1
|
Liu X, Shen Q, Cheng L, Dai K, Wu Q, Liu X, Yao P, Zeng L. Synergistic Inhibitory Effects of Tetramethylpyrazine and Evodiamine on Endometriosis Development. J Steroid Biochem Mol Biol 2024; 245:106630. [PMID: 39486648 DOI: 10.1016/j.jsbmb.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Endometriosis (EMS) belongs to a gynecological disorder with inflammation and the existence of endometrial-like tissues beyond the uterus, often leading to infertility and pelvic pain. Estrogen receptor β (ERβ) is significantly expressed in endometriosis (EMS) and recognized as a promising therapeutic target for EMS treatment by inhibiting ERβ activity. In this study, we investigated the potential mechanisms for tetramethylpyrazine (TMP)-mediated ERβ suppression, and the synergistic inhibitory effect of TMP and evodiamine (EVO) on ERβ expression and EMS development. We found that TMP suppresses ERβ expression by reducing the association of Oct3/4 with the ERβ promoter and decreasing Oct3/4 protein levels without affecting Oct3/4 transcript levels. A minimum dosage of 10µM TMP is required to inhibit ERβ expression. Neither TMP (5µM) nor EVO (2µM) alone had any effect, but their combination synergistically inhibited ERβ expression and modulated related cellular processes, including redox balance, mitochondrial function, inflammation, and proliferation. Additionally, the combination of TMP (10mg/kg body weight) and EVO (5mg/kg) synergistically inhibited ERβ expression and EMS development in the mouse model. In conclusion, TMP suppresses ERβ expression by reducing the association of Oct3/4 with the ERβ promoter. Neither TMP nor EVO alone effectively suppresses ERβ in both laboratory and live organism models. However, their combination synergistically inhibits ERβ expression and EMS development, suggesting a potential therapeutic strategy for EMS using TMP and EVO.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China
| | - Qingjun Shen
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China
| | - Liqin Cheng
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China
| | - Kailing Dai
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China
| | - Qiaozhu Wu
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China
| | - Xiaole Liu
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China
| | - Paul Yao
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China.
| | - Liqin Zeng
- Department of gynecology, Sun Yat-Sen University Affiliated No.8 Hospital, Shenzhen 518033, P R China.
| |
Collapse
|
2
|
Yi Y, Nie J, Liu X, Guo SW. Progressively Diminished Prostaglandin E2 Signaling in Concordance with Increasing Fibrosis in Ectopic Endometrium. Reprod Sci 2024:10.1007/s43032-024-01658-w. [PMID: 39174854 DOI: 10.1007/s43032-024-01658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
The prostaglandin E2 (PGE2) signaling has traditionally been viewed to play a pivotal role in endometriosis, linking inflammation and hyperestrogenism. We have previously reported that asectopic endometrium becomes more fibrotic, the expression of both COX-2 and PGE2 receptors (EP2 and EP4) are reduced. This study further investigatedwhether the expression levels of genes involved in the biosynthesis and metabolism of PGE2in ectopic endometrium diminish in concordance with increasing lesional fibrosis. We performed immunohistochemistry analyses of COX-2, mPGES-1, mPGES-2, cPGES, 15-PGDH, EP2 and EP4 and Masson trichrome staining for ovarian endometrioma (OE), adenomyosis (AD), and deep endometriosis (DE) tissue samples and control endometrial tissue samples (CT). Gene and protein expression analyses were performed by real-time RT-PCR and Western blotting, respectively. We found that as the extent of lesional fibrosis increased, immunoexpression of COX-2, mPGES-1/2, cPGES, EP2 and EP4 in OE lesions was increased but no change in these genes/proteins in DE lesions as compared with CT. Immunoexpression of COX-2 was found to be reduced while that of 15-PGDH was found to be elevated in DE lesions. In AD lesions, only EP2 and COX-2 were overexpressed. Thus, our data indicate that when the extent of lesional fibrosis is high, the PGE2 signaling pathway is depressed, manifesting as reduced COX-2 expression and elevated expression of 15-PGDH. They underscore the fact that not all ectopic endometria are the same and equal, and highlight the importance of the extracellular matrix in shaping the lesional behavior and response to drug treatment.
Collapse
Affiliation(s)
- Yunhua Yi
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jichan Nie
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
- Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
3
|
Wang J, Liang Y, Liang X, Peng H, Wang Y, Xu M, Liang X, Yao H, Liu X, Zeng L, Yao P, Xiang D. Evodiamine suppresses endometriosis development induced by early EBV exposure through inhibition of ERβ. Front Pharmacol 2024; 15:1426660. [PMID: 39148548 PMCID: PMC11324466 DOI: 10.3389/fphar.2024.1426660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction: Endometriosis (EMS) is characterized as a prevalent gynecological inflammatory disorder marked by the existence of endometrial tissues situated beyond the uterus. This condition leads to persistent pelvic pain and may contribute to infertility. In this investigation, we explored the potential mechanism underlying the development of endometriosis (EMS) triggered by transient exposure to either latent membrane protein 1 (LMP1) or Epstein-Barr virus (EBV) in a mouse model. Additionally, we examined the potential inhibitory effect of evodiamine (EDM) on EMS. Methods: Immortalized human endometrial stromal cells (HESC) or epithelial cells (HEEC) were transiently exposed to either EBV or LMP1. The presence of evodiamine (EDM) was assessed for its impact on estrogen receptor β (ERβ) expression, as well as on cell metabolism parameters such as redox balance, mitochondrial function, inflammation, and proliferation. Additionally, a mixture of LMP1-treated HESC and HEEC was administered intraperitoneally to generate an EMS mouse model. Different dosages of EDM were employed for treatment to evaluate its potential suppressive effect on EMS development. Results: Transient exposure to either EBV or LMP1 triggers persistent ERβ expression through epigenetic modifications, subsequently modulating related cell metabolism for EMS development. Furthermore, 4.0 µM of EDM can efficiently reverse this effect in in vitro cell culture studies. Additionally, 20 mg/kg body weight of EDM treatment can partly suppress EMS development in the in vivo EMS mouse model. Conclusion: Transient EBV/LMP1 exposure triggers permanent ERβ expression, favoring later EMS development, EDM inhibits EMS development through ERβ suppression. This presents a novel mechanism for the development of endometriosis (EMS) in adulthood stemming from early Epstein-Barr virus (EBV) exposure during childhood. Moreover, evodiamine (EDM) stands out as a prospective candidate for treating EMS.
Collapse
Affiliation(s)
- Junling Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoru Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijuan Peng
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxia Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingtao Xu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Helen Yao
- University of California at Riverside, Riverside, CA, United States
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Paul Yao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfang Xiang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Arosh JA, Sivakumar KK, Lee J, Banu SK. Effects of selective inhibition of prostaglandin E2 receptors EP2 and EP4 on the miRNA profile in endometriosis. Mol Cell Endocrinol 2022; 558:111728. [PMID: 35944745 DOI: 10.1016/j.mce.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Endometriosis is an estrogen-dependent, progesterone-resistant, chronic inflammatory gynecological disease of reproductive-age women. Two major clinical symptoms of endometriosis are chronic pelvic pain and infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent disease recurrence. Prostaglandin E2 (PGE2) plays an important role in the survival and growth of endometriotic lesions. MicroRNAs (miRNAs) are small, noncoding RNAs that control gene expressions through multiple mechanisms and have important roles in the pathogenesis of endometriosis. The objective of the present study is to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on miRNA profile in endometriosis. The novel results collectively indicate that inhibition of PGE2-EP2/EP4 signaling regulated several miRNA clusters associated with cell adhesion, migration, invasion, survival and growth in cell-specific and the chromosome-specific manner and reverses the epigenetic silencing of proapoptotic miRNAs 15a and 34c in the human endometriotic epithelial and stromal cells and experimental endometriotic lesions. Thus, selective inhibition of EP2/EP4 receptors could emerge as a potential nonsteroidal therapy for endometriosis.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA.
| | - Kirthiram K Sivakumar
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| | - JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| |
Collapse
|
5
|
Li LP, Li ZM, Wang ZZ, Cheng YF, He DM, Chen G, Cao BN, Zou Y, Luo Y. A novel nude mouse model for studying the pathogenesis of endometriosis. Exp Ther Med 2022; 24:498. [PMID: 35837067 PMCID: PMC9257831 DOI: 10.3892/etm.2022.11425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Endometriosis is a common female gynecological disease that is characterized by the presence of functional endometrial tissue outside the uterine cavity. At present, many animal models have been established. However, previous studies consistently use human endometrial tissue implanted in the subcutaneous or abdominal cavity for modeling and rarely use endometrial cells. In the present study, we ascertained whether immortalized stromal and/or epithelial endometrial cells are able to induce subcutaneous endometriosis in nude mice. Mixed human immortalized endometriosis stromal and epithelial cells, but not the cells of Group 1 or Group 2, were successfully constructed and led to endometriotic-like lesions. The endometriosis-like lesions observed in nude mice consisted of endometriosis-like glands lined with columnar epithelial cells and surrounded by stromal cells in the fibrous fatty connective tissue. Immunofluorescence analysis showed that glandular epithelial cells were intensely stained for E-cadherin and cytokeratin 7, and surrounding stromal cells were mildly stained for neprilysin (CD10) and vimentin. Moreover, the cells present in the endometriosis-like lesions were of human origin. Our data indicate that the mixture of human immortalized endometriosis stromal cells and epithelial cells is able to establish subcutaneous endometriosis lesions in nude mice. This model could be used to understand the molecular mechanisms involved in the occurrence and development of endometriosis.
Collapse
Affiliation(s)
- Li-Ping Li
- Prenatal Diagnosis Center, Nanchang, Jiangxi 330006, P.R. China
| | - Zeng-Ming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhen Wang
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, Jiangxi 330052, P.R. China
| | - Yu-Fen Cheng
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - De-Ming He
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ge Chen
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bian-Na Cao
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Huang Q, Liu X, Guo SW. Higher fibrotic content of endometriotic lesions is associated with diminished prostaglandin E2 signaling. Reprod Med Biol 2021; 21:e12423. [PMID: 34938147 PMCID: PMC8656679 DOI: 10.1002/rmb2.12423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose While the prevailing view holds that the prostaglandin E2 (PGE2) signaling plays a vital role in endometriosis, PGE2 also is known to be anti-fibrotic. We investigated the immunostaining of COX-2, EP2, and EP4, along with fibrotic content in ovarian endometrioma (OE) and deep endometriosis (DE) lesions, and in OE lesions from adolescent and adult patients. In addition, we evaluated the effect of substrate stiffness on the expression of COX-2, EP2, and EP4 in endometrial stromal cells. Methods Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the quantification of lesional fibrosis, was conducted for OE and DE lesion samples and also OE lesion samples from adolescent and adult patients. The effect of substrate rigidity on fibroblast-to-myofibroblast transdifferentiation (FMT) and the expression of COX-2, EP2, and EP4, with or without TGF-β1 stimulation, were investigated. Results The immunostaining of COX-2, EP2, and EP4 was substantially reduced in endometriotic lesions as lesions became more fibrotic. Both TGF-β1 stimulation and stiff substrates induced FMT and reduced the expression of COX-2, EP2, and EP4. Conclusions Since fibrosis is a common feature of endometriosis, our results thus cast doubts on the use of therapeutics that suppresses the PGE2 signaling pathway, either by inhibiting COX-2 or EP2/EP4.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,The Third Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
7
|
Wendel JRH, Wang X, Smith LJ, Hawkins SM. Three-Dimensional Biofabrication Models of Endometriosis and the Endometriotic Microenvironment. Biomedicines 2020; 8:biomedicines8110525. [PMID: 33233463 PMCID: PMC7700676 DOI: 10.3390/biomedicines8110525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis occurs when endometrial-like tissue grows outside the uterine cavity, leading to pelvic pain, infertility, and increased risk of ovarian cancer. The present study describes the optimization and characterization of cellular spheroids as building blocks for Kenzan scaffold-free method biofabrication and proof-of-concept models of endometriosis and the endometriotic microenvironment. The spheroid building blocks must be of a specific diameter (~500 μm), compact, round, and smooth to withstand Kenzan biofabrication. Under optimized spheroid conditions for biofabrication, the endometriotic epithelial-like cell line, 12Z, expressed high levels of estrogen-related genes and secreted high amounts of endometriotic inflammatory factors that were independent of TNFα stimulation. Heterotypic spheroids, composed of 12Z and T-HESC, an immortalized endometrial stromal cell line, self-assembled into a biologically relevant pattern, consisting of epithelial cells on the outside of the spheroids and stromal cells in the core. 12Z spheroids were biofabricated into large three-dimensional constructs alone, with HEYA8 spheroids, or as heterotypic spheroids with T-HESC. These three-dimensional biofabricated constructs containing multiple monotypic or heterotypic spheroids represent the first scaffold-free biofabricated in vitro models of endometriosis and the endometriotic microenvironment. These efficient and innovative models will allow us to study the complex interactions of multiple cell types within a biologically relevant microenvironment.
Collapse
Affiliation(s)
- Jillian R. H. Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-274-8225
| |
Collapse
|
8
|
Expression of monocyte chemotactic protein 2 and tumor necrosis factor alpha in human normal endometrium and endometriotic tissues. J Gynecol Obstet Hum Reprod 2020; 50:101971. [PMID: 33152545 DOI: 10.1016/j.jogoh.2020.101971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Endometriosis is a gynocological disease characterized by the presence of the endometrial glands and stroma outside the uterine cavity. This disease affects % 6-10 of women with reproductive age and it causes serious problems such as pelvic pain, dysmenorrhea and infertility. Although endometriosis is one of the most investigated disease of gynecology, its pathogenesis is not clear completely. In recent years, many studies revealed the inflammatory nature of endometriosis. Many of the immune cells and their secretory products cytokines and chemokines has been detected in body fluids of women with endometriosis. Cytokines are protein or glycoprotein in structures and hormon-like molecules that act generally in a paracrine fashion to regulate immun responses. They involved in chemotaxis, cell proliferation, cell activation, motility, adhesion and morphogenesis. Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine secreted by the macrophages, monocytes, neutrophiles, T cells and natural killer cells. It stimulates increase in the level of the chemokines in body fluids. Monocyte chemotactic protein 2 (MCP-2) is a chemokine act to recruit and activate monocytes into sites of inflammation area. The aim of this study to investigate the ultrastructural properties and whether the expression and localization of TNF-α and MCP-2 in the eutopic endometrium (normal endometrium of women with endometriosis) and endometritic tissues of women with endometriosis. Eutopic endometrial and endometriotic tissue samples were obtained from women with endometriosis between 20-41 y and normal endometrial tissues were collected from 5 women without endometriosis as a control group. Tissues were processed for light and electron microscopy and examined. The epithelial cells of endometriotic tissues were revealed strongly cytoplasmic TNF-α and MCP-2 immunreactivities. Eutopic endometrial tissues were also stained prominently for both TNF-α and MCP-2. Furthermore, a significant increase in stromal macrophages were observed in endometriotic tissues. Moreover, the ultrastructural observations on the normal and endometriotic tissues were exhibited microvilli-rich cells and ciliated cells. These findings suggest that TNF-α and MCP-2 may be involved in normal endometrial biology and in the pathogenesis of endometriosis.
Collapse
|
9
|
Greaves E, Rosser M, Saunders PTK. Endometriosis-Associated Pain - Do Preclinical Rodent Models Provide a Good Platform for Translation? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:25-55. [PMID: 33278006 DOI: 10.1007/978-3-030-51856-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pelvic pain is a common symptom of endometriosis. Our understanding of its etiology remains incomplete and medical management is limited by poor translation from preclinical models to clinical trials. In this review, we briefly consider the evidence, or lack thereof, that different subtypes of lesion, extra-uterine bleeding, and neuropathic pathways add to the complex and heterogeneous pain experience of women with the condition. We summarize the studies in rodent models of endometriosis that have used behavioral endpoints (evoked and non-evoked) to explore mechanisms of endometriosis-associated pain. Lesion innervation, activation of nerves by pronociceptive molecules released by immune cells, and a role for estrogen in modulating hyperalgesia are key endometriosis-associated pain mechanisms replicated in preclinical rodent models. The presence of ectopic (full thickness uterus or endometrial) tissue may be associated with changes in the spinal cord and brain, which appear to model changes reported in patients. While preclinical models using rats and mice have yielded insights that appear relevant to mechanisms responsible for the development of endometriosis-associated pain, they are limited in scope. Specifically, most studies are based on models that only resulted in the formation of superficial lesions and use induced (evoked) behavioral 'pain' tests. We suggest that translation for patient benefit will be improved by new approaches including models of ovarian and deep infiltrating disease and measurement of spontaneous pain behaviors. Future studies must also capitalize on new advances in the wider field of pain medicine to identify more effective treatments for endometriosis-associated pain.
Collapse
Affiliation(s)
- Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Matthew Rosser
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Philippa T K Saunders
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Arosh JA, Banu SK. Dual inhibition of ERK1/2 and AKT pathways is required to suppress the growth and survival of endometriotic cells and lesions. Mol Cell Endocrinol 2019; 484:78-92. [PMID: 30578826 PMCID: PMC6528834 DOI: 10.1016/j.mce.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/16/2023]
Abstract
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. Current hormonal therapies targeting estrogen can be prescribed only for a short time. It indicates a need for non-hormonal therapy. ERK1/2 and AKT pathways control several intracellular signaling molecules that control growth and survival of cells. Objectives of the present study are to determine the dual inhibitory effects of ERK1/2 and AKT pathways: (i) on proliferation, survival, and apoptosis of human endometrioitc epithelial cells and stromal cells in vitro; (ii) on growth and survival of endometrioitc lesions in vivo in xenograft mouse model of endometriosis of human origin; and (iii) establish the associated ERK1/2 and AKT downstream intracellular signaling modules in the pathogenesis of endometriosis. Our results indicated that combined inhibition of ERK1/2 and AKT pathways highly decreased the growth and survival of human endometriotic epithelial cells and stromal cells in vitro and suppressed the growth of endometriotic lesions in vivo compared to inhibition of either ERK1/2 or AKT pathway individually. This cause-effect is associated with dysregulated intracellular signaling modules associated with cell cycle, cell survival, and cell apoptosis pathways. Collectively, our results indicate that dual inhibition of ERK1/2 and AKT pathways could emerge as potential non-hormonal therapy for the treatment of endometriosis.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA.
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| |
Collapse
|
11
|
Matta K, Ploteau S, Coumoul X, Koual M, Le Bizec B, Antignac JP, Cano-Sancho G. Associations between exposure to organochlorine chemicals and endometriosis in experimental studies: A systematic review protocol. ENVIRONMENT INTERNATIONAL 2019; 124:400-407. [PMID: 30682595 DOI: 10.1016/j.envint.2018.12.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 12/30/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Endometriosis is a hormone-dependent gynaecological disease characterised by the presence and growth of endometrial tissues outside of the uterus. There is growing experimental evidence that suggests environmental endocrine disrupting chemicals, specifically organochlorine chemicals (OCCs), may play a role in the pathogenesis of endometriosis, but to date, there are no studies attempting to gather and synthesise the published literature systematically. OBJECTIVES The main objective of this SR is to evaluate the associations between the exposure to OCCs and endometriosis in experimental models (in vivo and in vitro). METHODS The SR framework has been developed following the guidelines established in National Toxicology Program/ Office of Health Assessment and Translation (NTP/OHAT) Handbook for Conducting a Literature-Based Health Assessment, which provides a standardised methodology to implement the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to environmental health assessments. The review process will be managed and documented through HAWC, an open-source content management system, to guarantee transparency. ELIGIBILITY CRITERIA Only experimental studies, in vivo, ex vivo or in vitro, exploring associations between controlled exposures to OCCs and endometriosis and related outcomes will be included. Eligible studies will include peer reviewed articles of any publication date which are sources of primary data. Only studies published in English will be considered. INFORMATION SOURCES We will apply the search strings to the scientific literature databases NCBI PubMed, Web of Science and SCOPUS. Manual searches will be performed through the list of references of included articles. DATA EXTRACTION AND SYNTHESIS OR RESULTS Data will be extracted according to a pre-defined set of forms and synthesised in a narrative report. Given sufficient commensurate data, a meta-analysis may also be performed. RISK OF BIAS A quality assessment will be performed for in vivo and in vitro studies using the NTP/OHAT Risk of Bias Rating Tool for Human and Animal Studies. LEVEL OF EVIDENCE RATING Following a comprehensive assessment of the quality of evidence for both in vivo and in vitro studies, a confidence rating will be assigned to the body of literature and subsequently translated into a rating on the level of evidence (high, moderate, low, or inadequate) regarding the research question. Systematic review registration: PROSPERO CRD42018102618.
Collapse
Affiliation(s)
- Komodo Matta
- LABERCA, Oniris, INRA, Université Bretagne-Loire, 44307 Nantes, France
| | - Stéphane Ploteau
- Service de Gynécologie-Obstétrique, CIC FEA, Hôpital Mère Enfant, CHU Hôtel Dieu, Nantes, France
| | - Xavier Coumoul
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, France; Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, France; Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
| | - Bruno Le Bizec
- LABERCA, Oniris, INRA, Université Bretagne-Loire, 44307 Nantes, France
| | | | | |
Collapse
|
12
|
Simitsidellis I, Gibson DA, Saunders PTK. Animal models of endometriosis: Replicating the aetiology and symptoms of the human disorder. Best Pract Res Clin Endocrinol Metab 2018; 32:257-269. [PMID: 29779580 DOI: 10.1016/j.beem.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometriosis is a chronic incurable disorder that affects 1 in 10 women of reproductive age: associated symptoms include chronic pain and infertility. The aetiology of endometriosis remains poorly understood but patients, clinicians and researchers are all in agreement that new non-surgical therapies are urgently needed to reduce the severity of symptoms. Preclinical testing of drugs requires the development and validation of models that recapitulate the key features of the disorder. In this review we describe the best-validated animal models (primate, rodent, xenograft) and their contributions to our understanding of the factors underpinning the development of symptoms. We consider the evidence that these models have provided the platform for identification of new therapeutic interventions and reflect on future directions for research and drug validation.
Collapse
Affiliation(s)
- Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Douglas A Gibson
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
13
|
Greaves E, Critchley HOD, Horne AW, Saunders PTK. Relevant human tissue resources and laboratory models for use in endometriosis research. Acta Obstet Gynecol Scand 2017; 96:644-658. [PMID: 28233896 PMCID: PMC5485163 DOI: 10.1111/aogs.13119] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
Endometriosis is characterized by the growth of endometrium‐like tissue outside the uterus, most commonly on the pelvic peritoneum and ovaries. Although it may be asymptomatic in some women, in others it can cause debilitating pain, infertility or other symptoms including fatigue. Current research is directed both at understanding the complex etiology and pathophysiology of the disorder and at the development of new nonsurgical approaches to therapy that lack the unwanted side effects of current medical management. Tools for endometriosis research fall into two broad categories; patient‐derived tissues, and fluids (and cells isolated from these sources) or models based on the use of cells or animals. In this review, we discuss the literature that has reported data from the use of these tools in endometriosis research and we highlight the strengths and weaknesses of each. Although many different models are reported in the literature, hypothesis‐driven research will only be facilitated with careful experimental design and selection of the most appropriate human tissue from patients with and without endometriosis and combinations of physiologically relevant in vitro and in vivo laboratory models.
Collapse
Affiliation(s)
- Erin Greaves
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Hilary O D Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Andrew W Horne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Philippa T K Saunders
- MRC Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
14
|
Silveira CGT, Marschner G, Canny GO, Klocke S, Hunold P, Köster F, Ahrens T, Rody A, Hornung D. Disrupting Y-Box-Binding Protein 1 Function Using OSU-03012 Prevents Endometriosis Progression in In Vitro and In Vivo Models. Reprod Sci 2016; 24:67-76. [PMID: 27217374 DOI: 10.1177/1933719116649695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of the present study was to test the ability of OSU-03012 (2-amino-N-[4-[5-phenanthren-2-yl-3-(trifluoromethyl)pyrazol-1-yl]phenyl]acetamide), a novel and potent celecoxib-derivative, to impair endometriosis progression in in vitro and in vivo models based on its ability to indirectly block Y-box-binding protein 1 (YB-1) function. 12Z human endometriotic epithelial cells and sexually mature female C57BL/6J mice were treated with OSU-03012. Cellular proliferation was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid assay. Expression of YB-1 and phosphorylated YB-1 in 12Z cells and endometriotic lesions was evaluated by Western blotting and immunohistochemistry (IHC). The IHC for proliferating cell nuclear antigen was performed. OSU-03012 treatment resulted in decreased YB-1 and its phosphorylated form in both in vitro and in vivo models. Endometriotic lesion size was significantly reduced in OSU-03012-treated mice (27.6 ± 4.0 mm3) compared to those from the control group (50.5 ± 6.9 mm3, P < .0001). A significant reduction in endometriotic epithelial cell proliferation was observed in endometriotic lesions exposed to OSU-03012 treatment ( P = .0346). In conclusion, targeting YB-1 via OSU-03012 showed a potent antiproliferative effect on endometriotic epithelial cells in vitro and in a mouse model of disease.
Collapse
Affiliation(s)
- Cássia G T Silveira
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Gabriele Marschner
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | | | - Silke Klocke
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Peter Hunold
- 3 Clinic for Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Frank Köster
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Thorben Ahrens
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Achim Rody
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Daniela Hornung
- 1 Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany.,4 Department of Gynecology and Obstetrics, Diakonissenkrankenhaus Karlsruhe Rüppurr, Karlsruhe, Germany
| |
Collapse
|
15
|
Molecular and preclinical basis to inhibit PGE2 receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis. Proc Natl Acad Sci U S A 2015. [PMID: 26199416 DOI: 10.1073/pnas.1507931112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endometriosis is a debilitating, estrogen-dependent, progesterone-resistant, inflammatory gynecological disease of reproductive age women. Two major clinical symptoms of endometriosis are chronic intolerable pelvic pain and subfertility or infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent recurrence of disease. There is a fundamental need to identify nonestrogen or nonsteroidal targets for the treatment of endometriosis. Peritoneal fluid concentrations of prostaglandin E2 (PGE2) are higher in women with endometriosis, and this increased PGE2 plays important role in survival and growth of endometriosis lesions. The objective of the present study was to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on molecular and cellular aspects of the pathogenesis of endometriosis and associated clinical symptoms. Using human fluorescent endometriotic cell lines and chimeric mouse model as preclinical testing platform, our results, to our knowledge for the first time, indicate that selective inhibition of EP2/EP4: (i) decreases growth and survival of endometriosis lesions; (ii) decreases angiogenesis and innervation of endometriosis lesions; (iii) suppresses proinflammatory state of dorsal root ganglia neurons to decrease pelvic pain; (iv) decreases proinflammatory, estrogen-dominant, and progesterone-resistant molecular environment of the endometrium and endometriosis lesions; and (v) restores endometrial functional receptivity through multiple mechanisms. Our novel findings provide a molecular and preclinical basis to formulate long-term nonestrogen or nonsteroidal therapy for endometriosis.
Collapse
|
16
|
Arosh JA, Lee J, Starzinski-Powitz A, Banu SK. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 modulates DNA methylation and histone modification machinery proteins in human endometriotic cells. Mol Cell Endocrinol 2015; 409:51-8. [PMID: 25843056 PMCID: PMC6573013 DOI: 10.1016/j.mce.2015.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/21/2015] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
Abstract
Endometriosis is an inflammatory gynecological disease of reproductive-age women. The prevalence of endometriosis is 5-10% in reproductive-age women. Modern medical treatments are directed to inhibit the action of estrogen in endometriotic cells. However, hormonal therapies targeting estrogen can be prescribed only for a short time because of their undesirable side effects. Recent studies from our laboratory, using human endometriotic epithelial cell line 12Z and stromal cell line 22B derived from red lesion, discovered that selective inhibition of prostaglandin E2 (PGE2) receptors EP2 and EP4 inhibits adhesion, invasion, growth, and survival of 12Z and 22B cells by modulating integrins, MMPs and TIMPs, cell cycle, survival, and intrinsic apoptotic pathways, suggesting multiple epigenetic mechanisms. The novel findings of the present study indicate that selective pharmacological inhibition of EP2 and EP4: (i) decreases expression of DNMT3a, DNMT3b, H3K9me3, H3K27me3, SUV39H1, HP1a, H3K27, EZH2, JMJD2a, HDAC1, HDAC3, MeCP2, CoREST and Sin3A; (ii) increases expression of H3K4me3, H3H9ac, H3K27ac; and (iii) does not modulate the expression of DNMT1, hSET1, LSD1, MBD1, p300, HDAC2, and JMJD3 epigenetic machinery proteins in an epithelial and stromal cell specific manner. In this study, we report for the first time that inhibition of PGE2-EP2/EP4 signaling modulates DNA methylation, H3 histone methylation and acetylation, and epigenetic memory machinery proteins in human endometriotic epithelial cells and stromal cells. Thus, targeting EP2 and EP4 receptors may emerge as long-term nonsteroidal therapy for treatment of active endometriotic lesions in women.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843 Texas, USA.
| | - JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843 Texas, USA
| | - Anna Starzinski-Powitz
- Molekulare Zellbiologie und Humangenetik, Institut für Zellbiologie und Neurowissenschaft, Siesmayerstraße 70, Geb. B, 60323 Frankfurt am Main, Germany
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843 Texas, USA
| |
Collapse
|
17
|
Lawrenson K, Lee N, Torres HAM, Lee JM, Brueggmann D, Rao PN, Noushmehr H, Gayther SA. Src as a novel therapeutic target for endometriosis. Gynecol Oncol 2014; 135:100-7. [PMID: 24972189 DOI: 10.1016/j.ygyno.2014.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Endometriosis is a common condition that is associated with an increased risk of developing ovarian carcinoma. Improved in vitro models of this disease are needed to better understand how endometriosis, a benign disease, can undergo neoplastic transformation, and for the development of novel treatment strategies to prevent this progression. METHODS We describe the generation and in vitro characterization of novel TERT immortalized ovarian endometriosis epithelial cell lines (EEC16-TERT). RESULTS Expression of TERT alone was sufficient to immortalize endometriosis epithelial cells. TERT immortalization induces an epithelial-to-mesenchymal transition and perturbation in the expression of genes involved in the development of ovarian cancer. EEC16-TERT was non-tumorigenic when xenografted into immunocompromised mice but grew in anchorage-independent growth assays in an epidermal growth factor and hydrocortisone dependent manner. Colony formation in agar was abolished by inhibition of Src, and the Src pathway was found to be activated in human endometriosis lesions. CONCLUSIONS This new in vitro model system mimics endometriosis and the early stages of neoplastic transformation in the development of endometriosis associated ovarian cancer. We demonstrate the potential clinical relevance of this model by identifying Src activation as a novel pathway in endometriosis that could be targeted therapeutically, perhaps as a novel strategy to manage endometriosis clinically, or to prevent the development of endometriosis-associated ovarian cancer.
Collapse
Affiliation(s)
- Kate Lawrenson
- Department of Preventive Medicine, University of Southern California/Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Nathan Lee
- Department of Preventive Medicine, University of Southern California/Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Hugo A M Torres
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Núcleo de Apoio à Pesquisa (NAP) denominado Centro de Biologia Sistêmica Integrada (CISBi), São Paulo, Brazil
| | - Janet M Lee
- Department of Preventive Medicine, University of Southern California/Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Doerthe Brueggmann
- Department of Obstetrics and Gynecology, University of Southern California/Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - P Nagesh Rao
- Pathology and Lab Medicine, David Geffen University of California Los Angeles, 22-26 Rehab Cntr, 1000 Veteran Ave, Los Angeles, CA 90024, USA.
| | - Houtan Noushmehr
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Núcleo de Apoio à Pesquisa (NAP) denominado Centro de Biologia Sistêmica Integrada (CISBi), São Paulo, Brazil.
| | - Simon A Gayther
- Department of Preventive Medicine, University of Southern California/Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Brueggmann D, Templeman C, Starzinski-Powitz A, Rao NP, Gayther SA, Lawrenson K. Novel three-dimensional in vitro models of ovarian endometriosis. J Ovarian Res 2014; 7:17. [PMID: 24502583 PMCID: PMC4015880 DOI: 10.1186/1757-2215-7-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/25/2014] [Indexed: 01/07/2023] Open
Abstract
Background Endometriosis is characterized by the presence of functional endometrial tissue outside of the uterine cavity. It affects 1 in 10 women of reproductive age. This chronic condition commonly leads to consequences such as pelvic pain, dysmenorrhea, infertility and an elevated risk of epithelial ovarian cancer. Despite the prevalence of endometriosis and its impact on women’s lives, there are relatively few in vitro and in vivo models available for studying the complex disease biology, pathophysiology, and for use in the preclinical development of novel therapies. The goal of this study was to develop a novel three-dimensional (3D) cell culture model of ovarian endometriosis and to test whether it is more reflective of endometriosis biology than traditional two dimensional (2D) monolayer cultures. Methods A novel ovarian endometriosis epithelial cell line (EEC16) was isolated from a 34-year old female with severe endometriosis. After characterization of cells using in vitro assays, western blotting and RNA-sequencing, this cell line and a second, already well characterized endometriosis cell line, EEC12Z, were established as in vitro 3D spheroid models. We compared biological features of 3D spheroids to 2D cultures and human endometriosis lesions using immunohistochemistry and real-time semi-quantitative PCR. Results In comparison to normal ovarian epithelial cells, EEC16 displayed features of neoplastic transformation in in vitro assays. When cultured in 3D, EEC16 and EEC12Z showed differential expression of endometriosis-associated genes compared to 2D monolayer cultures, and more closely mimicked the molecular and histological features of human endometriosis lesions. Conclusions To our knowledge, this represents the first report of an in vitro spheroid model of endometriosis. 3D endometriosis models represent valuable experimental tools for studying EEC biology and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Simon A Gayther
- Department of Preventive Medicine, University of Southern California/Keck School of Medicine, Harlyne Norris Research Tower, NRT2517G, 1450 Biggy Street, Los Angeles, California 90033, USA.
| | | |
Collapse
|
19
|
Lebovic DI, Kavoussi SK, Lee J, Banu SK, Arosh JA. PPARγ activation inhibits growth and survival of human endometriotic cells by suppressing estrogen biosynthesis and PGE2 signaling. Endocrinology 2013; 154:4803-13. [PMID: 24064359 PMCID: PMC5398600 DOI: 10.1210/en.2013-1168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/13/2013] [Indexed: 02/08/2023]
Abstract
Endometriosis is a chronic inflammatory disease of reproductive age women leading to chronic pelvic pain and infertility. Current antiestrogen therapies are temporizing measures, and endometriosis often recurs. Potential nonestrogenic or nonsteroidal targets are needed for treating endometriosis. Peroxisome proliferator-activated receptor (PPAR)γ, a nuclear receptor, is activated by thiazolidinediones (TZDs). In experimental endometriosis, TZDs inhibit growth of endometriosis. Clinical data suggest potential use of TZDs for treating pain and fertility concurrently in endometriosis patients. Study objectives were to 1) determine the effects of PPARγ action on growth and survival of human endometriotic epithelial and stromal cells and 2) identify the underlying molecular links between PPARγ activation and cell cycle regulation, apoptosis, estrogen biosynthesis, and prostaglandin E2 biosynthesis and signaling in human endometriotic epithelial and stromal cells. Results indicate that activation of PPARγ by TZD ciglitazone 1) inhibits growth of endometriotic epithelial cells 12Z up to 35% and growth of endometriotic stromal cells 22B up to 70% through altered cell cycle regulation and intrinsic apoptosis, 2) decreases expression of PGE2 receptors (EP)2 and EP4 mRNAs in 12Z and 22B cells, and 3) inhibits expression and function of P450 aromatase mRNA and protein and estrone production in 12Z and 22B cells through EP2 and EP4 in a stromal-epithelial cell-specific manner. Collectively, these results indicate that PGE2 receptors EP2 and EP4 mediate actions of PPARγ by incorporating multiple cell signaling pathways. Activation of PPARγ combined with inhibition of EP2 and EP4 may emerge as novel nonsteroidal therapeutic targets for endometriosis-associated pain and infertility, if clinically proven safe and efficacious.
Collapse
Affiliation(s)
- Dan I Lebovic
- PhD, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Mail Stop TAMU 4458, Texas A&M University, College Station, Texas 77843.
| | | | | | | | | |
Collapse
|
20
|
Lee J, Banu SK, Burghardt RC, Starzinski-Powitz A, Arosh JA. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits adhesion of human endometriotic epithelial and stromal cells through suppression of integrin-mediated mechanisms. Biol Reprod 2013; 88:77. [PMID: 23242524 DOI: 10.1095/biolreprod.112.100883] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
21
|
Schneider C, Kässens N, Greve B, Hassan H, Schüring AN, Starzinski-Powitz A, Kiesel L, Seidler DG, Götte M. Targeting of syndecan-1 by micro-ribonucleic acid miR-10b modulates invasiveness of endometriotic cells via dysregulation of the proteolytic milieu and interleukin-6 secretion. Fertil Steril 2012. [PMID: 23206733 DOI: 10.1016/j.fertnstert.2012.10.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To study the function of syndecan-1 (SDC1) and its potential regulator miR-10b in endometriosis. DESIGN Experimental laboratory study. SETTING University medical center. PATIENT(S) Not applicable. INTERVENTION(S) The human endometriotic cell line 12Z was transiently transfected with SDC1 small interfering RNA or miR-10b precursors and investigated for changes in cell behavior and gene expression. 12Z and primary eutopic endometrial stroma cells of two American Society for Reproductive Medicine class III endometriosis patients were transfected with miR-10b precursors to investigate posttranscriptional regulation of SDC1. MAIN OUTCOME MEASURE(S) Quantitative polymerase chain reaction, Western blotting, flow cytometry, 3' untranslated region luciferase assays, and zymography were used to measure miR-10b-dependent targeting of SDC1 and SDC1-dependent expression changes of proteases and interleukin-6. Altered cell behavior was monitored by Matrigel invasion assays, cell viability assays, and mitogen-activated protein kinase activation blots. RESULT(S) Knockdown of SDC1 inhibited Matrigel invasiveness by >60% but did not affect cell viability. Interleukin-6 secretion, matrix metalloproteinase-9 expression, and matrix metalloproteinase-2 activity were reduced, whereas plasminogen activator inhibitor-1 protein expression was up-regulated. miR-10b overexpression significantly down-regulated SDC1, reduced Matrigel invasiveness by 20% and cell viability by 14%, and decreased mitogen-activated protein kinase activation in response to hepatocyte growth factor. CONCLUSION(S) Syndecan-1, a target of miR-10b, inhibits epithelial endometriotic cell invasiveness through down-regulation of metalloproteinase activity and interleukin-6.
Collapse
Affiliation(s)
- Cornelia Schneider
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E, Qin J, Lydon JP, DeMayo FJ, O'Malley BW. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat Med 2012; 18:1102-11. [PMID: 22660634 DOI: 10.1038/nm.2826] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/03/2012] [Indexed: 01/07/2023]
Abstract
Endometriosis is considered to be an estrogen-dependent inflammatory disease, but its etiology is unclear. Thus far, a mechanistic role for steroid receptor coactivators (SRCs) in the progression of endometriosis has not been elucidated. An SRC-1-null mouse model reveals that the mouse SRC-1 gene has an essential role in endometriosis progression. Notably, a previously unidentified 70-kDa SRC-1 proteolytic isoform is highly elevated both in the endometriotic tissue of mice with surgically induced endometriosis and in endometriotic stromal cells biopsied from patients with endometriosis compared to normal endometrium. Tnf⁻/⁻ and Mmp9⁻/⁻ mice with surgically induced endometriosis showed that activation of tumor necrosis factor a (TNF-α)-induced matrix metallopeptidase 9 (MMP9) activity mediates formation of the 70-kDa SRC-1 C-terminal isoform in endometriotic mouse tissue. In contrast to full-length SRC-1, the endometriotic 70-kDa SRC-1 C-terminal fragment prevents TNF-α-mediated apoptosis in human endometrial epithelial cells and causes the epithelial-mesenchymal transition and the invasion of human endometrial cells that are hallmarks of progressive endometriosis. Collectively, the newly identified TNF-α-MMP9-SRC-1 isoform functional axis promotes pathogenic progression of endometriosis.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nogueira Neto J, Cavalcante FLLP, Carvalho RAF, Rodrigues TGPDM, Xavier MS, Furtado PGR, Schor E. Contraceptive effect of Uncaria tomentosa (cat's claw) in rats with experimental endometriosis. Acta Cir Bras 2012; 26 Suppl 2:15-9. [PMID: 22030809 DOI: 10.1590/s0102-86502011000800004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Evaluate the histological changes in parenchyma's epithelial layer of the uterus and ovarian of rats with induced endometriosis, treated with Uncaria tomentosa extract. METHODS 29 rats with experimental endometriosis, were selected and divided in three groups: The uncaria group received 32 mg/ml of Uncaria tomentosa extract, 1 ml administered daily and the placebo group received 1 ml of saline 0.9% per day, during for 14 days (both groups); the leuprolide group received leuprolide acetate 1mg/kg body weight applied single subcutaneous dose. In the 15th day of treatment the uterine horn and ovaries were removed for histopathological analysis. RESULTS The uncaria group presented nine samples (90%) with immature ovarian follicles, whereas the placebo group did not present any case and in the leuprolide group there were eight rats (88%) with the same change. The placebo group showed mature corpus luteum in all animals, occurring less frequent in uncaria (10%) and leuprolide (22%) groups. The uterine epithelium showed weak proliferative in nine (90%) samples of the uncaria group, in two (20%) animals in the placebo group and seven (77.8%) rats in the leuprolide group. CONCLUSIONS The findings suggest that Uncaria tomentosa has contraceptive effect.
Collapse
Affiliation(s)
- João Nogueira Neto
- Unit of Endometriosis and Surgical Laboratory, HU-UFMA, Maranhao,Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Beranič N, Brožič P, Brus B, Sosič I, Gobec S, Lanišnik Rižner T. Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins. J Steroid Biochem Mol Biol 2012; 130:16-25. [PMID: 22245609 DOI: 10.1016/j.jsbmb.2011.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/01/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied.
Collapse
Affiliation(s)
- Nataša Beranič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
25
|
Monsivais D, Bray JD, Su E, Pavone ME, Dyson MT, Navarro A, Kakinuma T, Bulun SE. Activated glucocorticoid and eicosanoid pathways in endometriosis. Fertil Steril 2012; 98:117-25. [PMID: 22521153 DOI: 10.1016/j.fertnstert.2012.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To define altered gene expression networks in endometriosis. DESIGN Experiments using endometriotic tissues and primary cells. SETTING Division of Reproductive Biology Research, Northwestern University. PATIENT(S) Premenopausal women. INTERVENTION(S) Matched samples of eutopic endometrium and ovarian endometriosis (n = 8 patients) were analyzed by microarray and verified in a separate set of tissues (n = 6 patients). Experiments to define signaling pathways were performed in primary endometriotic stromal cells (n = 12 patients). MAIN OUTCOMES MEASURE(S) Using a genome-wide in vivo approach, we identified 1,366 differentially expressed genes and a new gene network favoring increased glucocorticoid levels and action in endometriosis. RESULT(S) Transcript and protein levels of 11β-hydroxysteroid dehydrogenase (HSD11B1), which produces cortisol, the biologically active glucocorticoid, were strikingly higher, whereas messenger RNA (mRNA) levels of the cortisol-degrading HSD11B2 enzyme were significantly lower in endometriotic tissue. Glucocorticoid receptor mRNA and protein levels were significantly higher in endometriosis. The inflammatory cytokine tumor necrosis factor robustly induced mRNA and protein levels of HSD11B1 and glucocorticoid receptor but suppressed HSD11B2 mRNA in primary endometriotic stromal cells, suggesting that tumor necrosis factor stimulates cortisol production and action. We also uncovered a subset of genes critical for prostaglandin synthesis and degradation, which favor high eicosanoid levels and activity in endometriosis. CONCLUSION(S) The proinflammatory milieu of the endometriotic lesion stimulates cortisol synthesis and action in endometriotic lesions.
Collapse
Affiliation(s)
- Diana Monsivais
- Division of Reproductive Biology Research, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rižner TL. Enzymes of the AKR1B and AKR1C Subfamilies and Uterine Diseases. Front Pharmacol 2012; 3:34. [PMID: 22419909 PMCID: PMC3301985 DOI: 10.3389/fphar.2012.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/19/2012] [Indexed: 12/31/2022] Open
Abstract
Endometrial and cervical cancers, uterine myoma, and endometriosis are very common uterine diseases. Worldwide, more than 800,000 women are affected annually by gynecological cancers, as a result of which, more than 360,000 die. During their reproductive age, about 70% of women develop uterine myomas and 10-15% suffer from endometriosis. Uterine diseases are associated with aberrant inflammatory responses and concomitant increased production of prostaglandins (PG). They are also related to decreased differentiation, due to low levels of protective progesterone and retinoic acid, and to enhanced proliferation, due to high local concentrations of estrogens. The pathogenesis of these diseases can thus be attributed to disturbed PG, estrogen, and retinoid metabolism and actions. Five human members of the aldo-keto reductase 1B (AKR1B) and 1C (AKR1C) superfamilies, i.e., AKR1B1, AKR1B10, AKR1C1, AKR1C2, and AKR1C3, have roles in these processes and can thus be implicated in uterine diseases. AKR1B1 and AKR1C3 catalyze the formation of PGF2α, which stimulates cell proliferation. AKR1C3 converts PGD2 to 9α,11β-PGF2, and thus counteracts the formation of 15-deoxy-PGJ2, which can activate pro-apoptotic peroxisome-proliferator-activated receptor γ. AKR1B10 catalyzes the reduction of retinal to retinol, and thus lessens the formation of retinoic acid, with potential pro-differentiating actions. The AKR1C1-AKR1C3 enzymes also act as 17-keto- and 20-ketosteroid reductases to varying extents, and are implicated in increased estradiol and decreased progesterone levels. This review comprises an introduction to uterine diseases and AKR1B and AKR1C enzymes, followed by an overview of the current literature on the AKR1B and AKR1C expression in the uterus and in uterine diseases. The potential implications of the AKR1B and AKR1C enzymes in the pathophysiologies are then discussed, followed by conclusions and future perspectives.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
27
|
Shinohara A, Kutsukake M, Takahashi M, Kyo S, Tachikawa E, Tamura K. Protease-Activated Receptor–Stimulated Interleukin-6 Expression in Endometriosis-Like Lesions in an Experimental Mouse Model of Endometriosis. J Pharmacol Sci 2012; 119:40-51. [DOI: 10.1254/jphs.11216fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
28
|
Silveira CGT, Krampe J, Ruhland B, Diedrich K, Hornung D, Agic A. Cold-shock domain family member YB-1 expression in endometrium and endometriosis. Hum Reprod 2011; 27:173-82. [PMID: 22095791 DOI: 10.1093/humrep/der368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The Y-box-binding protein (YB-1) is described as a potential oncogene highly expressed in tumors and associated with increased cell survival, proliferation, migration and anti-apoptotic signaling. The aim of our study was to examine the expression and role of YB-1 in human endometriosis (Eo) and its association with cell survival, proliferation and invasion. METHODS We analyzed the gene and protein expression levels of YB-1 by quantitative real-time RT-PCR and immunoassays, respectively, in peritoneal macrophages, ovarian endometrioma and eutopic endometrial tissues/cells derived from women with (n= 120) and without (n= 91) Eo. We also evaluated the functional consequences of YB-1 knockdown in the Z12 Eo cell line by measuring cell proliferation [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid cell proliferation assay], invasion (Matrigel invasion assay) and spontaneous and tumour necrosis factor (TNFα)-induced RANTES (regulated upon activation, normal T-cell expressed and secreted chemokine) expression and apoptosis (ELISA-based assay). RESULTS YB-1 gene and protein expression was statistically significantly higher in ovarian lesions, eutopic endometrium and peritoneal macrophages of patients with Eo in comparison with the control group. Interestingly, the strongest YB-1 expression was observed in the epithelial compartment of endometrial tissues. In the Z12 cell line, YB-1 knockdown resulted in significant cell growth inhibitory effects including reduced cell proliferation and increased rates of spontaneous and TNFα-induced apoptosis. Significantly, higher RANTES expression and decreased cell invasion in vitro were also associated with YB-1 inactivation. CONCLUSION High YB-1 expression could have an impact on the development and progression of Eo. This study suggests the role of YB-1 as a potential therapeutic target for Eo patients.
Collapse
Affiliation(s)
- C G T Silveira
- Department of Obstetrics and Gynecology, University of Schleswig-Holstein, Campus Luebeck, Ratzeburgerallee 160, 23538 Luebeck, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Lee J, Banu SK, Subbarao T, Starzinski-Powitz A, Arosh JA. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits invasion of human immortalized endometriotic epithelial and stromal cells through suppression of metalloproteinases. Mol Cell Endocrinol 2011; 332:306-13. [PMID: 21111772 DOI: 10.1016/j.mce.2010.11.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 01/10/2023]
Abstract
Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. We recently reported that inhibition of COX-2 decreased migration as well as invasion of human endometriotic epithelial and stromal cells. Results of the present study indicates that selective inhibition of PGE2 receptors EP2 and EP4 suppresses expression and/or activity of MMP1, MMP2, MMP3, MMP7 and MMP9 proteins and increases expression of TIMP1, TIMP2, TIMP3, and TIMP4 proteins and thereby decreases migration and invasion of human immortalized endometriotic epithelial and stromal cells into matrigel. The interactions between EP2/EP4 and MMPs are mediated through Src and β-arrestin 1 protein complex involving MT1-MMP and EMMPRIN in human endometriotic cells. These novel findings provide an important molecular and cellular framework for further evaluation of selective inhibition of EP2 and EP4 as potential nonsteroidal therapy for endometriosis in childbearing-age women.
Collapse
MESH Headings
- Cell Movement/physiology
- Cells, Cultured
- Dinoprostone/metabolism
- Endometriosis/metabolism
- Endometriosis/pathology
- Endometrium/cytology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Humans
- Matrix Metalloproteinase Inhibitors
- RNA, Small Interfering/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tissue Inhibitor of Metalloproteinases/metabolism
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | | | | | | | | |
Collapse
|
30
|
Lee J, Banu SK, Rodriguez R, Starzinski-Powitz A, Arosh JA. Selective blockade of prostaglandin E2 receptors EP2 and EP4 signaling inhibits proliferation of human endometriotic epithelial cells and stromal cells through distinct cell cycle arrest. Fertil Steril 2010; 93:2498-506. [DOI: 10.1016/j.fertnstert.2010.01.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 01/23/2023]
|
31
|
Machado DE, Berardo PT, Landgraf RG, Fernandes PD, Palmero C, Alves LM, Abrao MS, Nasciutti LE. A selective cyclooxygenase-2 inhibitor suppresses the growth of endometriosis with an antiangiogenic effect in a rat model. Fertil Steril 2010; 93:2674-9. [PMID: 20056215 DOI: 10.1016/j.fertnstert.2009.11.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To analyze the antiangiogenic effects of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib on the growth of endometrial implants in a rat model of peritoneal endometriosis. DESIGN Pharmacologic interventions in an experimental model of peritoneal endometriosis. SETTING Research laboratory in the Federal University of Rio de Janeiro. ANIMAL(S) Twenty female Sprague-Dawley rats with experimentally induced endometriosis. INTERVENTION(S) After implantation and establishment of autologous endometrium onto the peritoneum abdominal wall, rats were randomized into groups and treated with parecoxib or the vehicle by IM injection for 30 days. MAIN OUTCOME MEASURE(S) Vascular density, the expression of vascular endothelial growth factor (VEGF) and its receptor Flk-1, the distribution of activated macrophages, the expression of COX-2, and the prostaglandin concentration in the endometriotic lesions treated with parecoxib were analyzed. RESULT(S) The treatment significantly decreased the implant size, and histologic examination indicated mostly atrophy and regression. A reduction in microvessel density and in the number of macrophages, associated with decreased expression of VEGF and Flk-1, also were observed. The treatment group showed a low concentration of prostaglandin E(2). CONCLUSION(S) These results suggest that the use of COX-2 selective inhibitors could be effective to suppress the establishment and growth of endometriosis, partially through their antiangiogenic activity.
Collapse
Affiliation(s)
- Daniel Escorsim Machado
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária-Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Banu SK, Lee J, Speights VO, Starzinski-Powitz A, Arosh JA. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol Endocrinol 2009; 23:1291-305. [PMID: 19407222 DOI: 10.1210/me.2009-0017] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endometriosis is a benign chronic gynecological disease of reproductive-age women characterized by the presence of functional endometrial tissues outside the uterine cavity. It is an estrogen-dependent disease. Current treatment modalities to inhibit biosynthesis and actions of estrogen compromise menstruation, pregnancy, and the reproductive health of women and fail to prevent reoccurrence of disease. There is a critical need to identify new specific signaling modules for non-estrogen-targeted therapies for endometriosis. In our previous study, we reported that selective inhibition of cyclooxygenase-2 prevented survival, migration, and invasion of human endometriotic epithelial and stromal cells, which was due to decreased prostaglandin E(2) (PGE(2)) production. In this study, we determined mechanisms through which PGE(2) promoted survival of human endometriotic cells. Results of the present study indicate that 1) PGE(2) promotes survival of human endometriotic cells through EP2 and EP4 receptors by activating ERK1/2, AKT, nuclear factor-kappaB, and beta-catenin signaling pathways; 2) selective inhibition of EP2 and EP4 suppresses these cell survival pathways and augments interactions between proapoptotic proteins (Bax and Bad) and antiapoptotic proteins (Bcl-2/Bcl-XL), facilitates the release of cytochrome c, and thus activates caspase-3/poly (ADP-ribose) polymerase-mediated intrinsic apoptotic pathways; and 3) these PGE(2) signaling components are more abundantly expressed in ectopic endometriosis tissues compared with eutopic endometrial tissues during the menstrual cycle in women. These novel findings may provide an important molecular framework for further evaluation of selective inhibition of EP2 and EP4 as potential therapy, including nonestrogen target, to expand the spectrum of currently available treatment options for endometriosis in women.
Collapse
Affiliation(s)
- Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|