1
|
Jeon K, Andoy NMO, Dufour D, Yang JYC, Lévesque CM, Sullan RMA. Cocktail Approach with Polyserotonin Nanoparticles and Peptides for Treatment of Streptococcus mutans. ACS Infect Dis 2024; 10:3176-3184. [PMID: 39158205 DOI: 10.1021/acsinfecdis.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Dental plaque, formed by a Streptococcus mutans biofilm, is a major contributor to cavity formation. While antimicrobial strategies exist, the growing risk of antibiotic resistance necessitates alternative therapeutic solutions. Polyserotonin nanoparticles (PSeNPs), recently recognized for their photothermal property and promising biomedical applications, open up a new avenue for antimicrobial use. Here, we introduced a UV-initiated synthetic route for PSeNPs with improved yield. Using these PSeNPs, a cocktail treatment to reduce the viability of this cavity-causing bacteria was developed. This cocktail comprises an S. mutans-targeting antimicrobial peptide (GH12), an intraspecies competence-stimulating peptide that triggers altruistic cell death in S. mutans, and laser-activated heating of PSeNPs. The "peptide + PSeNP + laser" combination effectively inhibits S. mutans growth in both planktonic and biofilm states. Moreover, the cocktail approach remains effective in reducing the viability of S. mutans in a more virulent dual-species biofilm with Candida albicans. Overall, our results reinforce the utility of a multipronged therapeutic strategy to reduce cariogenic bacteria in the complex model oral biofilm.
Collapse
Affiliation(s)
- Keuna Jeon
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Delphine Dufour
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Céline M Lévesque
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Parga A, Balboa S, Otero-Casal P, Otero A. New Preventive Strategy against Oral Biofilm Formation in Caries-Active Children: An In Vitro Study. Antibiotics (Basel) 2023; 12:1263. [PMID: 37627682 PMCID: PMC10451667 DOI: 10.3390/antibiotics12081263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum quenching (QQ) is the inhibition of bacterial communication, i.e., quorum sensing (QS). QS is a key mechanism in regulating biofilm formation and phenotype in complex bacterial communities, such as those found within cariogenic biofilms. Whereas QQ approaches were shown to effectively reduce biomass, knowledge of their impact on the taxonomic composition of oral polymicrobial biofilms remains scarce. Here, we investigate the effect of the QQ lactonase Aii20J on biomass production and taxonomical composition of biofilms. We collected supragingival plaque samples from 10 caries-free and 10 caries-active children and cultured them to generate in vitro biofilms. We describe significant biomass reductions upon Aii20J exposure, as assessed by crystal violet assays. Taxonomical profiling using 16S rRNA gene amplicon sequencing revealed no significant changes in bacterial composition at the genus level. Interestingly, at the species level Aii20J-treatment increased the abundance of Streptococcus cristatus and Streptococcus salivarius. Both S. cristatus and S. salivarius express pH-buffering enzymes (arginine deiminase and urease, respectively) that catalyze ammonia production, thereby potentially raising local pH and counteracting the biofilm's cariogenic potential. Within the limitations of the study, our findings provide evidence of the biofilm-modulating ability of QQ and offer novel insights into alternative strategies to restore homeostasis within dysbiotic ecosystems.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Sabela Balboa
- Department of Microbiology and Parasitology, Center of Cross-Disciplinary Research in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Unit of Oral Health, Centro de Saúde Santa Comba-Negreira, SERGAS, 15841 Santa Comba, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
3
|
Zank A, Schulte L, Brandon X, Carstensen L, Wescott A, Schwan WR. Mutations of the brpR and brpS genes affect biofilm formation in Staphylococcus aureus. World J Clin Infect Dis 2022; 12:20-32. [DOI: 10.5495/wjcid.v12.i1.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the United States, Staphylococcus aureus (S. aureus) kills tens of thousands of individuals each year and the formation of a biofilm contributes to lethality. Biofilm-associated infections are hard to treat once the biofilm has formed. A new stilbene drug, labeled SK-03-92, was shown to kill S. aureus and affected transcription of two genes tied to a putative two-component system (TCS) we have named brpR (biofilm regulating protein regulator) and brpS (biofilm regulating protein sensor).
AIM To determine if BrpR and BrpS regulate biofilm formation, brpR and brpS mutants were assessed using biofilm assays compared to wild-type S. aureus.
METHODS A combination of biofilm and quantitative real-time-polymerase chain reaction assays were used. In addition, bioinformatic software tools were also utilized.
RESULTS Significantly more biofilm was created in the brpR and brpS mutants vs wild-type cells. Quantitative real-time polymerase chain reactions showed the brpS mutant had differences in transcription of biofilm associated genes that were eight-fold higher for srtA, two-fold lower for lrgA, and 1.6-fold higher for cidA compared to wild-type. Bioinformatic analysis demonstrated that the S. aureus brpR/brpS TCS had homology to streptococcal late-stage competence proteins involved in cell-death, increased biofilm production, and the development of persister cells.
CONCLUSION Our study suggests that brpR/brpS is a TCS that may repress S. aureus biofilm production and be linked to late-stage competence in S. aureus.
Collapse
Affiliation(s)
- Allison Zank
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Lillian Schulte
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Xavier Brandon
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Lauren Carstensen
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Amy Wescott
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| |
Collapse
|
4
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch Oral Biol 2020; 122:105022. [PMID: 33418434 DOI: 10.1016/j.archoralbio.2020.105022] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to perform a comprehensive review of the use of antimicrobial peptides for the prevention and treatment of dental caries. The study included publications in the English language that addressed the use of antimicrobial peptides in the prevention and treatment of caries. These publications were also searchable on PubMed, Web of Science, Embase, Scopus, the Collection of Anti-Microbial Peptides and the Antimicrobial Peptide Database. A total of 3,436 publications were identified, and 67 publications were included. Eight publications reported seven natural human antimicrobial peptides as bactericidal to Streptococcus mutans. Fifty-nine publications reported 43 synthetic antimicrobial peptides developed to mimic natural antimicrobial peptides, fusing peptides with functional sequences and implementing new designs. The 43 synthetic antimicrobial peptides were effective against Streptococcus mutans, and nine peptides specifically targeted Streptococcus mutans. Ten antimicrobial peptides had an affinity for hydroxyapatite to prevent bacterial adhesion. Six antimicrobial peptides were also antifungal. Four antimicrobial peptides promoted remineralisation or prevented the demineralisation of teeth by binding calcium to hydroxyapatite. In conclusion, this study identified 67 works in the literature that reported seven natural and 43 synthetic antimicrobial peptides for the prevention and treatment of caries. Most of the antimicrobial peptides were bactericidal, and some prevented bacterial adhesion. A few antimicrobial peptides displayed remineralising properties with hydroxyapatite.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, China.
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Competence-Stimulating-Peptide-Dependent Localized Cell Death and Extracellular DNA Production in Streptococcus mutans Biofilms. Appl Environ Microbiol 2020; 86:AEM.02080-20. [PMID: 32948520 DOI: 10.1128/aem.02080-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular DNA (eDNA) is a biofilm component that contributes to the formation and structural stability of biofilms. Streptococcus mutans, a major cariogenic bacterium, induces eDNA-dependent biofilm formation under specific conditions. Since cell death can result in the release and accumulation of DNA, the dead cells in biofilms are a source of eDNA. However, it remains unknown how eDNA is released from dead cells and is localized within S. mutans biofilms. We focused on cell death induced by the extracellular signaling peptide called competence-stimulating peptide (CSP). We demonstrate that nucleic acid release into the extracellular environment occurs in a subpopulation of dead cells. eDNA production induced by CSP was highly dependent on the lytF gene, which encodes an autolysin. Although lytF expression was induced bimodally by CSP, lytF-expressing cells further divided into surviving cells and eDNA-producing dead cells. Moreover, we found that lytF-expressing cells were abundant near the bottom of the biofilm, even when all cells in the biofilm received the CSP signal. Dead cells and eDNA were also abundantly present near the bottom of the biofilm. The number of lytF-expressing cells in biofilms was significantly higher than that in planktonic cultures, which suggests that adhesion to the substratum surface is important for the induction of lytF expression. The deletion of lytF resulted in reduced adherence to a polystyrene surface. These results suggest that lytF expression and eDNA production induced near the bottom of the biofilm contribute to a firmly attached and structurally stable biofilm.IMPORTANCE Bacterial communities encased by self-produced extracellular polymeric substances (EPSs), known as biofilms, have a wide influence on human health and environmental problems. The importance of biofilm research has increased, as biofilms are the preferred bacterial lifestyle in nature. Furthermore, in recent years it has been noted that the contribution of phenotypic heterogeneity within biofilms requires analysis at the single-cell or subpopulation level to understand bacterial life strategies. In Streptococcus mutans, a cariogenic bacterium, extracellular DNA (eDNA) contributes to biofilm formation. However, it remains unclear how and where the cells produce eDNA within the biofilm. We focused on LytF, an autolysin that is induced by extracellular peptide signals. We used single-cell level imaging techniques to analyze lytF expression in the biofilm population. Here, we show that S. mutans generates eDNA by inducing lytF expression near the bottom of the biofilm, thereby enhancing biofilm adhesion and structural stability.
Collapse
|
6
|
Li J, Shang L, Lan J, Chou S, Feng X, Shi B, Wang J, Lyu Y, Shan A. Targeted and Intracellular Antibacterial Activity against S. agalactiae of the Chimeric Peptides Based on Pheromone and Cell-Penetrating Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44459-44474. [PMID: 32924418 DOI: 10.1021/acsami.0c12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The significance of the complex bacterial ecosystem in the human body and the impediment of the mammalian membrane against many antibiotics together emphasize the necessity to develop antimicrobial agents with precise antimicrobial and cell-penetrating activities. A simple and feasible method for generating dual-function antimicrobial peptides inspired by highly hydrophobic peptide pheromone and cationic cell-penetrating peptides is presented. Furthermore, the extension of the peptide candidate library is achieved by modifying the charged domain. The bacteria-selective peptides L1, L2, L10, and L11 kill Streptococcus agalactiae by disrupting the membrane structure, and the targeted mechanism is suggested where the peptides offset the entrapment of S. agalactiae rather than of other bacteria. Moreover, L2 and L10 possess intracellular antibacterial activity and carrier property, which is mainly dependent on endocytosis. Given their suitable biocompatibility, high tolerance, no drug resistance, and effective antimicrobial capacity in a mouse mastitis model, L2 and L10 can be powerful weapons against S. agalactiae pathogen infection.
Collapse
Affiliation(s)
- Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Lu Shang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jing Lan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
7
|
Senpuku H, Mohri S, Mihara M, Arai T, Suzuki Y, Saeki Y. Effects of 7S globulin 3 derived from the adzuki bean [Vigna angularis] on the CSP- and eDNA- dependent biofilm formation of Streptococcus mutans. Arch Oral Biol 2019; 102:256-265. [PMID: 31100490 DOI: 10.1016/j.archoralbio.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Streptococcus mutans is a principal bacterium that forms pathogenic biofilm involved in the development of dental caries. S. mutans possesses a quorum sensing system (QS) stimulated by competence stimulating peptide (CSP), which is associated with bacteriocin production, genetic competency and biofilm formation. Inhibiting CSP-dependent QS is one of the aims leading to the inhibition of biofilm formation and is useful for establishing new prevention systems for dental caries. DESIGN In this study, we selected adzuki bean [Vigna angularis] extract as a candidate component to inhibit CSP-dependent biofilm formation among various foods. To purify an inhibitory component from the adzuki extracts, we performed the salting-out method, two rounds of ion-exchange chromatography, and SDS and native PAGE. RESULTS A primary protein band that inhibits CSP-dependent biofilm formation appeared at approximately 50 kDa and was identified as 7S globulin 3 (7S3), a major seed storage protein in adzuki bean. To determine the characteristics of 7S3 as an inhibitory component, aggregated proteins were extracted from the adzuki crude extracts at pH values lower than 6. The aggregated proteins inhibited CSP- and eDNA-dependent biofilm formation and showed 50 kDa band, which is identical with 7S3 in the purified sample. Moreover, 7S globulin 3 in the adzuki bean extract directly interacted with CSP at low pH conditions but not at neutral conditions, and inhibited CSP-dependent bacteriocin production. CONCLUSION It was suggested that 7S3 might be a safe and useful material to prevent pathogenic activities in the biofilm formation of S. mutans.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | - Shota Mohri
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| | - Mamiko Mihara
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| | - Toshiaki Arai
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoji Saeki
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| |
Collapse
|
8
|
Beyond Streptococcus mutans: clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome. Br Dent J 2018; 224:219-225. [PMID: 29449651 DOI: 10.1038/sj.bdj.2018.81] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Abstract
Aetiological concepts of dental caries have evolved over the years from being considered as a disease initiated by nonspecific microorganisms, to being regarded as an 'infectious' disease caused by specific bacteria, to the current paradigms that emphasise a 'mixed bacterial-ecological approach' as being responsible for lesion initiation and pathogenesis. These aetiological paradigms are not just intellectual concepts but have important implications on how clinicians manage this age-old disease in the twenty-first century. Despite evidence-backed recommendations for adopting more biological measures to counter the disease, a significant proportion of dentists continue following traditional caries management guidelines in their daily clinical practice. This paper will review the evolving dental caries aetiological concepts and highlight the current evidence for adopting a more ecological approach to caries prevention, risk assessment, and treatment.
Collapse
|
9
|
Philip N, Suneja B, Walsh LJ. Ecological Approaches to Dental Caries Prevention: Paradigm Shift or Shibboleth? Caries Res 2018; 52:153-165. [PMID: 29320767 DOI: 10.1159/000484985] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Contemporary paradigms of dental caries aetiology focus on the ecology of the dental plaque biofilm and how local environmental factors can modulate this to cause disease. The crucial role that a healthy oral microbiome plays in preventing caries and promoting oral health is also being increasingly recognized. Based on these concepts, several ecological preventive approaches have been developed that could potentially broaden the arsenal of currently available caries-preventive measures. Many of these ecological approaches aim for long-term caries control by either disrupting cariogenic virulence factors without affecting bacterial viability, or include measures that can enhance the growth of health-associated, microbially diverse communities in the oral microbiome. This paper argues for the need to develop ecological preventive measures that go beyond conventional caries-preventive methods, and discusses whether these ecological approaches can be effective in reducing the severity of caries by promoting stable, health-associated oral biofilm communities.
Collapse
Affiliation(s)
- Nebu Philip
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
10
|
Kaur G, Balamurugan P, Princy SA. Inhibition of the Quorum Sensing System (ComDE Pathway) by Aromatic 1,3-di-m-tolylurea (DMTU): Cariostatic Effect with Fluoride in Wistar Rats. Front Cell Infect Microbiol 2017; 7:313. [PMID: 28748175 PMCID: PMC5506180 DOI: 10.3389/fcimb.2017.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022] Open
Abstract
Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque) as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU) could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ppm) without affecting bacterial growth. In the present study, RT-qPCR analysis showed the target specific molecular mechanism of DMTU. In vivo treatment with DMTU, alone or in combination with fluoride, resulted in inhibition of caries (biofilm development of Streptococcus mutans) using a Wistar rat model for dental caries. The histopathological analysis reported the development of lesions on dentine in infected subjects whereas the dentines of treated rodents were found to be intact and healthy. Reduction in inflammatory markers in rodents' blood and liver samples was observed when treated with DMTU. Collectively, data speculate that DMTU is an effective anti-biofilm and anti-inflammatory agent, which may improve the cariostatic properties of fluoride.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
11
|
Wang Z, Shen Y, Haapasalo M. Antibiofilm peptides against oral biofilms. J Oral Microbiol 2017; 9:1327308. [PMID: 28748031 PMCID: PMC5508375 DOI: 10.1080/20002297.2017.1327308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The oral cavity is a major entry point for bacteria and other microorganisms. Oral biofilms are formed by mixed communities of microorganisms embedded in an exopolysaccharide matrix. Biofilms forming on dental hard or soft tissue are the major cause of caries and endodontic and periodontal disease. Human oral biofilms exhibit high resistance to antimicrobial agents. Antibiofilm peptides constitute a diverse class of host-defense molecules that act to combat invasion and infection with biofilms. Different in vitro and in vivo biofilm models with quantitative analysis have been established to provide predictable platforms for the evaluation of the antibiofilm effect of oral antibiofilm peptides. These peptides have engendered considerable interest in the past decades as potential alternatives to traditional disinfecting agents due to their ability to target bacterial biofilms specifically, leading to the prevention of biofilm formation and destruction of pre-existing biofilms by Gram-positive and -negative bacterial pathogens and fungi. At the same time, challenges associated with the application of these antibiofilm peptides in dental practice also exist. The production of effective, nontoxic, and stable antibiofilm peptides is desired in both academic and industrial fields. This review focuses on the antibiofilm properties of current synthetic peptides and their application in different areas of dentistry.
Collapse
Affiliation(s)
- Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Kaur G, Balamurugan P, Uma Maheswari C, Anitha A, Princy SA. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation. Front Microbiol 2016; 7:861. [PMID: 27375583 PMCID: PMC4893485 DOI: 10.3389/fmicb.2016.00861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/23/2016] [Indexed: 01/11/2023] Open
Abstract
Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P. Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - C. Uma Maheswari
- Organic Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - A. Anitha
- Organic Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - S. Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
13
|
Haustenne L, Bastin G, Hols P, Fontaine L. Modeling of the ComRS Signaling Pathway Reveals the Limiting Factors Controlling Competence in Streptococcus thermophilus. Front Microbiol 2015; 6:1413. [PMID: 26733960 PMCID: PMC4686606 DOI: 10.3389/fmicb.2015.01413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/27/2015] [Indexed: 12/25/2022] Open
Abstract
In streptococci, entry in competence is dictated by ComX abundance. In Streptococcus thermophilus, production of ComX is transient and tightly regulated during growth: it is positively regulated by the cell-cell communication system ComRS during the activation phase and negatively regulated during the shut-off phase by unidentified late competence gene(s). Interestingly, most S. thermophilus strains are not or weakly transformable in permissive growth conditions (i.e., chemically defined medium, CDM), suggesting that some players of the ComRS regulatory pathway are limiting. Here, we combined mathematical modeling and experimental approaches to identify the components of the ComRS system which are critical for both dynamics and amplitude of ComX production in S. thermophilus. We built a deterministic, population-scaled model of the time-course regulation of specific ComX production in CDM growth conditions. Strains LMD-9 and LMG18311 were respectively selected as representative of highly and weakly transformable strains. Results from in silico simulations and in vivo luciferase activities show that ComR concentration is the main limiting factor for the level of comX expression and controls the kinetics of spontaneous competence induction in strain LMD-9. In addition, the model predicts that the poor transformability of strain LMG18311 results from a 10-fold lower comR expression level compared to strain LMD-9. In agreement, comR overexpression in both strains was shown to induce higher competence levels with deregulated kinetics patterns during growth. In conclusion, we propose that the level of ComR production is one important factor that could explain competence heterogeneity among S. thermophilus strains.
Collapse
Affiliation(s)
- Laurie Haustenne
- Biochimie, Biophysique et Génétique des Microorganismes, Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
| | - Georges Bastin
- Center for Systems Engineering and Applied Mechanics, ICTEAM, Université catholique de Louvain Louvain-la-Neuve, Belgium
| | - Pascal Hols
- Biochimie, Biophysique et Génétique des Microorganismes, Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
| | - Laetitia Fontaine
- Biochimie, Biophysique et Génétique des Microorganismes, Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Sintim HO, Gürsoy UK. Biofilms as "Connectors" for Oral and Systems Medicine: A New Opportunity for Biomarkers, Molecular Targets, and Bacterial Eradication. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 20:3-11. [PMID: 26583256 PMCID: PMC4739346 DOI: 10.1089/omi.2015.0146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral health and systems medicine are intimately related but have remained, sadly, as isolated knowledge communities for decades. Are there veritable connector knowledge domains that can usefully link them together on the critical path to biomarker research and “one health”? In this context, it is noteworthy that bacteria form surface-attached communities on most biological surfaces, including the oral cavity. Biofilm-forming bacteria contribute to periodontal diseases and recent evidences point to roles of these bacteria in systemic diseases as well, with cardiovascular diseases, obesity, and cancer as notable examples. Interestingly, the combined mass of microorganisms such as bacteria are so large that when we combine all plants and animals on earth, the total biomass of bacteria is still bigger. They literally do colonize everywhere, not only soil and water but our skin, digestive tract, and even oral cavity are colonized by bacteria. Hence efforts to delineate biofilm formation mechanisms of oral bacteria and microorganisms and the development of small molecules to inhibit biofilm formation in the oral cavity is very timely for both diagnostics and therapeutics. Research on biofilms can benefit both oral and systems medicine. Here, we examine, review, and synthesize new knowledge on the current understanding of oral biofilm formation, the small molecule targets that can inhibit biofilm formation in the mouth. We suggest new directions for both oral and systems medicine, using various omics technologies such as SILAC and RNAseq, that could yield deeper insights, biomarkers, and molecular targets to design small molecules that selectively aim at eradication of pathogenic oral bacteria. Ultimately, devising new ways to control and eradicate bacteria in biofilms will open up novel diagnostic and therapeutic avenues for oral and systemic diseases alike.
Collapse
Affiliation(s)
- Herman O Sintim
- 1 Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland.,2 Department of Chemistry, Purdue University , West Lafayette, Indiana
| | - Ulvi Kahraman Gürsoy
- 3 Department of Periodontology, Institute of Dentistry, University of Turku , Turku, Finland
| |
Collapse
|
15
|
Leung V, Dufour D, Lévesque CM. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide. Front Microbiol 2015; 6:1176. [PMID: 26557114 PMCID: PMC4615949 DOI: 10.3389/fmicb.2015.01176] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Bacteria are considered "social" organisms able to communicate with one another using small hormone-like molecules (pheromones) in a process called quorum-sensing (QS). These signaling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, QS is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial QS could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (cavities). In S. mutans, its CSP QS signaling peptide does not act as a classical QS signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induce the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signaling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial "suicide" and dormancy, and the underlying mechanisms by which S. mutans utilizes the same QS signaling peptide to regulate two opposite phenotypes.
Collapse
Affiliation(s)
- Vincent Leung
- Dental Research Institute, Faculty of Dentistry, University of Toronto , Toronto, ON, Canada
| | - Delphine Dufour
- Dental Research Institute, Faculty of Dentistry, University of Toronto , Toronto, ON, Canada
| | - Céline M Lévesque
- Dental Research Institute, Faculty of Dentistry, University of Toronto , Toronto, ON, Canada
| |
Collapse
|
16
|
Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. INFECTION GENETICS AND EVOLUTION 2015; 33:343-60. [DOI: 10.1016/j.meegid.2014.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/07/2014] [Indexed: 02/02/2023]
|
17
|
Li X, Contreras-Garcia A, LoVetri K, Yakandawala N, Wertheimer MR, De Crescenzo G, Hoemann CD. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces. J Biomed Mater Res A 2015; 103:3736-46. [DOI: 10.1002/jbm.a.35511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Xian Li
- Department of Chemical Engineering; École Polytechnique; Montréal Quebec Canada H3C 3A7
- Biomedical Sciences and Technology Research Group/Groupe de Recherche Sciences et Technologies Biomedicales (GRSTB), École Polytechnique; Montréal Quebec Canada H3C 3A7
| | | | - Karen LoVetri
- Kane Biotech Inc.; 162-196 Innovation Drive Winnipeg Manitoba Canada R3T 2N2
| | | | - Michael R. Wertheimer
- Department of Engineering Physics; École Polytechnique; Montréal Quebec Canada H3C 3A7
| | - Gregory De Crescenzo
- Department of Chemical Engineering; École Polytechnique; Montréal Quebec Canada H3C 3A7
- Biomedical Sciences and Technology Research Group/Groupe de Recherche Sciences et Technologies Biomedicales (GRSTB), École Polytechnique; Montréal Quebec Canada H3C 3A7
- Institute of Biomedical Engineering, École Polytechnique; Montréal Quebec Canada H3C 3A7
| | - Caroline D. Hoemann
- Department of Chemical Engineering; École Polytechnique; Montréal Quebec Canada H3C 3A7
- Biomedical Sciences and Technology Research Group/Groupe de Recherche Sciences et Technologies Biomedicales (GRSTB), École Polytechnique; Montréal Quebec Canada H3C 3A7
- Institute of Biomedical Engineering, École Polytechnique; Montréal Quebec Canada H3C 3A7
| |
Collapse
|
18
|
Kaur G, Rajesh S, Princy SA. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks. Indian J Microbiol 2015; 55:349-56. [PMID: 26543259 DOI: 10.1007/s12088-015-0534-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| | - Shrinidhi Rajesh
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| |
Collapse
|
19
|
Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Dobler IW, Zeng AP. Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton. BMC Genomics 2014; 15:362. [PMID: 24884510 PMCID: PMC4048456 DOI: 10.1186/1471-2164-15-362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/17/2014] [Indexed: 11/26/2022] Open
Abstract
Background Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out. Results The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network. Conclusion The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-362) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene W Dobler
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073 Hamburg, Germany.
| | | |
Collapse
|
20
|
Modification of Xenogeneic Graft Materials for Improved Release of P-15 Peptides in a Calvarium Defect Model. J Craniofac Surg 2014; 25:70-6. [DOI: 10.1097/scs.0b013e3182a2dfe7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Growth phase and pH influence peptide signaling for competence development in Streptococcus mutans. J Bacteriol 2013; 196:227-36. [PMID: 24163340 DOI: 10.1128/jb.00995-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development of competence by the dental caries pathogen Streptococcus mutans is mediated primarily through the alternative sigma factor ComX (SigX), which is under the control of multiple regulatory systems and activates the expression of genes involved in DNA uptake and recombination. Here we report that the induction of competence and competence gene expression by XIP (sigX-inducing peptide) and CSP (competence-stimulating peptide) is dependent on the growth phase and that environmental pH has a potent effect on the responses to XIP. A dramatic decline in comX and comS expression was observed in mid- and late-exponential-phase cells. XIP-mediated competence development and responses to XIP were optimal around a neutral pH, although mid-exponential-phase cells remained refractory to XIP treatment, and acidified late-exponential-phase cultures were resistant to killing by high concentrations of XIP. Changes in the expression of the genes for the oligopeptide permease (opp), which appears to be responsible for the internalization of XIP, could not entirely account for the behaviors observed. Interestingly, comS and comX expression was highly induced in response to endogenously overproduced XIP or ComS in mid-exponential-phase cells. In contrast to the effects of pH on XIP, competence induction and responses to CSP in complex medium were not affected by pH, although a decreased response to CSP in cells that had exited early-exponential phase was observed. Collectively, these results indicate that competence development may be highly sensitive to microenvironments within oral biofilms and that XIP and CSP signaling in biofilms could be spatially and temporally heterogeneous.
Collapse
|
22
|
|
23
|
Cell death of Streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. J Bacteriol 2012; 195:105-14. [PMID: 23104806 DOI: 10.1128/jb.00926-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans, a member of the human indigenous oral microbiome, produces a quorum-sensing peptide called the competence-stimulating peptide (CSP) pheromone. We previously demonstrated that S. mutans expresses its CSP pheromone under specific stresses and responds to high levels of CSP by inducing cell death in a fraction of the bacterial population. Streptococci lack the classical SOS response, and the induction of the SigX regulon has been proposed to act as a general stress response in Gram-positive bacteria. We show here that inactivation of SigX abolished the CSP-induced cell death phenotype. Among SigX-regulated genes, SMU.836 (now named lytF(Sm)), encoding a conserved streptococcal protein, is a functional peptidoglycan hydrolase involved in CSP-induced cell lysis. We also demonstrated that LytF(Sm) is most likely a self-acting autolysin, since LytF(Sm) produced by attacker cells cannot trigger CSP-induced lysis of LytF(Sm)-deficient target cells present in the same environment. Electron microscopy revealed important morphological changes accompanying autolysis of CSP-induced wild-type cultures that were absent in the LytF(Sm)-deficient mutant. The LytF(Sm) promoter was activated in the physiological context of elevated concentrations of the CSP pheromone under stress conditions, such as exposure to heat, hydrogen peroxide, and acid. In a long-term survival assay, the viability of a mutant deficient in LytF(Sm) autolysin was significantly lower than that observed for the wild-type strain. The results of this study suggest that cell death of S. mutans induced by its quorum-sensing CSP pheromone may represent a kind of altruistic act that provides a way for the species to survive environmental stresses at the expense of some of its cells.
Collapse
|
24
|
Wenderska IB, Lukenda N, Cordova M, Magarvey N, Cvitkovitch DG, Senadheera DB. A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol Lett 2012; 336:104-12. [PMID: 22900705 DOI: 10.1111/j.1574-6968.2012.02660.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022] Open
Abstract
In Streptococcus mutans, ComX, an alternative sigma factor, drives the transcription of the 'late-competence genes' required for genetic transformation. ComX activity is modulated by inputs from two signaling pathways, ComDE and ComRS, that respond to the competence-stimulating peptide (CSP) and the SigX-inducing peptide (XIP), respectively. In particular, the comRS, encoding the ComR regulatory protein and the ComS precursor to XIP, functions as the proximal regulatory system for ComX activation. Here, we investigated the individual and combinatorial effects of CSP and XIP on genetic transformation and cell killing of S. mutans. Our transformation results confirm the recent reports by Mashburn-Warren et al. and Desai et al. that XIP functions optimally in a chemically defined medium, whereas its activity is inhibited when cells are grown in complex medium. Using tandem mass spectrometry (MS/MS) fragmentation, a drastic reduction in XIP levels in ComX-deficient cultures were observed, suggesting a ComX-mediated positive feedback mechanism for XIP synthesis. Our evaluation of cell viability in the presence of 10 μM XIP resulted in killing nearly 82% of the population. The killing activity was shown to be dependent on the presence of comR/S and comX. These results suggest a novel role for XIP as a compelling effector of cell death. This is the first report that demonstrates a role for XIP in cell killing.
Collapse
Affiliation(s)
- Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Mair RW, Senadheera DB, Cvitkovitch DG. CinA is regulated via ComX to modulate genetic transformation and cell viability in Streptococcus mutans. FEMS Microbiol Lett 2012; 331:44-52. [PMID: 22428842 DOI: 10.1111/j.1574-6968.2012.02550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 11/29/2022] Open
Abstract
The Streptococcus mutans ComX-regulon encompasses > 200 mostly uncharacterized genes, including cinA. Here we report that cinA is regulated by ComX in the presence of the competence stimulating peptide (CSP), wherein loss of CinA (strain SmuCinA) results in reduced transformability with or without added CSP by 74- and 15-fold, respectively (P < 0.003). In CSP-supplemented cultures, a two-fold increase in cell viability was noted for SmuCinA relative to UA159 (P < 0.002), suggesting CinA's involvement in the CSP-modulated cell killing response. Relative to UA159, loss of CinA also rendered the mutant hypersensitive to killing by methyl methanesulfonate (MMS), which impairs homologous recombination. Despite our use of a non-polar mutagenesis strategy to knockout cinA, which is the first gene of the multicistronic operon harboring cinA, we noted a drastic reduction in recA expression. By using a CinA-complemented mutant, we were able to partially, but not completely restore all phenotypes to UA159 levels. Complementation results suggested that although cinA participates in modulating competence, viability and MMS tolerance, genes downstream of the cinA transcript may also regulate these phenotypes, a finding that warrants further examination. This is the first report that describes a role for S. mutans' CinA in contending with DNA damage, genetic transformation and cell survival.
Collapse
Affiliation(s)
- Richard W Mair
- Dental Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
27
|
Nicolas GG, Lavoie MC. [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol 2011; 57:1-20. [PMID: 21217792 DOI: 10.1139/w10-095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human oral microbial biota represents a highly diverse biofilm. Twenty-five species of oral streptococci inhabit the human oral cavity and represent about 20 % of the total oral bacteria. Taxonomy of these bacteria is complex and remains provisional. Oral streptococci encompass friends and foes bacteria. Each species has developed specific properties for colonizing the different oral sites subjected to constantly changing conditions, for competing against competitors, and for resisting external agressions (host immune system, physico-chemical shocks, and mechanical frictions). Imbalance in the indigenous microbial biota generates oral diseases, and under proper conditions, commensal streptococci can switch to opportunistic pathogens that initiate disease in and damage to the host. The group of "mutans streptococci" was described as the most important bacteria related to the formation of dental caries. Streptococcus mutans, although naturally present among the human oral microbiota, is the microbial species most strongly associated with carious lesions. This minireview describes the oral streptococci ecology and their biofilm life style by focusing on the mutans group, mainly S. mutans. Virulence traits, interactions in the biofilm, and influence of S. mutans in dental caries etiology are discussed.
Collapse
Affiliation(s)
- Guillaume G Nicolas
- Département de biochimie microbiologie et bioinformatique, Université Laval, Québec, Canada.
| | | |
Collapse
|
28
|
Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother 2011; 55:3446-52. [PMID: 21518845 DOI: 10.1128/aac.00342-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specifically targeted antimicrobial peptide (STAMP) C16G2 was developed to target the cariogenic oral pathogen Streptococcus mutans. Because the design of this peptide was novel, we sought to better understand the mechanism through which it functioned. Compared to antimicrobial peptides (AMPs) with wide spectra of activity, the STAMP C16G2 has demonstrated specificity for S. mutans in a mixed-culture environment, resulting in the complete killing of S. mutans while having minimal effect on the other streptococci. In the current study, we sought to further confirm the selectivity of C16G2 and also compare its membrane activity to that of melittin B, a classical toxic AMP, in order to determine the STAMP's mechanism of cell killing. Disruption of S. mutans cell membranes by C16G2 was demonstrated by increased SYTOX green uptake and ATP efflux from the cells similar to those of melittin B. Treatment with C16G2 also resulted in a loss of membrane potential as measured by DiSC(3)5 fluorescence. In comparison, the individual moieties of C16G2 demonstrated no specificity and limited antimicrobial activity compared to those of the STAMP C16G2. The data suggest that C16G2 has a mechanism of action similar to that of traditional AMPs and kills S. mutans through disruption of the cell membrane, allowing small molecules to leak out of the cell, which is followed by a loss of membrane potential and cell death. Interestingly, this membrane activity is rapid and potent against S. mutans, but not other noncariogenic oral streptococci.
Collapse
|
29
|
Contribution of serotype and genetic background to biofilm formation by Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis 2010; 30:97-102. [DOI: 10.1007/s10096-010-1060-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|
30
|
Kunze B, Reck M, Dötsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, Wagner-Döbler I. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol 2010; 10:199. [PMID: 20659313 PMCID: PMC2915981 DOI: 10.1186/1471-2180-10-199] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/26/2010] [Indexed: 01/25/2023] Open
Abstract
Background Streptococcus mutans is a major pathogen in human dental caries. One of its important virulence properties is the ability to form biofilms (dental plaque) on tooth surfaces. Eradication of such biofilms is extremely difficult. We therefore screened a library of secondary metabolites from myxobacteria for their ability to damage biofilms of S. mutans. Results Here we show that carolacton, a secondary metabolite isolated from Sorangium cellulosum, has high antibacterial activity against biofilms of S. mutans. Planktonic growth of bacteria was only slightly impaired and no acute cytotoxicity against mouse fibroblasts could be observed. Carolacton caused death of S. mutans biofilm cells, elongation of cell chains, and changes in cell morphology. At a concentration of 10 nM carolacton, biofilm damage was already at 35% under anaerobic conditions. A knock-out mutant for comD, encoding a histidine kinase specific for the competence stimulating peptide (CSP), was slightly less sensitive to carolacton than the wildtype. Expression of the competence related alternate sigma factor ComX was strongly reduced by carolacton, as determined by a pcomX luciferase reporter strain. Conclusions Carolacton possibly interferes with the density dependent signalling systems in S. mutans and may represent a novel approach for the prevention of dental caries.
Collapse
Affiliation(s)
- Brigitte Kunze
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 2010; 54:2143-51. [PMID: 20211885 DOI: 10.1128/aac.01391-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously we reported a novel strategy of "targeted killing" through the design of narrow-spectrum molecules known as specifically targeted antimicrobial peptides (STAMPs) (R. Eckert et al., Antimicrob. Agents Chemother. 50:3651-3657, 2006; R. Eckert et al., Antimicrob. Agents Chemother. 50:1480-1488, 2006). Construction of these molecules requires the identification and the subsequent utilization of two conjoined yet functionally independent peptide components: the targeting and killing regions. In this study, we sought to design and synthesize a large number of STAMPs targeting Streptococcus mutans, the primary etiologic agent of human dental caries, in order to identify candidate peptides with increased killing speed and selectivity compared with their unmodified precursor antimicrobial peptides (AMPs). We hypothesized that a combinatorial approach, utilizing a set number of AMP, targeting, and linker regions, would be an effective method for the identification of STAMPs with the desired level of activity. STAMPs composed of the Sm6 S. mutans binding peptide and the PL-135 AMP displayed selectivity at MICs after incubation for 18 to 24 h. A STAMP where PL-135 was replaced by the B-33 killing domain exhibited both selectivity and rapid killing within 1 min of exposure and displayed activity against multispecies biofilms grown in the presence of saliva. These results suggest that potent and selective STAMP molecules can be designed and improved via a tunable "building-block" approach.
Collapse
|
32
|
Li L, He J, Eckert R, Yarbrough D, Lux R, Anderson M, Shi W. Design and characterization of an acid-activated antimicrobial peptide. Chem Biol Drug Des 2009; 75:127-32. [PMID: 19878192 DOI: 10.1111/j.1747-0285.2009.00904.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries.
Collapse
|
33
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
34
|
Tremblay YDN, Lo H, Li YH, Halperin SA, Lee SF. Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system. Microbiology (Reading) 2009; 155:2856-2865. [DOI: 10.1099/mic.0.028456-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As an inhabitant of the human oral cavity, Streptococcus mutans faces frequent environmental changes. Two-component regulatory systems (TCSs) play a critical role in responding to these changes. Recently, an essential TCS, VicRKX, has been identified. The objective of this study was to identify the environmental signal and bacterial factors regulating the expression of the vicRKX operon. The promoter of the vicRKX operon was fused to a promoterless lacZ reporter gene and introduced into S. mutans UA159. LacZ plate assay identified pH, vancomycin, ampicillin, penicillin G and polymyxin B, but not carbohydrates, as factors affecting expression. Using RNA dot-blotting, high levels of vicR transcript were observed in cells at the mid- and late-exponential phase of growth and in cells grown in media buffered at pH 7.8. Given that vicR expression was pH-dependent, the genes encoding a putative pH-sensing three-component regulatory system (LiaFSR) were deleted. The liaS mutant exhibited upregulation of vicR regardless of the growth condition. The role of VicK, VicX, and the competence-signal peptide (CSP) was also investigated; the results showed that vicR expression was not autoregulated and was downregulated by the CSP in a ComX-independent manner. In conclusion, the expression of vicRKX is influenced by culture pH, growth phase and antibiotic stress, and is regulated by LiaFRS.
Collapse
Affiliation(s)
- Yannick D. N. Tremblay
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Henry Lo
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Yung-Hua Li
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Scott A. Halperin
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Song F. Lee
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
| |
Collapse
|
35
|
Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. EUKARYOTIC CELL 2009; 8:1658-64. [PMID: 19717744 DOI: 10.1128/ec.00070-09] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the human oral cavity, where it interacts with S. mutans. C. albicans is a polymorphic fungus, and the yeast-to-hypha transition is involved in virulence and biofilm formation. The aim of this study was to investigate interkingdom communication between C. albicans and S. mutans based on the production of secreted molecules. S. mutans UA159 inhibited C. albicans germ tube (GT) formation in cocultures even when physically separated from C. albicans. Only S. mutans spent medium collected in the early exponential phase (4-h-old cultures) inhibited the GT formation of C. albicans. During this phase, S. mutans UA159 produces a quorum-sensing molecule, competence-stimulating peptide (CSP). The role of CSP in inhibiting GT formation was confirmed by using synthetic CSP and a comC deletion strain of S. mutans UA159, which lacks the ability to produce CSP. Other S. mutans strains and other Streptococcus spp. also inhibited GT formation but to different extents, possibly reflecting differences in CSP amino acid sequences among Streptococcus spp. or differences in CSP accumulation in the media. In conclusion, CSP, an S. mutans quorum-sensing molecule secreted during the early stages of growth, inhibits the C. albicans morphological switch.
Collapse
|
36
|
He X, Lux R, Kuramitsu HK, Anderson MH, Shi W. Achieving probiotic effects via modulating oral microbial ecology. Adv Dent Res 2009; 21:53-6. [PMID: 19710082 DOI: 10.1177/0895937409335626] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- X He
- Section of Oral Biology, School of Dentistry and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
37
|
Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Lévesque CM. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 2009; 72:905-17. [PMID: 19400789 DOI: 10.1111/j.1365-2958.2009.06693.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The induction of genetic competence is a strategy used by bacteria to increase their genetic repertoire under stressful environmental conditions. Recently, Streptococcus pneumoniae has been shown to co-ordinate the uptake of transforming DNA with fratricide via increased expression of the peptide pheromone responsible for competence induction. Here, we document that environmental stress-induced expression of the peptide pheromone competence-stimulating peptide (CSP) in the oral pathogen Streptococcus mutans. We showed that CSP is involved in the stress response and determined the CSP-induced regulon in S. mutans by microarray analysis. Contrary to pneumococcus, S. mutans responds to increased concentrations of CSP by cell lysis in only a fraction of the population. We have focused on the mechanism of cell lysis and have identified a novel bacteriocin as the 'death effector'. Most importantly, we showed that this bacteriocin causes cell death via a novel mechanism of action: intracellular action against self. We have also identified the cognate bacteriocin immunity protein, which resides in a separate unlinked genetic locus to allow its differential regulation. The role of the lytic response in S. mutans competence is also discussed. Together, these findings reveal a novel autolytic pathway in S. mutans which may be involved in the dissemination of fitness-enhancing genes in the oral biofilm.
Collapse
Affiliation(s)
- Julie A Perry
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
38
|
Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation. Biochem Biophys Res Commun 2009; 379:933-8. [DOI: 10.1016/j.bbrc.2008.12.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/28/2008] [Indexed: 12/22/2022]
|
39
|
Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. MICROBIOLOGY-SGM 2008; 154:3247-3255. [PMID: 18957579 DOI: 10.1099/mic.0.2008/023770-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete genome sequence of Streptococcus mutans, a bacterial pathogen commonly associated with human dental caries, was published in 2002. The streamlined genome (2.03 Mb) revealed an organism that is well adapted to its obligately host-associated existence in multispecies biofilms on tooth surfaces: a dynamic environment that undergoes rapid and substantial fluctuations. However, S. mutans lacks many of the sensing systems and alternative sigma factors that bacteria often use to coordinate gene expression in response to stress and changes in their environment. Over the past 7 years, functional genomics and proteomics have enhanced our understanding of how S. mutans has integrated the stress regulon and global transcriptional regulators to coordinate responses to environmental fluctuations with modulation of virulence in a way that ensures persistence in the oral cavity and capitalizes on conditions that are favourable for the development of dental caries. Here, we highlight advances in dissection of the stress regulon of S. mutans and its intimate interrelationship with pathogenesis.
Collapse
Affiliation(s)
- José A Lemos
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
40
|
Senadheera D, Cvitkovitch DG. Quorum Sensing and Biofilm Formation by Streptococcus mutans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:178-88. [DOI: 10.1007/978-0-387-78885-2_12] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
|
42
|
Kelly CG, Lehner T. Peptide Inhibitors of Streptococcus mutans in the Control of Dental Caries. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
He J, Eckert R, Pharm T, Simanian MD, Hu C, Yarbrough DK, Qi F, Anderson MH, Shi W. Novel synthetic antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 2007; 51:1351-8. [PMID: 17296741 PMCID: PMC1855471 DOI: 10.1128/aac.01270-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a common oral pathogen and the causative agent of dental caries, has persisted and even thrived on the tooth surface despite constant removal and eradication efforts. In this study, we generated a number of synthetic antimicrobial peptides against this bacterium via construction and screening of several structurally diverse peptide libraries where the hydrophobicity and charge within each library was varied incrementally in order to generate a collection of peptides with different biochemical characteristics. From these libraries, we identified multiple peptides with robust killing activity against S. mutans. To further improve their effectiveness, the most bactericidal peptides from each library were synthesized together as one molecule, in various combinations, with and without a flexible peptide linker between each antimicrobial region. Many of these "fusion" peptides had enhanced killing activities in comparison with those of the original nonconjoined molecules. The results presented here illustrate that small libraries of biochemically constrained peptides can be used to generate antimicrobial peptides against S. mutans, several of which may be likely candidates for the development of anticaries agents.
Collapse
Affiliation(s)
- Jian He
- UCLA School of Dentistry, Department of Microbiology, Immunology, and Molecular Genetics, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Eckert R, He J, Yarbrough DK, Qi F, Anderson MH, Shi W. Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide. Antimicrob Agents Chemother 2006; 50:3651-7. [PMID: 17060534 PMCID: PMC1635210 DOI: 10.1128/aac.00622-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the repertoire of antibiotics available to a prescribing clinician, the majority affect a broad range of microorganisms, including the normal flora. The ecological disruption resulting from antibiotic treatment frequently results in secondary infections or other negative clinical consequences. To address this problem, our laboratory has recently developed a new class of pathogen-selective molecules, called specifically (or selectively) targeted antimicrobial peptides (STAMPs), based on the fusion of a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide domain. In the current study, we focused on achieving targeted killing of Streptococcus mutans, a cavity-causing bacterium that resides in a multispecies microbial community (dental plaque). In particular, we explored the possibility of utilizing a pheromone produced by S. mutans, namely, the competence stimulating peptide (CSP), as a STAMP targeting domain to mediate S. mutans-specific delivery of an antimicrobial peptide domain. We discovered that STAMPs constructed with peptides derived from CSP were potent against S. mutans grown in liquid or biofilm states but did not affect other oral streptococci tested. Further studies showed that an 8-amino-acid region within the CSP sequence is sufficient for targeted delivery of the antimicrobial peptide domain to S. mutans. The STAMPs presented here are capable of eliminating S. mutans from multispecies biofilms without affecting closely related noncariogenic oral streptococci, indicating the potential of these molecules to be developed into "probiotic" antibiotics which could selectively eliminate pathogens while preserving the protective benefits of a healthy normal flora.
Collapse
Affiliation(s)
- Randal Eckert
- Department of Microbiology, Immunology, and Molecular Genetics,1 School of Dentistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
45
|
Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 2006; 61:1196-210. [PMID: 16925554 PMCID: PMC1618759 DOI: 10.1111/j.1365-2958.2006.05310.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two main patterns of gene expression of Streptococcus pneumoniae were observed during infection in the host by quantitative real time RT-PCR; one was characteristic of bacteria in blood and one of bacteria in tissue, such as brain and lung. Gene expression in blood was characterized by increased expression of pneumolysin, pspA and hrcA, while pneumococci in tissue infection showed increased expression of neuraminidases, metalloproteinases, oxidative stress and competence genes. In vitro situations with similar expression patterns were detected in liquid culture and in a newly developed pneumococcal model of biofilm respectively. The biofilm model was dependent on addition of synthetic competence stimulating peptide (CSP) and no biofilm was formed by CSP receptor mutants. As one of the differentially expressed gene sets in vivo were the competence genes, we exploited competence-specific tools to intervene on pneumococcal virulence during infection. Induction of the competence system by the quorum-sensing peptide, CSP, not only induced biofilm formation in vitro, but also increased virulence in pneumonia in vivo. In contrast, a mutant for the ComD receptor, which did not form biofilm, also showed reduced virulence in pneumonia. These results were opposite to those found in a bacteraemic sepsis model of infection, where the competence system was downregulated. When pneumococci in the different physiological states were used directly for challenge, sessile cells grown in a biofilm were more effective in inducing meningitis and pneumonia, while planktonic cells from liquid culture were more effective in inducing sepsis. Our data enable us, using in vivo gene expression and in vivo modulation of virulence, to postulate the distinction – from the pneumococcal point of view – between two main types of disease. During bacteraemic sepsis pneumococci resemble planktonic growth, while during tissue infection, such as pneumonia or meningitis, pneumococci are in a biofilm-like state.
Collapse
Affiliation(s)
- Marco R Oggioni
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 2006; 50:1480-8. [PMID: 16569868 PMCID: PMC1426969 DOI: 10.1128/aac.50.4.1480-1488.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific "smart" antimicrobials to complement currently available conventional antibiotics.
Collapse
Affiliation(s)
- Randal Eckert
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Dentistry, 10833 Le Conte Ave., Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | |
Collapse
|