaloid distribution did not vary between fungicide-treated and control seedlings. Each species contained four to six unique ergot alkaloids and two species had the ergopeptine ergobalansine. De novo production of alkaloids did not begin immediately, as total alkaloids in fungicide-treated and control seedlings did not differ through the first-leaf stage, except in I. argillicola. In an extended time-course experiment with I. tricolor, de novo production was detected after the first-leaf stage. Our results demonstrate that allocation of seed-borne ergot alkaloids varies among species and tissues but is not altered by fungicide treatment. This variation may reflect a response to selection for defense against natural enemies.
Collapse
|
37
|
Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, McPhail KL, Spatafora JW. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 2013; 9:e1003496. [PMID: 23818858 PMCID: PMC3688495 DOI: 10.1371/journal.pgen.1003496] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/20/2013] [Indexed: 01/07/2023] Open
Abstract
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.
Collapse
Affiliation(s)
- Kathryn E. Bushley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Rajani Raja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason S. Cumbie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mariko Nonogaki
- College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Alexander E. Boyd
- Center for Genome Research & Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - C. Alisha Owensby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brian J. Knaus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Daniel Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Yanming Di
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Kerry L. McPhail
- College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
38
|
Schardl CL, Young CA, Pan J, Florea S, Takach JE, Panaccione DG, Farman ML, Webb JS, Jaromczyk J, Charlton ND, Nagabhyru P, Chen L, Shi C, Leuchtmann A. Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae. Toxins (Basel) 2013; 5:1064-88. [PMID: 23744053 PMCID: PMC3717770 DOI: 10.3390/toxins5061064] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022] Open
Abstract
The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.
Collapse
Affiliation(s)
- Christopher L. Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Carolyn A. Young
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (C.A.Y.); (J.E.T.); (N.D.C.)
| | - Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Johanna E. Takach
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (C.A.Y.); (J.E.T.); (N.D.C.)
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; E-Mail:
| | - Mark L. Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Jennifer S. Webb
- Advanced Genetic Technologies Center, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.S.W.); (J.J.)
| | - Jolanta Jaromczyk
- Advanced Genetic Technologies Center, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.S.W.); (J.J.)
| | - Nikki D. Charlton
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (C.A.Y.); (J.E.T.); (N.D.C.)
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Li Chen
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
- School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chong Shi
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
- School of Grassland & Environmental Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zürich, Zürich CH-8092, Switzerland; E-Mail:
| |
Collapse
|
39
|
Panaccione DG, Beaulieu WT, Cook D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12076] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel G. Panaccione
- Division of Plant & Soil Sciences; West Virginia University; 1090 Agricultural Sciences Building Morgantown WV 26506-6108 USA
| | | | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory; Logan UT USA
| |
Collapse
|
40
|
Wu Q, Song YC, Xu H, Guo Y, Li J, Tan RX. Medium optimization for enhanced co-production of two bioactive metabolites in the same fermentation by a statistical approach. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2011; 13:1110-1121. [PMID: 22115035 DOI: 10.1080/10286020.2011.618451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper describes improved optimization method that combines the one-factor-at-a-time method (OFAT), Plackett-Burman design, and the response surface method (RSM), which were used to optimize the medium for the production of fumigaclavine C (FC) and helvolic acid (HA) from endophytic Aspergillus fumigatus CY018 simultaneously. The ideal carbon and nitrogen sources for the two compounds were assessed initially via the one-factor-at-a-time method. Three key cultivation factors (pH, phosphate, and inoculum size) were chosen based on the results of Plackett-Burman design, and subsequently optimized by the central composite design. The two metabolites were amply afforded when the cultivation was carried out with the inoculum size of 2.45% at pH 4.2 and 28°C for 19 days in the medium containing (g/l): mannitol 50, sodium succinate 5.4, NaNO₃ 2, MgSO₄·7H₂O 0.3, FeSO₄·7H₂O 0.01, and KH₂PO₄ 0.67. The highest yields of FC and HA achieved herein were 17.26 and 16.88 mg/l. This work might be the first endeavor leading to the improved simultaneous production of two complex active metabolites with a single strain.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
41
|
Reed KFM, Nie ZN, Walker LV, Mace WJ, Clark SG. Weather and pasture characteristics associated with outbreaks of perennial ryegrass toxicosis in southern Australia. ANIMAL PRODUCTION SCIENCE 2011. [DOI: 10.1071/an11016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Severe outbreaks of toxicosis caused by the natural endophyte Neotyphodium lolii in perennial ryegrass (Lolium perenne L.) have occasionally resulted in heavy loss of livestock in Victoria and Tasmania. Meteorological records were examined from locations where acute toxicosis was recorded. High rainfall (>350 mm) in spring–summer was an obvious common feature; typically, it prolonged the period of high growth rate of pasture, increasing predicted spring–summer (September–March) growth (by ~36%) and increasing the predicted digestibility of organic matter of summer pasture (1 February) by 2.7% units (up to 55.6%). In years when severe toxicosis occurred, such rainfall was accompanied by dry, warm conditions in March and April, viz. mean maximum daily temperatures on the mainland of ≥21°C (March) and ≥18°C (April). During summer–autumn 2002, pastures from 10 Victorian farms on which acute perennial ryegrass toxicosis resulted in the loss of >7000 sheep/deer, were found to be dominated by perennial ryegrass. The ryegrass endophyte-produced toxins, ergovaline and lolitrem B, were detected in 74% and 100%, respectively, of composite faecal samples collected from acutely affected animals. The populations of perennial ryegrass all tested positive for Neotyphodium lolii endophyte, with a mean infection frequency of 90.5% (s.e.m. 1.81). The mean mycelial mass in basal tillers of perennial ryegrass was estimated at 66.00 (s.e.m. 3.40) from a sample of 20 plants, each of which was assessed on a scale of 1–5. Mycelial mass accounted for 19–20% of the variation in the concentration of ergovaline and lolitrem B in perennial ryegrass. Toxin concentrations in the plants where acute toxicosis was observed exceeded the tolerance levels for sheep (ergovaline 0.8 mg/kg; lolitrem B 1.8 mg/kg) in the minor (green) fraction of the plant in all but one affected pasture for ergovaline and all but two for lolitrem B. Maximum concentrations recorded were 4.3 and 4.6 mg/kg for ergovaline and lolitrem B respectively. Ergovaline increased in an asymptotic relationship with lolitrem B, which accounted for 45% of the variation in ergovaline. The concentrations of ergovaline and lolitrem B in the whole plant (green and dead fractions combined) were not greater than those recorded from randomly sampled pastures in earlier seasons, when only occasional mild cases of toxicosis were reported. Further examination of stored grass samples collected during the 2002 outbreak recently revealed unidentified peaks on the chromatograms for both ergovaline and lolitrem B; peaks that are not seen on chromatograms for toxic perennial ryegrass from New Zealand, where the expression of perennial ryegrass toxicosis is usually milder and rarely fatal.
Collapse
|
42
|
An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 2010; 76:3898-903. [PMID: 20435769 DOI: 10.1128/aem.02914-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways.
Collapse
|
43
|
Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 2009; 192:127-34. [PMID: 20039019 DOI: 10.1007/s00203-009-0536-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.8 kDa and contains the conserved motifs of classical short-chain dehydrogenases/reductases (SDRs), but shares no worth mentioning sequence similarity with SDRs and other known proteins. The coding region of fgaDH consisting of two exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE60 and overexpressed in E. coli. The soluble tetrameric His(6)-FgaDH was purified to apparent homogeneity and characterized biochemically. It has been shown that FgaDH catalyzes the oxidation of chanoclavine-I in the presence of NAD(+) resulting in the formation of chanoclavine-I aldehyde, which was unequivocally identified by NMR and MS analyzes. Therefore, FgaDH functions as a chanoclavine-I dehydrogenase and represents a new group of short-chain dehydrogenases. K (M) values for chanoclavine-I and NAD(+) were determined at 0.27 and 1.1 mM, respectively. The turnover number was 0.38 s(-1).
Collapse
|
44
|
Bourke CA, Hunt E, Watson R. Fescue-associated oedema of horses grazing on endophyte-inoculated tall fescue grass (Festuca arundinacea) pastures. Aust Vet J 2009; 87:492-8. [DOI: 10.1111/j.1751-0813.2009.00519.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Production and characterization of antibodies against fumigaclavine A. Mycotoxin Res 2009; 25:159-64. [DOI: 10.1007/s12550-009-0024-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
|
46
|
Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 2009; 22:447-65. [PMID: 19597008 DOI: 10.1128/cmr.00055-08] [Citation(s) in RCA: 661] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus species are globally ubiquitous saprophytes found in a variety of ecological niches. Almost 200 species of aspergilli have been identified, less than 20 of which are known to cause human disease. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis (IA) in the immunocompromised patient population. IA is a devastating illness, with mortality rates in some patient groups reaching as high as 90%. Studies identifying and assessing the roles of specific factors of A. fumigatus that contribute to the pathogenesis of IA have traditionally focused on single-gene deletion and mutant characterization. In combination with recent large-scale approaches analyzing global fungal responses to distinct environmental or host conditions, these studies have identified many factors that contribute to the overall pathogenic potential of A. fumigatus. Here, we provide an overview of the significant findings regarding A. fumigatus pathogenesis as it pertains to invasive disease.
Collapse
|
47
|
Belesky DP, Bacon CW. Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. TOXIN REV 2009. [DOI: 10.1080/15569540903082143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Bräse S, Encinas A, Keck J, Nising CF. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem Rev 2009; 109:3903-90. [DOI: 10.1021/cr050001f] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefan Bräse
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Arantxa Encinas
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Julia Keck
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Carl F. Nising
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
49
|
Liu M, Panaccione DG, Schardl CL. Phylogenetic analyses reveal monophyletic origin of the ergot alkaloid gene dmaW in fungi. Evol Bioinform Online 2009; 5:15-30. [PMID: 19812724 PMCID: PMC2747131 DOI: 10.4137/ebo.s2633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ergot alkaloids are indole-derived mycotoxins that are important in agriculture and medicine. Ergot alkaloids are produced by a few representatives of two distantly related fungal lineages, the Clavicipitaceae and the Trichocomaceae. Comparison of the ergot alkaloid gene clusters from these two lineages revealed differences in the relative positions and orientations of several genes. The question arose: is ergot alkaloid biosynthetic capability from a common origin? We used a molecular phylogenetic approach to gain insights into the evolution of ergot alkaloid biosynthesis. The 4-γ,γ-dimethylallyltryptophan synthase gene, dmaW, encodes the first step in the pathway. Amino acid sequences deduced from dmaW and homologs were submitted to phylogenetic analysis, and the results indicated that dmaW of Aspergillus fumigatus (mitosporic Trichocomaceae) has the same origin as corresponding genes from clavicipitaceous fungi. Relationships of authentic dmaW genes suggest that they originated from multiple gene duplications with subsequent losses of original or duplicate versions in some lineages.
Collapse
Affiliation(s)
- Miao Liu
- 201 F Plant Science Bldg, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
50
|
Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O. Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. MICROBIOLOGY (READING, ENGLAND) 2009; 155:1738-1747. [PMID: 19383676 PMCID: PMC2889413 DOI: 10.1099/mic.0.024836-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 12/08/2022]
Abstract
Patulin is an acetate-derived tetraketide mycotoxin produced by several fungal species, especially Aspergillus, Penicillium and Byssochlamys species. The health risks due to patulin consumption by humans have led many countries to regulate it in human food. Previous studies have shown the involvement of cytochrome P450 monooxygenases in the hydroxylation of two precursors of patulin, m-cresol and m-hydroxybenzylalcohol. In the present study, two cytochrome P450 genes were identified in the genome sequence of Aspergillus clavatus, a patulin-producing species. Both mRNAs were strongly co-expressed during patulin production. CYP619C2, encoded by the first gene, consists of 529 aa, while the second cytochrome, CYP619C3, consists of 524 aa. The coding sequences were used to perform the heterologous expression of functional enzymes in Saccharomyces cerevisiae. The bioconversion assays showed that CYP619C3 catalysed the hydroxylation of m-cresol to yield m-hydroxybenzyl alcohol. CYP619C2 catalysed the hydroxylation of m-hydroxybenzyl alcohol and m-cresol to gentisyl alcohol and 2,5-dihydroxytoluene (toluquinol), respectively. Except for the last compound, all enzyme products are known precursors of patulin. Taken together, these data strongly suggest the involvement of CYP619C2 and CYP619C3 in the biosynthesis of patulin. CYP619C2 and CYP619C3 are located near to two other genes involved in patulin biosynthesis, namely the 6-methylsalicylic acid synthase (6msas) and isoepoxydon dehydrogenase (idh) genes. The current data associated with an analysis of the sequence of A. clavatus suggest the presence of a cluster of 15 genes involved in patulin biosynthesis.
Collapse
Affiliation(s)
| | - Nicolas Loiseau
- INRA, UR66 Pharmacologie-Toxicologie, F-31931 Toulouse, France
| | - Joelle Laffitte
- INRA, UR66 Pharmacologie-Toxicologie, F-31931 Toulouse, France
| | | | - Souria Tadrist
- INRA, UR66 Pharmacologie-Toxicologie, F-31931 Toulouse, France
| | | | - Olivier Puel
- INRA, UR66 Pharmacologie-Toxicologie, F-31931 Toulouse, France
| |
Collapse
|