1
|
Pontes A, Paraíso F, Liu YC, Limtong S, Jindamorakot S, Jespersen L, Gonçalves C, Rosa CA, Tsai IJ, Rokas A, Hittinger CT, Gonçalves P, Sampaio JP. Tracking alternative versions of the galactose gene network in the genus Saccharomyces and their expansion after domestication. iScience 2024; 27:108987. [PMID: 38333711 PMCID: PMC10850751 DOI: 10.1016/j.isci.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
When Saccharomyces cerevisiae grows on mixtures of glucose and galactose, galactose utilization is repressed by glucose, and induction of the GAL gene network only occurs when glucose is exhausted. Contrary to reference GAL alleles, alternative alleles support faster growth on galactose, thus enabling distinct galactose utilization strategies maintained by balancing selection. Here, we report on new wild populations of Saccharomyces cerevisiae harboring alternative GAL versions and, for the first time, of Saccharomyces paradoxus alternative alleles. We also show that the non-functional GAL version found earlier in Saccharomyces kudriavzevii is phylogenetically related to the alternative versions, which constitutes a case of trans-specific maintenance of highly divergent alleles. Strains harboring the different GAL network variants show different levels of alleviation of glucose repression and growth proficiency on galactose. We propose that domestication involved specialization toward thriving in milk from a generalist ancestor partially adapted to galactose consumption in the plant niche.
Collapse
Affiliation(s)
- Ana Pontes
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Francisca Paraíso
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Savitree Limtong
- Department of Microbiology Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center Kasetsart University, Bangkok 10900, Thailand
| | - Sasitorn Jindamorakot
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Carla Gonçalves
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| |
Collapse
|
2
|
Ponnusamy V, Sankaranarayanan M. Targeted gene manipulation of Leloir pathway genes for the constitutive expression of β-galactosidase and its transgalactosylation product galacto-oligosaccharides from Kluyveromyces lactis GG799 and knockout strains. Enzyme Microb Technol 2023; 169:110263. [PMID: 37311284 DOI: 10.1016/j.enzmictec.2023.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/15/2023]
Abstract
Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical industry. At present, production of GOS involves the enzymatic transformation of lactose by transgalactosylation using β-galactosidase. The yeast Kluyveromyces lactis can utilize lactose as its carbon and energy source. In this species lactose is hydrolyzed by an intracellular β-galactosidase (EC 3.2.1.23) which is induced by its substrate and related compounds like galactose. The molecular details of gene regulation in kluyveromyces lactis, we have used multiple knockout approaches to study the constitutive expression by which galactose induces β-galactosidase. The present study involved carrying out to a method of enhancing the constitutive expression of β-galactosidase through galactose induction and its trans-galactosylation reaction for the production of galacto-oligosaccharides (GOS) in Kluyveromyces lactis (K. Lactis) by applying a knockout based approach on Leloir pathway genes based on fusion-overlap extension polymerase chain reaction and transformation into its genome. The k.lactis strain subjected to Leloir pathway genes knockout, resulted in the accumulation of galactose intracellularly and this internal galactose acts as an inducer of galactose regulon for constitutive expression of β-galactosidase at early stationary phase was due to the positive regulatory function of mutant gal1p, gal7p and both. These resulted strains used for trans-galactosylation of lactose by β - galactosidase is characterized for the production of galacto-oligosaccharides. Galactose-induced constitutive expression of β-galactosidase during the early stationary phase of knockout strains was analysed qualitatively & quantitatively. The activity of β-galactosidase of wild type, gal1z, gal7k and gal1z & gal7k strains were 7, 8, 9 and 11 U/ml respectively using high cell density cultivation medium. Based on these expression differences in β-galactosidase, the trans-galactosylation reaction for GOS production and percentage yield of GOS were compared at 25% w/v of lactose. The percentage yield of GOS production of wild type, Δgal1z Lac4+, Δgal7k Lac4++ and Δgal1z Δgal7k Lac4+++mutants strains were 6.3, 13, 17 and 22 U/ml, respectively. Therefore, we propose that the availability of galactose can be used for constitutive over expression of β - galactosidase in Leloir pathway engineering applications and also for GOS production. Further, increased expression of β - galactosidases can be used in dairy industry by-products like whey to produce added value products such as galacto-oligosaccharides.
Collapse
|
3
|
Mahilkar A, Nagendra P, Alugoju P, E R, Saini S. Public good-driven release of heterogeneous resources leads to genotypic diversification of an isogenic yeast population. Evolution 2022; 76:2811-2828. [PMID: 36181481 PMCID: PMC7614384 DOI: 10.1111/evo.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/22/2022] [Indexed: 01/22/2023]
Abstract
Understanding the basis of biological diversity remains a central problem in evolutionary biology. Using microbial systems, adaptive diversification has been studied in (a) spatially heterogeneous environments, (b) temporally segregated resources, and (c) resource specialization in a homogeneous environment. However, it is not well understood how adaptive diversification can take place in a homogeneous environment containing a single resource. Starting from an isogenic population of yeast Saccharomyces cerevisiae, we report rapid adaptive diversification, when propagated in an environment containing melibiose as the carbon source. The diversification is driven due to a public good enzyme α-galactosidase, which hydrolyzes melibiose into glucose and galactose. The diversification is driven by mutations at a single locus, in the GAL3 gene in the S. cerevisiae GAL/MEL regulon. We show that metabolic co-operation involving public resources could be an important mode of generating biological diversity. Our study demonstrates sympatric diversification of yeast starting from an isogenic population and provides detailed mechanistic insights into the factors and conditions responsible for generating and maintaining the population diversity.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prachitha Nagendra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rajeshkannan E
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
4
|
Li F, Wang M, Chi Z, Zhang Z, Wang X, Xing M, Chi Z, Liu G. A novel transcriptional activation mechanism of inulinase gene in Kluyveromyces marxianus involving a glycolysis regulator KmGcr1p with unique and functional Q-rich repeats. Mol Microbiol 2022; 117:1063-1079. [PMID: 35218085 DOI: 10.1111/mmi.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Kluyveromyces marxianus is the most suitable fungus for inulinase industrial production. However, the underlying transcriptional activation mechanism of the inulinase gene (INU1) is hitherto unclear. Here, we undertook genetic and biochemical analyses to elucidate that a glycolysis regulator KmGcr1p with unique Q-rich repeats is the key transcriptional activator of INU1. We determined that INU1 and glycolytic genes share similar transcriptional activation patterns, and that inulinase activity is induced by fermentable carbon sources including the hydrolysis products of inulin (fructose and glucose), which suggests a novel model of product feedback activation. Furthermore, all four CT-boxes in the INU1 promoter are important for KmGcr1p DNA binding in vitro, but the most downstream CT-box 1 primarily confers upstream activating sequence activity in vivo. More intriguingly, the use of artificial and natural GCR1 mutants suggests that the Q-rich repeats act as a functional module to maintain KmGcr1p transcriptional activity by contributing to its solubility and DNA binding affinity. Altogether, this study uncovers a novel transcriptional activation mechanism for the inulinase gene that is different from the previous understanding for filamentous fungi, but might have universal significance among inulinase-producing yeasts, thereby leading to a better understanding of the regulation mechanism of yeast inulinase genes.
Collapse
Affiliation(s)
- Fengyi Li
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Mengqi Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaoxuan Zhang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Xiaoxiang Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Mengdan Xing
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Zhenming Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
5
|
de Albuquerque TL, de Sousa M, Gomes E Silva NC, Girão Neto CAC, Gonçalves LRB, Fernandez-Lafuente R, Rocha MVP. β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. Int J Biol Macromol 2021; 191:881-898. [PMID: 34571129 DOI: 10.1016/j.ijbiomac.2021.09.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023]
Abstract
A review on the enzyme β-galactosidase from Kluyveromyces lactis is presented, from the perspective of its structure and mechanisms of action, the main catalyzed reactions, the key factors influencing its activity, and selectivity, as well as the main techniques used for improving the biocatalyst functionality. Particular attention was given to the discussion of hydrolysis, transglycosylation, and galactosylation reactions, which are commonly mediated by this enzyme. In addition, the products generated from these processes were highlighted. Finally, biocatalyst improvement techniques are also discussed, such as enzyme immobilization and protein engineering. On these topics, the most recent immobilization strategies are presented, emphasizing processes that not only allow the recovery of the biocatalyst but also deliver enzymes that show better resistance to high temperatures, chemicals, and inhibitors. In addition, genetic engineering techniques to improve the catalytic properties of the β-galactosidases were reported. This review gathers information to allow the development of biocatalysts based on the β-galactosidase enzyme from K. lactis, aiming to improve existing bioprocesses or develop new ones.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Marylane de Sousa
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Natan Câmara Gomes E Silva
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Carlos Alberto Chaves Girão Neto
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Luciana Rocha Barros Gonçalves
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Roberto Fernandez-Lafuente
- Instituto de Catálisis y Petroleoquímica - CSIC, Campus of excellence UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Maria Valderez Ponte Rocha
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
6
|
Liu B, Wu P, Zhou J, Yin A, Yu Y, Lu H. Characterization and optimization of the LAC4 upstream region for low-leakage expression in Kluyveromyces marxianus. Yeast 2021; 39:283-296. [PMID: 34791694 DOI: 10.1002/yea.3682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/07/2022] Open
Abstract
Kluyveromyces marxianus is a promising host for the production of heterologous proteins, chemicals, and bioethanol. One superior feature of this species is its capacity to assimilate lactose, which is rendered by the LAC12-LAC4 gene pair encoding a lactose permease and a β-galactosidase enzyme. Little is known about the regulation of LAC4 in K. marxianus. In this study, we showed the presence of weak glucose repression in the regulation of LAC4 and that might contribute to the leaky expression of LAC4 in the glucose medium. In a mutagenesis screen of 1000-bp LAC4 upstream region, one mutant region, named H1, drove low-leakage expression of a URA3 reporter gene in glucose medium. Two mutations inside a polyadenosine stretch (poly(A)) of 5' UTR were major contributors to the low-leakage phenotype of H1. H1 directed low-leakage expression of GFP on a plasmid and that of LAC4 in situ in the glucose medium, which was not due to the reduction of mRNA levels. Meanwhile, H1 did not affect the induction of GFP or LAC4 by lactose. Cre recombinase expressed by H1 caused lower toxicity in the repressive condition and achieved higher yield after induction, compared with that expressed by a wild-type LAC4 upstream region or a strong INU1 promoter. Our study suggested that poly(A) inside 5' UTR played a role in regulating the expression of LAC4 in the repressive condition. Meanwhile, H1 provided a base for the development of a strict inducible system for expressing industrial proteins, especially toxic proteins.
Collapse
Affiliation(s)
- Benxin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Anqi Yin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
8
|
Kuang MC, Kominek J, Alexander WG, Cheng JF, Wrobel RL, Hittinger CT. Repeated Cis-Regulatory Tuning of a Metabolic Bottleneck Gene during Evolution. Mol Biol Evol 2019; 35:1968-1981. [PMID: 29788479 PMCID: PMC6063270 DOI: 10.1093/molbev/msy102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repeated evolutionary events imply underlying genetic constraints that can make evolutionary mechanisms predictable. Morphological traits are thought to evolve frequently through cis-regulatory changes because these mechanisms bypass constraints in pleiotropic genes that are reused during development. In contrast, the constraints acting on metabolic traits during evolution are less well studied. Here we show how a metabolic bottleneck gene has repeatedly adopted similar cis-regulatory solutions during evolution, likely due to its pleiotropic role integrating flux from multiple metabolic pathways. Specifically, the genes encoding phosphoglucomutase activity (PGM1/PGM2), which connect GALactose catabolism to glycolysis, have gained and lost direct regulation by the transcription factor Gal4 several times during yeast evolution. Through targeted mutations of predicted Gal4-binding sites in yeast genomes, we show this galactose-mediated regulation of PGM1/2 supports vigorous growth on galactose in multiple yeast species, including Saccharomyces uvarum and Lachancea kluyveri. Furthermore, the addition of galactose-inducible PGM1 alone is sufficient to improve the growth on galactose of multiple species that lack this regulation, including Saccharomyces cerevisiae. The strong association between regulation of PGM1/2 by Gal4 even enables remarkably accurate predictions of galactose growth phenotypes between closely related species. This repeated mode of evolution suggests that this specific cis-regulatory connection is a common way that diverse yeasts can govern flux through the pathway, likely due to the constraints imposed by this pleiotropic bottleneck gene. Since metabolic pathways are highly interconnected, we argue that cis-regulatory evolution might be widespread at pleiotropic genes that control metabolic bottlenecks and intersections.
Collapse
Affiliation(s)
- Meihua Christina Kuang
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - William G Alexander
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | | | - Russell L Wrobel
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
9
|
Paiva LCD, Diniz RHS, Vidigal PMP, Mendes TADO, Santana MF, Cerdán ME, González-Siso MI, Silveira WBD. Genomic analysis and lactose transporter expression in Kluyveromyces marxianus CCT 7735. Fungal Biol 2019; 123:687-697. [PMID: 31416588 DOI: 10.1016/j.funbio.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023]
Abstract
Kluyveromyces marxianus CCT 7735 has been used to produce ethanol, aromatic compounds, enzymes and heterologous proteins besides assimilates lactose as carbon source. Its genome has 10.7 Mb and encodes 4787 genes distributed in 8 nuclear chromosomes and one mitochondrial. Contrary to Kluyveromyces lactis, which has a unique LAC12 gene (encodes lactose permease), K. marxianus possesses four. The presence of degenerated copies and Solo-LTRs related to retrotransposon TKM close to the LAC12 genes in K. marxianus indicates ectopic recombinations. The Lac12 permeases of K. marxianus and K. lactis are conserved, however the conservation is higher between the copy of the left side of the chromosome three and the unique copy of K. lactis, indicating that this copy is the ancestor. The expression of the four LAC12 genes occurred in aerobiosis and hypoxia. Notably, the high lactose consumption in hypoxia seems to be related to the high expression of the LAC12 genes.
Collapse
Affiliation(s)
- Lílian Cardoso de Paiva
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Raphael Hermano Santos Diniz
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Campus Ouro Preto, CODACIB, Ouro Preto, MG, Brazil
| | - Pedro Marcus Pereira Vidigal
- Center for Analysis of Biomolecules, Center for Biological and Health Sciences, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Mateus Ferreira Santana
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - María-Esperanza Cerdán
- Universidade da Coruña, Exprela Research Group, Facultade de Ciencias and CICA (Centro de Investigacións Científicas Avanzadas), A Coruña, Spain
| | - María-Isabel González-Siso
- Universidade da Coruña, Exprela Research Group, Facultade de Ciencias and CICA (Centro de Investigacións Científicas Avanzadas), A Coruña, Spain
| | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
10
|
Duan SF, Shi JY, Yin Q, Zhang RP, Han PJ, Wang QM, Bai FY. Reverse Evolution of a Classic Gene Network in Yeast Offers a Competitive Advantage. Curr Biol 2019; 29:1126-1136.e5. [PMID: 30905601 DOI: 10.1016/j.cub.2019.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022]
Abstract
Glucose repression is a central regulatory system in yeast that ensures the utilization of carbon sources in a highly economical manner. The galactose (GAL) metabolism network is stringently regulated by glucose repression in yeast and has been a classic system for studying gene regulation. We show here that a Saccharomyces cerevisiae (S. cerevisiae) lineage in spontaneously fermented milk has swapped all its structural GAL genes (GAL2 and the GAL7-10-1 cluster) with early diverged versions through introgression. The rewired GAL network has abolished glucose repression and conversed from a strictly inducible to a constitutive system through polygenic changes in the regulatory components of the network, including a thymine (T) to cytosine (C) and a guanine (G) to adenine (A) transition in the upstream repressing sequence (URS) sites of GAL1 and GAL4, respectively, which impair Mig1p-mediated repression, loss of function of the repressor Gal80p through a T146I substitution in the protein, and subsequent futility of GAL3. Furthermore, the milk lineage of S. cerevisiae has achieved galactose-utilization rate elevation and galactose-over-glucose preference switch through the duplication of the introgressed GAL2 and the loss of function of the main glucose transporter genes HXT6 and HXT7. In addition, we demonstrate that GAL2 requires GAL7 or GAL10 for its expression, and Gal2p likely requires Gal1p for its transportation function in the milk lineage of S. cerevisiae. We show a clear case of reverse evolution of a classic gene network for ecological adaptation and provide new insights into the regulatory model of the canonical GAL network.
Collapse
Affiliation(s)
- Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
11
|
Srivastava A, Mishra S. Enrichment and evaluation of galacto-oligosaccharides produced by whole cell treatment of sugar reaction mixture. Mol Biol Rep 2019; 46:1181-1188. [PMID: 30644031 DOI: 10.1007/s11033-019-04585-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
A process was developed for enrichment of galacto-oligosaccharides (GOS), synthesized from a whole cell driven system, from a sugar reaction mixture (SRM) containing non prebiotic sugars (monosaccharides and disaccharides) as impurities. SRM containing 38% (w/w of total carbohydrates) of GOS was enriched by 7 and 27%, attaining a purity of 45 and 65% respectively using Saccharomyces cerevisiae followed by Kluyveromyces lactis var. lactis treatment. The two cell types could be recycled for consecutive 12 and 10 cycles respectively. The microbial purified GOS (MPG) was characterized by mass spectrometry and quantitated by HPLC. MPG was further evaluated for its prebiotic potential on Lactobacillus acidophilus, Lactobacillus amylovorus, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus casei Shirota and Saccharomyces boulardii. The growth profile and colony forming units were determined and compared with the profiles obtained on glucose, used as a control. MPG was efficiently utilized by L. acidophilus and L. plantarum which showed antimicrobial activity with zone of lysis (12 and 10 mm) against Escherichia coli and Citrobacter (14 and 9 mm) respectively and performed better than Vivinal (commercial GOS), fructo-oligosaccharides and inulin. The synergistic effect of the MPG with L. acidophilus and L. plantarum was found to be most effective against pathogens as compared to other tested commercial oligosaccharides.
Collapse
Affiliation(s)
- Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
| |
Collapse
|
12
|
Díez-Antolínez R, Hijosa-Valsero M, Paniagua-García AI, Garita-Cambronero J, Gómez X. Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads. PLoS One 2018; 13:e0210002. [PMID: 30596755 PMCID: PMC6312371 DOI: 10.1371/journal.pone.0210002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022] Open
Abstract
Eight yeast strains of the genera Saccharomyces and Kluyveromyces were screened to ferment high lactose-load cheese whey permeate (CWP) (>130 g/L lactose) without nutrient supplementation. The fermentation conditions (temperature, pH and time) were optimized to maximize the fermentation performance (ethanol titer, ethanol yield and lactose consumption) for the two preselected strains, K. marxianus DSM 5422 and S. cerevisiae Ethanol Red, using a response surface methodology (RSM). Under optimized conditions, K. marxianus DSM 5422 attained ethanol titers of 6% (v/v) in only 44 h. Moreover, the feasibility of immobilizing this strain on four different inorganic supports (plastic, glass and Tygon silicone Raschig rings and alumina beads) was assessed. Glass Raschig rings and alumina beads showed a more stable performance over time, yielding ethanol titers of 60 g/L during 1,000 hours, which remarkably reduces yeast cultivation costs. Results demonstrate the feasibility of using CWP for successful ethanol production in a simple and economical process, which represents an attractive alternative for waste treatment in dairy industries.
Collapse
Affiliation(s)
- Rebeca Díez-Antolínez
- Center of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, León, Spain
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| | - María Hijosa-Valsero
- Center of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, León, Spain
| | - Ana I. Paniagua-García
- Center of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, León, Spain
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| | - Jerson Garita-Cambronero
- Center of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, León, Spain
| | - Xiomar Gómez
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| |
Collapse
|
13
|
Guerrero C, Vera C, Illanes A. Selective bioconversion with yeast for the purification of raw lactulose and transgalactosylated oligosaccharides. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Sood V, Brickner JH. Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species. Curr Biol 2017; 27:3591-3602.e3. [PMID: 29153325 PMCID: PMC5846685 DOI: 10.1016/j.cub.2017.10.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
Certain genes show more rapid reactivation for several generations following repression, a conserved phenomenon called epigenetic transcriptional memory. Following previous growth in galactose, GAL gene transcriptional memory confers a strong fitness benefit in Saccharomyces cerevisiae adapting to growth in galactose for up to 8 generations. A genetic screen for mutants defective for GAL gene memory revealed new insights into the molecular mechanism, adaptive consequences, and evolutionary history of memory. A point mutation in the Gal1 co-activator that disrupts the interaction with the Gal80 inhibitor specifically and completely disrupted memory. This mutation confirms that cytoplasmically inherited Gal1 produced during previous growth in galactose directly interferes with Gal80 repression to promote faster induction of GAL genes. This mitotically heritable mode of regulation is recently evolved; in a diverged Saccharomyces species, GAL genes show constitutively faster activation due to genetically encoded basal expression of Gal1. Thus, recently diverged species utilize either epigenetic or genetic strategies to regulate the same molecular mechanism. The screen also revealed that the central domain of the Gal4 transcription factor both regulates the stochasticity of GAL gene expression and potentiates stronger GAL gene activation in the presence of Gal1. The central domain is critical for GAL gene transcriptional memory; Gal4 lacking the central domain fails to potentiate GAL gene expression and is unresponsive to previous Gal1 expression.
Collapse
Affiliation(s)
- Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Dalal CK, Johnson AD. How transcription circuits explore alternative architectures while maintaining overall circuit output. Genes Dev 2017; 31:1397-1405. [PMID: 28860157 PMCID: PMC5588923 DOI: 10.1101/gad.303362.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review by Dalal and Johnson focuses on the evolutionary rewiring of transcription regulators and the conservation of patterns of gene expression. They describe how preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution. Transcription regulators bind to cis-regulatory sequences and thereby control the expression of target genes. While transcription regulators and the target genes that they regulate are often deeply conserved across species, the connections between the two change extensively over evolutionary timescales. In this review, we discuss case studies where, despite this extensive evolutionary rewiring, the resulting patterns of gene expression are preserved. We also discuss in silico models that reach the same general conclusions and provide additional insights into how this process occurs. Together, these approaches make a strong case that the preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution.
Collapse
Affiliation(s)
- Chiraj K Dalal
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Beniwal A, Saini P, Kokkiligadda A, Vij S. Physiological growth and galactose utilization by dairy yeast Kluyveromyces marxianus in mixed sugars and whey during fermentation. 3 Biotech 2017; 7:349. [PMID: 28955646 DOI: 10.1007/s13205-017-0985-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
The dairy yeast Kluyveromyces marxianus represents a promising industrial strain useful for the production of bioethanol from cheese whey. Physiology of the five K. marxianus strains on galactose was examined during batch cultivation under controlled aerobic conditions on minimal media and one of the strains designated K. marxianus strain 6C17 which presented the highest specific galactose consumption rate. A maximum specific growth rate of 0.34 and 0.37 h-1, respectively, was achieved using batch cultivation in a minimal medium and a complex medium amended with galactose (50 g/L) at 37 °C. The sugar was metabolized for the production of ethanol as the chief metabolite with a maximum ethanol yield of 0.39 g/g of galactose. Different growth behaviors were observed when galactose was used with other sugar such as glucose, lactose and fructose. The growth rates on hydrolyzed cheese whey were also measured, and a maximum specific growth rate of 0.39 and 0.32 h-1 was observed with glucose and galactose, respectively, with the maximum flux diverted toward ethanol production. This approach of studying the physiology of thermotolerant K. marxianus on hydrolyzed whey during fermentation would be helpful in achieving higher yields of ethanol.
Collapse
Affiliation(s)
- Arun Beniwal
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001 India
| | - Priyanka Saini
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001 India
| | - Anusha Kokkiligadda
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001 India
| | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001 India
| |
Collapse
|
17
|
Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Kuang MC, Hutchins PD, Russell JD, Coon JJ, Hittinger CT. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network. eLife 2016; 5:e19027. [PMID: 27690225 PMCID: PMC5089864 DOI: 10.7554/elife.19027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.
Collapse
Affiliation(s)
- Meihua Christina Kuang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| | - Paul D Hutchins
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| | - Jason D Russell
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
19
|
Dalal CK, Zuleta IA, Mitchell KF, Andes DR, El-Samad H, Johnson AD. Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative properties of gene expression. eLife 2016; 5. [PMID: 27614020 PMCID: PMC5067116 DOI: 10.7554/elife.18981] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022] Open
Abstract
Evolutionary changes in transcription networks are an important source of diversity across species, yet the quantitative consequences of network evolution have rarely been studied. Here we consider the transcriptional 'rewiring' of the three GAL genes that encode the enzymes needed for cells to convert galactose to glucose. In Saccharomyces cerevisiae, the transcriptional regulator Gal4 binds and activates these genes. In the human pathogen Candida albicans (which last shared a common ancestor with S. cerevisiae some 300 million years ago), we show that different regulators, Rtg1 and Rtg3, activate the three GAL genes. Using single-cell dynamics and RNA-sequencing, we demonstrate that although the overall logic of regulation is the same in both species-the GAL genes are induced by galactose-there are major differences in both the quantitative response of these genes to galactose and in the position of these genes in the overall transcription network structure of the two species.
Collapse
Affiliation(s)
- Chiraj K Dalal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Ignacio A Zuleta
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Kaitlin F Mitchell
- Department of Medicine, University of Wisconsin, Madison, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, United States
| | - David R Andes
- Department of Medicine, University of Wisconsin, Madison, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
20
|
Das Adhikari AK, Bhat PJ. The binary response of the GAL/MEL genetic switch of Saccharomyces cerevisiae is critically dependent on Gal80p-Gal4p interaction. FEMS Yeast Res 2016; 16:fow069. [PMID: 27573383 DOI: 10.1093/femsyr/fow069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 11/13/2022] Open
Abstract
Studies on the Saccharomyces cerevisiae GAL/MEL genetic switch have revealed that its bistability is dependent on ultrasensitivity that can be altered or abolished by disabling different combinations of nested feedback loops. In contrast, we have previously demonstrated that weakening of the interaction between Gal80p and Gal4p alone is sufficient to abolish the ultrasensitivity (Das Adhikari et al. 2014). Here, we demonstrate that altering the epistatic interaction between Gal80p and Gal4p also abolishes the bistability, and the switch response to galactose becomes graded instead of binary. However, the GAL/MEL switch of wild-type and epistatically altered strains responded in a graded fashion to melibiose. The properties of the epistatically altered strain resemble Kluyveromyces lactis, which separated from the Saccharomyces lineage 100 mya before whole-genome duplication (WGD). Based on the results reported here, we propose that epistatic interactions played a crucial role in the evolution of the fine regulation of S. cerevisiae GAL/MEL switch following WGD.
Collapse
Affiliation(s)
- Akshay Kumar Das Adhikari
- Laboratory of Molecular Genetics, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Paike Jayadeva Bhat
- Laboratory of Molecular Genetics, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
21
|
Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate. Bioprocess Biosyst Eng 2015; 39:141-50. [PMID: 26527573 DOI: 10.1007/s00449-015-1498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1).
Collapse
|
23
|
Moktaduzzaman M, Galafassi S, Capusoni C, Vigentini I, Ling Z, Piškur J, Compagno C. Galactose utilization sheds new light on sugar metabolism in the sequenced strain Dekkera bruxellensis CBS 2499. FEMS Yeast Res 2015; 15:fou009. [PMID: 25673757 DOI: 10.1093/femsyr/fou009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the 'short-term Crabtree effect', and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae.
Collapse
Affiliation(s)
- Md Moktaduzzaman
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Italy
| | - Silvia Galafassi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Italy
| | - Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Italy
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Italy
| | - Zhihao Ling
- Department of Biology, Lund University, Box 117, 221 00 Lund, Sweden
| | - Jure Piškur
- Department of Biology, Lund University, Box 117, 221 00 Lund, Sweden
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Italy
| |
Collapse
|
24
|
Purification of highly concentrated galacto-oligosaccharide preparations by selective fermentation with yeasts. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Stockwell SR, Landry CR, Rifkin SA. The yeast galactose network as a quantitative model for cellular memory. MOLECULAR BIOSYSTEMS 2014; 11:28-37. [PMID: 25328105 DOI: 10.1039/c4mb00448e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent experiments have revealed surprising behavior in the yeast galactose (GAL) pathway, one of the preeminent systems for studying gene regulation. Under certain circumstances, yeast cells display memory of their prior nutrient environments. We distinguish two kinds of cellular memory discovered by quantitative investigations of the GAL network and present a conceptual framework for interpreting new experiments and current ideas on GAL memory. Reinduction memory occurs when cells respond transcriptionally to one environment, shut down the response during several generations in a second environment, then respond faster and with less cell-to-cell variation when returned to the first environment. Persistent memory describes a long-term, arguably stable response in which cells adopt a bimodal or unimodal distribution of induction levels depending on their preceding environment. Deep knowledge of how the yeast GAL pathway responds to different sugar environments has enabled rapid progress in uncovering the mechanisms behind GAL memory, which include cytoplasmic inheritance of inducer proteins and positive feedback loops among regulatory genes. This network of genes, long used to study gene regulation, is now emerging as a model system for cellular memory.
Collapse
Affiliation(s)
- Sarah R Stockwell
- Section of Ecology, Behavior, and Evolution, Division of Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | | | | |
Collapse
|
26
|
Das Adhikari AK, Qureshi MT, Kar RK, Bhat PJ. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose. Mol Microbiol 2014; 94:202-17. [PMID: 25135592 DOI: 10.1111/mmi.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
Abstract
In S. cerevisiae, following the Whole Genome Duplication (WGD), GAL1-encoded galactokinase retained its signal transduction function but lost basal expression. On the other hand, its paralogue GAL3, lost kinase activity but retained its signalling function and basal expression, thus making it indispensable for the rapid induction of the S. cerevisiae GAL switch. However, a gal3Δ strain exhibits delayed growth kinetics due to the redundant signalling function of GAL1. The subfunctionalization between the paralogues GAL1 and GAL3 is due to expression divergence and is proposed to be due to the alteration in the Upstream Activating Sequences (UASG ). We demonstrate that the GAL switch becomes independent of GAL3 by altering the interaction between Gal4p and Gal80p without altering the configuration of UASG . In addition to the above, the altered switch of S. cerevisiae loses ultrasensitivity and stringent glucose repression. These changes caused an increase in fitness in the disaccharide melibiose at the expense of a decrease in fitness in galactose. The above altered features of the ScGAL switch are similar to the features of the GAL switch of K. lactis that diverged from S. cerevisiae before the WGD.
Collapse
Affiliation(s)
- Akshay Kumar Das Adhikari
- Laboratory of Molecular Genetics, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | | | | |
Collapse
|
27
|
Kar RK, Qureshi MT, DasAdhikari AK, Zahir T, Venkatesh KV, Bhat PJ. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae. FEBS J 2014; 281:1798-817. [PMID: 24785355 DOI: 10.1111/febs.12741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GAL1 and GAL3 are paralogous signal transducers that functionally inactivate Gal80p to activate the Gal4p-dependent transcriptional activation of GAL genes in Saccharomyces cerevisiae in response to galactose. Unlike a wild-type strain, the gal3∆ strain shows delayed growth kinetics as a result of the signaling function of GAL1. The mechanism ensuring that GAL1 is eventually expressed to turn on the GAL switch in the gal3∆ strain remains a paradox. Using galactose and histidine growth complementation assays, we demonstrate that 0.3% of the gal3∆ cell population responds to galactose. This is corroborated by flow cytometry and microscopic analysis. The galactose responders and nonresponders isolated from the galactose-adapted population attain the original bimodal state and this phenotype is found to be as hard wired as a genetic trait. Computational analysis suggests that the log-normal distribution in GAL4 synthesis can lead to bimodal expression of GAL80, resulting in the bimodal expression of GAL genes. Heterozygosity at the GAL80 but not at the GAL1, GAL2 or GAL4 locus alters the extent of bimodality of the gal3∆ cell population. We suggest that the asymmetric expression pattern between GAL1 and GAL3 results in the ability of S. cerevisiae to activate the GAL pathway by conferring nongenetic heterogeneity.
Collapse
Affiliation(s)
- Rajesh Kumar Kar
- Molecular Genetics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | | | |
Collapse
|
28
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
29
|
Mates N, Kettner K, Heidenreich F, Pursche T, Migotti R, Kahlert G, Kuhlisch E, Breunig KD, Schellenberger W, Dittmar G, Hoflack B, Kriegel TM. Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis. Mol Cell Proteomics 2014; 13:860-75. [PMID: 24434903 DOI: 10.1074/mcp.m113.032714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of dual-role hexokinases even in organisms that are less specialized than S. cerevisiae in terms of glucose utilization.
Collapse
Affiliation(s)
- Nadia Mates
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institute of Physiological Chemistry, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Construction of a Kluyveromyces lactis ku80 − Host Strain for Recombinant Protein Production: Extracellular Secretion of Pectin Lyase and a Streptavidin–Pectin Lyase Chimera. Mol Biotechnol 2014; 56:319-28. [DOI: 10.1007/s12033-013-9711-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch. Mol Cell Biol 2013; 33:3667-74. [PMID: 23858060 DOI: 10.1128/mcb.00646-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA-binding transcriptional activator Gal4 and its regulators Gal80 and Gal3 constitute a galactose-responsive switch for the GAL genes of Saccharomyces cerevisiae. Gal4 binds to GAL gene UASGAL (upstream activation sequence in GAL gene promoter) sites as a dimer via its N-terminal domain and activates transcription via a C-terminal transcription activation domain (AD). In the absence of galactose, a Gal80 dimer binds to a dimer of Gal4, masking the Gal4AD. Galactose triggers Gal3-Gal80 interaction to rapidly initiate Gal4-mediated transcription activation. Just how Gal3 alters Gal80 to relieve Gal80 inhibition of Gal4 has been unknown, but previous analyses of Gal80 mutants suggested a possible competition between Gal3-Gal80 and Gal80 self-association interactions. Here we assayed Gal80-Gal80 interactions and tested for effects of Gal3. Immunoprecipitation, cross-linking, and denaturing and native PAGE analyses of Gal80 in vitro and fluorescence imaging of Gal80 in live cells show that Gal3-Gal80 interaction occurs concomitantly with a decrease in Gal80 multimers. Consistent with this, we find that newly discovered nuclear clusters of Gal80 dissipate in response to galactose-triggered Gal3-Gal80 interaction. We discuss the effect of Gal3 on the quaternary structure of Gal80 in light of the evidence pointing to multimeric Gal80 as the form required to inhibit Gal4.
Collapse
|
32
|
Wu M, Liu L, Hijazi H, Chan C. A multi-layer inference approach to reconstruct condition-specific genes and their regulation. ACTA ACUST UNITED AC 2013; 29:1541-52. [PMID: 23610368 DOI: 10.1093/bioinformatics/btt186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED An important topic in systems biology is the reverse engineering of regulatory mechanisms through reconstruction of context-dependent gene networks. A major challenge is to identify the genes and the regulations specific to a condition or phenotype, given that regulatory processes are highly connected such that a specific response is typically accompanied by numerous collateral effects. In this study, we design a multi-layer approach that is able to reconstruct condition-specific genes and their regulation through an integrative analysis of large-scale information of gene expression, protein interaction and transcriptional regulation (transcription factor-target gene relationships). We establish the accuracy of our methodology against synthetic datasets, as well as a yeast dataset. We then extend the framework to the application of higher eukaryotic systems, including human breast cancer and Arabidopsis thaliana cold acclimation. Our study identified TACSTD2 (TROP2) as a target gene for human breast cancer and discovered its regulation by transcription factors CREB, as well as NFkB. We also predict KIF2C is a target gene for ER-/HER2- breast cancer and is positively regulated by E2F1. The predictions were further confirmed through experimental studies. AVAILABILITY The implementation and detailed protocol of the layer approach is available at http://www.egr.msu.edu/changroup/Protocols/Three-layer%20approach%20 to % 20reconstruct%20condition.html.
Collapse
Affiliation(s)
- Ming Wu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
33
|
Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel. ACTA ACUST UNITED AC 2013; 40:353-63. [DOI: 10.1007/s10295-012-1227-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
Abstract
Two lactose-consuming diploid Saccharomyces cerevisiae strains, AY-51024A and AY-51024M, were constructed by expressing the LAC4 and LAC12 genes of Kluyveromyces marxianus in the host strain AY-5. In AY-51024A, both genes were targeted to the ATH1 and NTH1 gene-encoding regions to abolish the activity of acid/neutral trehalase. In AY-51024M, both genes were respectively integrated into the MIG1 and NTH1 gene-encoding regions to relieve glucose repression. Physiologic studies of the two transformants under anaerobic cultivations in glucose and galactose media indicated that the expression of both LAC genes did not physiologically burden the cells, except for AY-51024A in glucose medium. Galactose consumption was initiated at higher glucose concentrations in the MIG1 deletion strain AY-51024M than in the corresponding wild-type strain and AY-51024A, wherein galactose was consumed until glucose was completely depleted in the mixture. In lactose medium, the Sp. growth rates of AY-51024A and AY-51024M under anaerobic shake-flasks were 0.025 and 0.067 h−1, respectively. The specific lactose uptake rate and ethanol production of AY-51024M were 2.50 g lactose g CDW−1 h−1 and 23.4 g l−1, respectively, whereas those of AY-51024A were 0.98 g lactose g CDW−1 h−1 and 24.3 g lactose g CDW−1 h−1, respectively. In concentrated cheese whey powder solutions, AY-51024M produced 63.3 g l−1 ethanol from approximately 150 g l−1 initial lactose in 120 h, conversely, AY-51024A consumed 63.7 % of the initial lactose and produced 35.9 g l−1 ethanol. Therefore, relieving glucose repression is an effective strategy for constructing lactose-consuming S. cerevisiae.
Collapse
|
34
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
35
|
Berkhout J, Teusink B, Bruggeman FJ. Gene network requirements for regulation of metabolic gene expression to a desired state. Sci Rep 2013; 3:1417. [PMID: 23475326 PMCID: PMC3593220 DOI: 10.1038/srep01417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/22/2013] [Indexed: 11/08/2022] Open
Abstract
Gene circuits that control metabolism should restore metabolic functions upon environmental changes. Whether gene networks are capable of steering metabolism to optimal states is an open question. Here we present a method to identify such optimal gene networks. We show that metabolic network optimisation over a range of environments results in an input-output relationship for the gene network that guarantees optimal metabolic states. Optimal control is possible if the gene network can achieve this input-output relationship. We illustrate our approach with the best-studied regulatory network in yeast, the galactose network. We find that over the entire range of external galactose concentrations, the regulatory network is able to optimally steer galactose metabolism. Only a few gene network parameters affect this optimal regulation. The other parameters can be tuned independently for optimisation of other functions, such as fast and low-noise gene expression. This study highlights gene network plasticity, evolvability, and modular functionality.
Collapse
Affiliation(s)
- Jan Berkhout
- Systems Bioinformatics, IBIVU, Vrije Universiteit, Amsterdam, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation/NCSB, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, IBIVU, Vrije Universiteit, Amsterdam, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation/NCSB, The Netherlands
- Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, IBIVU, Vrije Universiteit, Amsterdam, The Netherlands
- Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
- Life Sciences, Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
| |
Collapse
|
36
|
Pannala VR, Hazarika SJ, Bhat PJ, Bhartiya S, Venkatesh KV. Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains. IET Syst Biol 2012; 6:44-53. [PMID: 22519357 DOI: 10.1049/iet-syb.2010.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic regulatory network responds dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilise galactose as an alternative carbon and energy source, in the absence of glucose in the environment. This work contains a modified dynamic model for GAL system in S. cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. Subsequently, the model is related to growth on galactose and glucose in a structured manner. The growth-related models are validated with experimental data for growth on individual substrates as well as mixed substrates. Finally, the model is tested for its prediction of a variety of known mutant behaviours. The exercise shows that the authors' model with a single set of parameters is able to capture the rich behaviour of the GAL system in S. cerevisiae. [Includes supplementary material].
Collapse
Affiliation(s)
- V R Pannala
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | |
Collapse
|
37
|
Transplantation of the GAL regulon into G-protein signaling circuitry in yeast. Anal Biochem 2012; 424:27-31. [DOI: 10.1016/j.ab.2012.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/03/2012] [Indexed: 12/21/2022]
|
38
|
Seiboth B, Herold S, Kubicek CP. Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. Subcell Biochem 2012; 64:367-90. [PMID: 23080260 DOI: 10.1007/978-94-007-5055-5_18] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The filamentous fungus T. reeseiis today a paradigm for the commercial scale production of different plant cell wall degrading enzymes mainly cellulases and hemicellulases. Its enzymes have a long history of safe use in industry and well established applications are found within the pulp, paper, food, feed or textile processing industries. However, when these enzymes are to be used for the saccharification of cellulosic plant biomass to simple sugars which can be further converted to biofuels or other biorefinery products, and thus compete with chemicals produced from fossil sources, additional efforts are needed to reduce costs and maximize yield and efficiency of the produced enzyme mixtures. One approach to this end is the use of genetic engineering to manipulate the biochemical and regulatory pathways that operate during enzyme production and control enzyme yield. This review aims at a description of the state of art in this area.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, 166-5, A-1060, Vienna, Austria
| | | | | |
Collapse
|
39
|
The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie van Leeuwenhoek 2011; 101:541-50. [DOI: 10.1007/s10482-011-9668-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
40
|
Wu M, Liu L, Chan C. Identification of novel targets for breast cancer by exploring gene switches on a genome scale. BMC Genomics 2011; 12:547. [PMID: 22053771 PMCID: PMC3269833 DOI: 10.1186/1471-2164-12-547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND An important feature that emerges from analyzing gene regulatory networks is the "switch-like behavior" or "bistability", a dynamic feature of a particular gene to preferentially toggle between two steady-states. The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult. Therefore a challenge confronting the field is to be able to systematically identify gene switches. RESULTS We propose a top-down mining approach to exploring gene switches on a genome-scale level. Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen receptor (ER) and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where tumor-associated calcium signal transducer 2 (TACSTD2) is uncovered. We further suggest a likely transcription factor that regulates TACSTD2. CONCLUSIONS Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2 demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.
Collapse
Affiliation(s)
- Ming Wu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
41
|
Kim HJ, Kwag HL, Jin Y, Kim HJ. The composition of the carbon source and the time of cell harvest are critical determinants of the final yield of human papillomavirus type 16 L1 protein produced in Saccharomyces cerevisiae. Protein Expr Purif 2011; 80:52-60. [DOI: 10.1016/j.pep.2011.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/31/2011] [Accepted: 06/13/2011] [Indexed: 12/27/2022]
|
42
|
Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes Dev 2011; 25:984-95. [PMID: 21536737 DOI: 10.1101/gad.1998611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcriptional activity of a gene is governed by transcriptional regulatory complexes that assemble/disassemble on the gene and control the chromatin architecture. How cytoplasmic components influence the assembly/disassembly of transcriptional regulatory complexes is poorly understood. Here we report that the budding yeast Saccharomyces cerevisiae has a chromatin architecture-modulating mechanism that is dependent on the endosomal lipid PI(3,5)P(2). We identified Tup1 and Cti6 as new, highly specific PI(3,5)P(2) interactors. Tup1--which associates with multiple transcriptional regulators, including the HDAC (histone deacetylase) and SAGA complexes--plays a crucial role in determining an activated or repressed chromatin state of numerous genes, including GAL1. We show that, in the context that the Gal4 activation pathway is compromised, PI(3,5)P(2) plays an essential role in converting the Tup1-driven repressed chromatin structure into a SAGA-containing activated chromatin structure at the GAL1 promoter. Biochemical and cell biological experiments suggest that PI(3,5)P(2) recruits Cti6 and the Cyc8-Tup1 corepressor complex to the late endosomal/vacuolar membrane and mediates the assembly of a Cti6-Cyc8-Tup1 coactivator complex that functions to recruit the SAGA complex to the GAL1 promoter. Our findings provide important insights toward understanding how the chromatin architecture and epigenetic status of a gene are regulated by cytoplasmic components.
Collapse
|
43
|
Pannala VR, Ahammed Sherief KY, Bhartiya S, Venkatesh KV. Dynamic analysis of the KlGAL regulatory system in Kluyveromyces lactis: a comparative study with Saccharomyces cerevisiae. SYSTEMS AND SYNTHETIC BIOLOGY 2011; 5:69-85. [PMID: 22654995 DOI: 10.1007/s11693-011-9082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/29/2011] [Accepted: 05/18/2011] [Indexed: 01/01/2023]
Abstract
UNLABELLED The GAL regulatory system is highly conserved in yeast species of Saccharomyces cerevisiae and Kluyveromyces lactis. While the GAL system is a well studied system in S. cerevisiae, the dynamic behavior of the KlGAL system in K. lactis has not been characterized. Here, we have characterized the GAL system in yeast K. lactis by developing a dynamic model and comparing its performance to its not-so-distant cousin S. cerevisiae. The present analysis demonstrates the significance of the autoregulatory feedbacks due to KlGal4p, KlGal80p, KlGal1p and Lac12p on the dynamic performance of the KlGAL switch. The model predicts the experimentally observed absence of bistability in the wild type strain of K. lactis, unlike the short term memory of preculturing conditions observed in S. cerevisiae. The performance of the GAL switch is distinct for the two yeast species although they share similarities in the molecular components. The analysis suggests that the whole genome duplication of S. cerevisiae, which resulted in a dedicated inducer protein, Gal3p, may be responsible for the high sensitivity of the system to galactose concentrations. On the other hand, K. lactis uses a bifunctional protein as an inducer in addition to its galactokinase activity, which restricts its regulatory role and hence higher galactose levels in the medium are needed to trigger the GAL system. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11693-011-9082-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkat Reddy Pannala
- Department of Chemical Engineering, Indian Institute of Technology, Powai, Mumbai, 400076 India
| | | | | | | |
Collapse
|
44
|
Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2011; 90:1573-86. [PMID: 21476140 DOI: 10.1007/s00253-011-3218-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/13/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.
Collapse
|
45
|
Josephides C, Moses AM. Modeling the evolution of a classic genetic switch. BMC SYSTEMS BIOLOGY 2011; 5:24. [PMID: 21294912 PMCID: PMC3048525 DOI: 10.1186/1752-0509-5-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 02/05/2011] [Indexed: 11/10/2022]
Abstract
Background The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis-regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored. Results We develop a modeling framework to examine the evolution of the GAL regulatory network. This enables us to translate molecular changes in the regulatory network to changes in quantitative network function. We computationally reconstruct an inferred ancestral version of the network and trace the evolutionary paths in the lineage leading to S. cerevisiae. We explore the evolutionary landscape of possible regulatory networks and find that the operation of intermediate networks leading to S. cerevisiae differs substantially depending on the order in which evolutionary changes accumulate; in particular, we systematically explore evolutionary paths and find that some network features cannot be optimized simultaneously. Conclusions We find that a computational modeling approach can be used to analyze the evolution of a well-studied regulatory network. Our results are consistent with several experimental studies of the evolutionary of the GAL regulatory network, including increased fitness in Saccharomyces due to duplication and adaptive regulatory divergence. The conceptual and computational tools that we have developed may be applicable in further studies of regulatory network evolution.
Collapse
Affiliation(s)
- Christos Josephides
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5 S 3B2, Canada
| | | |
Collapse
|
46
|
Pannala VR, Bhartiya S, Venkatesh KV. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis. FEBS J 2010; 277:2987-3002. [PMID: 20528923 DOI: 10.1111/j.1742-4658.2010.07708.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The galactose uptake mechanism in yeast is a well-studied regulatory network. The regulatory players in the galactose regulatory mechanism (GAL system) are conserved in Saccharomyces cerevisiae and Kluyveromyces lactis, but the molecular mechanisms that occur as a result of the molecular interactions between them are different. The key differences in the GAL system of K. lactis relative to that of S. cerevisiae are: (a) the autoregulation of KlGAL4; (b) the dual role of KlGal1p as a metabolizing enzyme as well as a galactose-sensing protein; (c) the shuttling of KlGal1p between nucleus and cytoplasm; and (d) the nuclear confinement of KlGal80p. A steady-state model was used to elucidate the roles of these molecular mechanisms in the transcriptional response of the GAL system. The steady-state results were validated experimentally using measurements of beta-galactosidase to represent the expression for genes having two binding sites. The results showed that the autoregulation of the synthesis of activator KlGal4p is responsible for the leaky expression of GAL genes, even at high glucose concentrations. Furthermore, GAL gene expression in K. lactis shows low expression levels because of the limiting function of the bifunctional protein KlGal1p towards the induction process in order to cope with the need for the metabolism of lactose/galactose. The steady-state model of the GAL system of K. lactis provides an opportunity to compare with the design prevailing in S. cerevisiae. The comparison indicates that the existence of a protein, Gal3p, dedicated to the sensing of galactose in S. cerevisiae as a result of genome duplication has resulted in a system which metabolizes galactose efficiently.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India
| | | | | |
Collapse
|
47
|
Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 2010; 28:375-84. [DOI: 10.1016/j.biotechadv.2010.02.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/18/2022]
|
48
|
Abstract
The transcriptional activation of enzymes involved in galactose utilization (GAL genes) in Saccharomyces cerevisiae is regulated by a complex interplay between three regulatory proteins encoded by GAL4 (transcriptional activator), GAL3 (signal transducer) and GAL80 (repressor). The relative concentrations of the signal transducer and the repressor are maintained by autoregulation. Cells disabled for autoregulation exhibit phenotypes distinctly different from that of the wild type cells, enabling us to explore the biological significance of autoregulation. The redundancy in signal transduction due to the presence of GAL1 (alternate signal transducer) also makes it a suitable model to understand the phenomenon of epigenetics. In this article we review some of the recent attempts made to understand the importance of epigenetics in the establishment of cellular and transcriptional memory.
Collapse
Affiliation(s)
- Paike Jayadeva Bhat
- Laboratory of Molecular Genetics, School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | | |
Collapse
|
49
|
Huberts DHEW, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:520-5. [PMID: 20144902 DOI: 10.1016/j.bbamcr.2010.01.022] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 11/29/2022]
Abstract
Proteins are macromolecules, which perform a large variety of functions. Most of them have only a single function, but an increasing number of proteins are being identified as multifunctional. Moonlighting proteins form a special class of multifunctional proteins. They perform multiple autonomous and often unrelated functions without partitioning these functions into different domains of the protein. Striking examples are enzymes, which in addition to their catalytic function are involved in fully unrelated processes such as autophagy, protein transport or DNA maintenance. In this contribution we present an overview of our current knowledge of moonlighting proteins and discuss the significant implications for biomedical and fundamental research.
Collapse
Affiliation(s)
- Daphne H E W Huberts
- Molecular Cell Biology, GBB, University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | |
Collapse
|
50
|
|