1
|
Hu J, Chen L, Ruan J, Chen X. The role of the annexin A protein family at the maternal-fetal interface. Front Endocrinol (Lausanne) 2024; 15:1314214. [PMID: 38495790 PMCID: PMC10940358 DOI: 10.3389/fendo.2024.1314214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Jingwen Hu
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Lin Chen
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Ruan
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Hu S, Sun Z, Li B, Zhao H, Wang Y, Yao G, Li X, Bian X, Li TC, Vankelecom H, Sun Y. iTRAQ-based Proteomic Analysis Unveils ACSL4 as a Novel Potential Regulator of Human Endometrial Receptivity. Endocrinology 2023; 164:6991315. [PMID: 36652382 DOI: 10.1210/endocr/bqad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Competent endometrial receptivity is a prerequisite for successful embryo implantation. Identification of novel key molecules involved in endometrial receptivity is essential to better interpret human implantation and improve pregnancy rates in assisted reproduction treatment. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was performed to profile the proteomes of the prereceptive (luteinizing hormone [LH] + 2, n = 4) and receptive (LH + 7, n = 4) endometrial tissues. A total of 173 differentially expressed proteins (DEPs) between LH + 2 and LH + 7 endometrial samples were identified. Integrated analysis of the proteomic data and published transcriptomic data was performed to identify the concordant DEPs with differential expression at both the messenger RNA and protein levels. Protein-protein interaction (PPI) network analysis was performed on concordant DEPs. We first identified 63 novel concordant DEPs and 5 hub proteins (ACSL4, ACSL5, COL1A1, PTGS1, and PLA2G4F) between LH + 2 and LH + 7 endometrial samples. ACSL4 was predominantly expressed in endometrial epithelial cells and its expression was significantly upregulated by progesterone in the LH + 7 endometrium and significantly downregulated in repeated implantation failure patients. Knockdown of ACSL4 in endometrial epithelial cells induced the downregulation of endometrial receptivity markers (HOXA10, COX2, and LIF) and the significant decrease of implantation rate during in vitro implantation analysis. This study provides the first gel-independent quantitative proteomes of the LH + 2 and LH + 7 human endometrium using iTRAQ technology. The identified concordant DEPs and hub proteins open a new avenue for future studies aimed at elucidating the underlying mechanisms governing endometrial receptivity. ACSL4 was identified as a novel regulatory molecule in the establishment of endometrial receptivity and might play important roles during implantation.
Collapse
Affiliation(s)
- Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Zhe Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Boyu Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Hanting Zhao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yuan Wang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Guangxin Yao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xinyu Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xuejiao Bian
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Yun Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
3
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
Huang X, Xiao L, Long Y, Pei T, Luo B, Liao T, Li Y, Zhu H, Ouyang Y, Huang W. Comparative Proteomic Analysis Reveals Metformin Improves the Expression of Biomarkers of Endometrial Receptivity in Infertile Women with Minimal/Mild Endometriosis. Reprod Sci 2022; 29:2593-2606. [PMID: 35088363 DOI: 10.1007/s43032-022-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
The prevalence of endometriosis is approximately 10% in women of reproductive age, and 30-50% of women with endometriosis are infertile. Metformin has been reported to inhibit the growth of ectopic lesions in endometriosis. However, its effect on the eutopic endometrium of endometriosis is unknown. This study aimed to identify whether metformin affects endometrial receptivity in infertile women with minimal/mild endometriosis. We enrolled 10 infertile women who were diagnosed with minimal/mild endometriosis through laparoscopy. Paired endometrial tissues of the secretory phase from participants were collected during surgery and after 2 months of metformin treatment (n = 5) or no medical treatment (n = 5). Protein expression profiles of the paired endometrium were detected by proteomics and compared using the self-control method (2 months later vs. in surgery). Proteomics data revealed six proteins associated with endometrial receptivity among the significantly upregulated proteins after metformin treatment (fold change > 1.5, P < 0.05). Insulin-like growth factor binding protein 7 (IGFBP-7) showed the most robust increase in these six endometrial receptivity-related proteins (fold change: 8.668, P < 0.05), while there was no significant change in the controls (fold change: 1.906, P > 0.05). The upregulation of IGFBP-7 has been validated through target proteomics, immunohistochemistry, and further demonstrated in endometriosis mouse models induced by autotransplantation. This study revealed that metformin upregulated the expression of IGFBP-7 in the endometrium of human and mouse models of endometriosis. Metformin potentially affects endometrial receptivity of minimal/mild endometriosis by improving the expression of the endometrial receptivity marker IGFBP-7.
Collapse
Affiliation(s)
- Xin Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China.,NHC Key Laboratory of Chronobiology, Sichuan University), Chengdu Sichuan, 610041, China
| | - Li Xiao
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Ying Long
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Tianjiao Pei
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Bin Luo
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Tianji Liao
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Yujing Li
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China.,NHC Key Laboratory of Chronobiology, Sichuan University), Chengdu Sichuan, 610041, China
| | - Huili Zhu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Yunwei Ouyang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Wei Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China. .,NHC Key Laboratory of Chronobiology, Sichuan University), Chengdu Sichuan, 610041, China.
| |
Collapse
|
5
|
Segura-Benítez M, Carbajo-García MC, Corachán A, Faus A, Pellicer A, Ferrero H. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Reprod Biol Endocrinol 2022; 20:3. [PMID: 34980157 PMCID: PMC8722215 DOI: 10.1186/s12958-021-00879-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Successful implantation is dependent on coordination between maternal endometrium and embryo, and the role of EVs in the required cross-talk cell-to-cell has been recently established. In this regard, it has been reported that EVs secreted by the maternal endometrium can be internalized by human trophoblastic cells transferring their contents and enhancing their adhesive and invasive capacity. This is the first study to comprehensively evaluate three EV isolation methods on human endometrial epithelial cells in culture and to describe the proteomic content of EVs secreted by pHEECs from fertile women. METHODS Ishikawa cells and pHEECs were in vitro cultured and hormonally treated; subsequently, conditioned medium was collected and EVs isolated. Ishikawa cells were used for the comparison of EVs isolation methods ultracentrifugation, ExoQuick-TC and Norgen Cell Culture Media Exosome Purification Kit (n = 3 replicates/isolation method). pHEECs were isolated from endometrial biopsies (n = 8/replicate; 3 replicates) collected from healthy oocyte donors with confirmed fertility, and protein content of EVs isolated by the most efficient methodology was analysed using liquid chromatography-tandem mass spectrometry. EV concentration and size were analyzed by nanoparticle tracking analysis, EV morphology visualized by transmission electron microscopy and protein marker expression was determined by Western blotting. RESULTS Ultracentrifugation was the most efficient methodology for EV isolation from medium of endometrial epithelial cells. EVs secreted by pHEECs and isolated by ultracentrifugation were heterogeneous in size and expressed EV protein markers HSP70, TSG101, CD9, and CD81. Proteomic analysis identified 218 proteins contained in these EVs enriched in biological processes involved in embryo implantation, including cell adhesion, differentiation, communication, migration, extracellular matrix organization, vasculature development, and reproductive processes. From these proteins, 82 were selected based on their functional relevance in implantation success as possible implantation biomarkers. CONCLUSIONS EV protein cargos are implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs. Identified proteins may define new biomarkers of endometrial receptivity and implantation success.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
6
|
Wang C, Feng Y, Zhou WJ, Cheng ZJ, Jiang MY, Zhou Y, Fei XY. Screening and identification of endometrial proteins as novel potential biomarkers for repeated implantation failure. PeerJ 2021; 9:e11009. [PMID: 33763303 PMCID: PMC7958897 DOI: 10.7717/peerj.11009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023] Open
Abstract
Inadequate endometrial receptivity may be responsible for the low implantation rate of transferred embryos in in vitro fertilization (IVF) treatments. Patients with repeated implantation failure (RIF) impact the clinical pregnancy rate for IVF. We collected endometrial tissue during the implantation window of hysteroscopy biopsies from September 2016 to December 2019 and clinical data were collected simultaneously. Patients were divided into RIF and pregnant controls group according to pregnancy outcomes. A total of 82 differentially expressed endometrial proteins were identified, including 55 up-regulated proteins (>1.50-fold, P < 0.05) and 27 down-regulated proteins (<0.67-fold, P < 0.05) by iTRAQ labeling coupled with the 2D LC MS/MS technique in the RIF group. String analysis found interactions between these proteins which assembled in two bunches: ribosomal proteins and blood homeostasis proteins. The most significant enriched Gene Ontology terms were negative regulation of hydrolase activity, blood microparticle, and enzyme inhibitor activity. Our results emphasized the corticosteroid-binding globulin and fetuin-A as the specific proteins of endometrial receptivity by Western-blot. Our study provided experimental data to establish the objective indicator of endometrial receptivity, and also provided new insight into the pathogenesis of RIF.
Collapse
Affiliation(s)
- Chong Wang
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Feng
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Wen-Jing Zhou
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Zhao-Jun Cheng
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Mei-Yan Jiang
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yan Zhou
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Xiao-Yang Fei
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
7
|
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 2020; 26:264-301. [PMID: 32096829 DOI: 10.1093/humupd/dmz042] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryo implantation is a complex process that requires the coordination of a series of events, involving both the embryo and the maternal endometrium. Key to this process is the intricate cascade of molecular mechanisms regulated by endocrine, paracrine and autocrine modulators of embryonic and maternal origin. Despite significant progress in ART, implantation failure still affects numerous infertile couples worldwide and fewer than 10% of embryos successfully implant. Improved selection of both the viable embryos and the optimal endometrial phenotype for transfer remains crucial to enhancing implantation chances. However, both classical morphological embryo selection and new strategies incorporated into clinical practice, such as embryonic genetic analysis, morphokinetics or ultrasound endometrial dating, remain insufficient to predict successful implantation. Additionally, no techniques are widely applied to analyse molecular signals involved in the embryo-uterine interaction. More reliable biological markers to predict embryo and uterine reproductive competence are needed to improve pregnancy outcomes. Recent years have seen a trend towards 'omics' methods, which enable the assessment of complete endometrial and embryonic molecular profiles during implantation. Omics have advanced our knowledge of the implantation process, identifying potential but rarely implemented biomarkers of successful implantation. OBJECTIVE AND RATIONALE Differences between the findings of published omics studies, and perhaps because embryonic and endometrial molecular signatures were often not investigated jointly, have prevented firm conclusions being reached. A timely review summarizing omics studies on the molecular determinants of human implantation in both the embryo and the endometrium will help facilitate integrative and reliable omics approaches to enhance ART outcomes. SEARCH METHODS In order to provide a comprehensive review of the literature published up to September 2019, Medline databases were searched using keywords pertaining to omics, including 'transcriptome', 'proteome', 'secretome', 'metabolome' and 'expression profiles', combined with terms related to implantation, such as 'endometrial receptivity', 'embryo viability' and 'embryo implantation'. No language restrictions were imposed. References from articles were also used for additional literature. OUTCOMES Here we provide a complete summary of the major achievements in human implantation research supplied by omics approaches, highlighting their potential to improve reproductive outcomes while fully elucidating the implantation mechanism. The review highlights the existence of discrepancies among the postulated biomarkers from studies on embryo viability or endometrial receptivity, even using the same omic analysis. WIDER IMPLICATIONS Despite the huge amount of biomarker information provided by omics, we still do not have enough evidence to link data from all omics with an implantation outcome. However, in the foreseeable future, application of minimally or non-invasive omics tools, together with a more integrative interpretation of uniformly collected data, will help to overcome the difficulties for clinical implementation of omics tools. Omics assays of the embryo and endometrium are being proposed or already being used as diagnostic tools for personalised single-embryo transfer in the most favourable endometrial environment, avoiding the risk of multiple pregnancies and ensuring better pregnancy rates.
Collapse
Affiliation(s)
- Purificación Hernández-Vargas
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Manuel Muñoz
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Francisco Domínguez
- Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| |
Collapse
|
8
|
Guo X, Li TC, Chen X. The endometrial proteomic profile around the time of embryo implantation†. Biol Reprod 2020; 104:11-26. [PMID: 32856701 DOI: 10.1093/biolre/ioaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023] Open
Abstract
Embryo implantation is an intricate process which requires competent embryo and receptive endometrium. The failure of endometrium to achieve receptivity is a recognized cause of infertility. However, due to multiplicity of events involved, the molecular mechanisms governing endometrial receptivity are still not fully understood. Traditional one-by-one approaches, including western blotting and histochemistry, are insufficient to examine the extensive changes of endometrial proteome. Although genomics and transcriptomics studies have identified several significant genes, the underlying mechanism remains to be uncovered owing to post-transcriptional and post-translational modifications. Proteomic technologies are high throughput in protein identification, and they are now intensively used to identify diagnostic and prognostic markers in the field of reproductive medicine. There is a series of studies analyzing endometrial proteomic profile, which has provided a mechanistic insight into implantation failure. These published studies mainly focused on the difference between pre-receptive and receptive stages of endometrium, as well as on the alternation of endometrial proteomics in women with reproductive failure. Here, we review recent data from proteomic analyses regarding endometrium around the time of embryo implantation and propose possible future research directions.
Collapse
Affiliation(s)
- Xi Guo
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|
9
|
Baron C, Haouzi D, Gala A, Ferrieres-Hoa A, Vintejoux E, Brouillet S, Hamamah S. [Endometrial receptivity in assisted reproductive techniques: An aspect to investigate in embryo implantation failure]. ACTA ACUST UNITED AC 2020; 49:128-136. [PMID: 32721539 DOI: 10.1016/j.gofs.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 10/23/2022]
Abstract
Infertility affects between 8 and 12% of reproductive-age couples worldwide. Despite improvements in assisted reproductive techniques (ART), live birth rates are still limited. In clinical practice, imaging and microscopy are currently widely used, but their diagnostic effectiveness remains limited. In research, the emergence of innovative techniques named OMICS would improve the identification of the implantation window, while progressing in the understanding of the pathophysiological mechanisms involved in embryo implantation failures. To date, transcriptomic analysis seems to be the most promising approach in clinical research. The objective of this review is to present the results obtained with the different approaches available in clinical practice and in research to assess endometrial receptivity in patients undergoing ART.
Collapse
Affiliation(s)
- C Baron
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France
| | - D Haouzi
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France
| | - A Gala
- Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France
| | - A Ferrieres-Hoa
- Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France
| | - E Vintejoux
- Département de médecine de la reproduction, CHU de Montpellier, 34000 Montpellier, France
| | - S Brouillet
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France; Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France; Inserm 1036, laboratoire biologie du cancer et de l'infection (BCI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), institut de biosciences et biotechnologies de Grenoble (BIG), université Grenoble-Alpes, 38000 Grenoble, France; Centre clinique et biologique d'assistance médicale à la procréation - centre d'étude et de conservation des œufs et du sperme humains (CECOS), hôpital Couple-Enfant, centre hospitalier universitaire de Grenoble, La Tronche, France.
| | - S Hamamah
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France; Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Kang JH, Kho HS. Blood contamination in salivary diagnostics: current methods and their limitations. Clin Chem Lab Med 2020; 57:1115-1124. [PMID: 30511922 DOI: 10.1515/cclm-2018-0739] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023]
Abstract
The use of saliva samples in clinical studies has increased. However, the diagnostic value of whole saliva is compromised in the presence of blood contamination, owing to the higher levels of analytes in blood compared with those in saliva. The aim of this study was to review the existing methods and their limitations for measuring the levels of blood contamination in saliva. A literature search was performed using Web of Science, SCOPUS, and PubMed databases and 49 articles dealing with salivary diagnostics and measurements of blood contamination were included. Five methods for measuring the degree of blood components in saliva were discussed, including "visual inspection", use of "strip for urinalysis", and detection of plasma proteins such as "hemoglobin", "albumin", and "transferrin". Each method has its limitations, and transferrin has been regarded as the most reliable and valid marker for blood contamination in saliva. However, transferrin in whole saliva may not be solely a product of blood, and its level in whole saliva can be influenced by several factors such as age, gonadal hormones, salivary flow rate, chewing performance, and oral microorganisms. In conclusion, when quantitatively analyzing whole saliva samples, the influence of blood contamination should be considered.
Collapse
Affiliation(s)
- Jeong-Hyun Kang
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Korea (ROK).,Clinic of Oral Medicine and Orofacial Pain, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea (ROK)
| | - Hong-Seop Kho
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Korea (ROK).,Institute on Aging, Seoul National University, Seoul, Korea (ROK), Phone: +82-2-2072-3989, Fax: +82-2-744-9135
| |
Collapse
|
11
|
Kakar‐Bhanot R, Brahmbhatt K, Kumar V, Suryawanshi AR, Srivastava S, Chaudhari U, Sachdeva G. Plasma membrane proteome of adhesion‐competent endometrial epithelial cells and its modulation by Rab11a. Mol Reprod Dev 2019; 87:17-29. [DOI: 10.1002/mrd.23292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ruchi Kakar‐Bhanot
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Krupanshi Brahmbhatt
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Vipin Kumar
- Proteomics Laboratory, Department of Bioscience and BioengineeringIndian Institute of TechnologyMumbai India
| | | | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Bioscience and BioengineeringIndian Institute of TechnologyMumbai India
| | - Uddhav Chaudhari
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Geetanjali Sachdeva
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| |
Collapse
|
12
|
Chen Q, Xin A, Qu R, Zhang W, Li L, Chen J, Lu X, Gu Y, Li J, Sun X. Expression of ENPP3 in human cyclic endometrium: a novel molecule involved in embryo implantation. Reprod Fertil Dev 2019; 30:1277-1285. [PMID: 29614240 DOI: 10.1071/rd17257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/04/2018] [Indexed: 01/13/2023] Open
Abstract
Ectonucleotide pyrophosphatase-phosphodiesterase 3 (ENPP3), a protein detected in the human uterus, has been found to play an important role in the development and invasion of tumours. It was recently discovered that ENPP3 was upregulated during the window of implantation in the human endometrium but its functional relevance remains elusive. The objective was to determine ENPP3 expression in human endometrium and its roles in endometrial receptivity and embryo implantation. ENPP3 expression was analysed using immunohistochemistry and western blot assay. The effects of ENPP3 on embryo implantation were evaluated using a BeWo cell (a human choriocarcinoma cell line) spheroid attachment assay and BeWo cells were dual cultured with Ishikawa cells transfected with lentiviral vectors (LV5-NC or LV5-ENPP3) to mimic embryo implantation in a Transwell model. The effects of endometrial ENPP3 on factors related to endometrial receptivity were also determined. The results showed that ENPP3 was expressed in human endometrial epithelial cells and its expression levels changed during the menstrual cycle, peaking in the mid-secretory phase, corresponding to the time of embryo implantation. The overexpression of endometrial ENPP3 not only increased the embryo implantation rate but also had positive effects on the expression of factors related to endometrial receptivity in human endometrial cells. The results indicate that ENPP3 levels undergo cyclic changes in the endometrium and affect embryo adhesion and invasion via altering the expression of implantation factors in the human endometrium. Therefore, ENPP3 may play an important role in embryo implantation and may be a unique biomarker of endometrial receptivity.
Collapse
Affiliation(s)
- Qianqian Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Aijie Xin
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Ronggui Qu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Wenbi Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Lu Li
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Junling Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiang Lu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yongwei Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jing Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
13
|
Chen Q, Yu F, Li Y, Zhang AJ, Zhu XB. Comparative proteomics reveal negative effects of gonadotropin-releasing hormone agonist and antagonist on human endometrium. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1855-1863. [PMID: 31239640 PMCID: PMC6554521 DOI: 10.2147/dddt.s201871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022]
Abstract
Purpose: The two major ovarian-stimulation protocols for in vitro fertilization are gonadotropin-releasing hormone agonist (GnRH-a) protocol or GnRH antagonist (GnRH-ant) protocol; however, comparisons of their relative efficacy remain controversial. Additionally, conflicting data exist regarding their effects on endometrial receptivity. Thus, this study investigated how GnRH-a and GnRH-ant treatments alter the endometrium during the mid-secretory phase. Patients and methods: We compared proteomic profiles across human endometrium tissues of mid-secretory phase from normal control humans (n=5), patients treated with GnRH-a (n=5), and patients treated with GnRH-ant (n=5). Results: We identified 2088 proteins, with 362 that exhibited significantly different expression. Fuzzy c-means clustering (FCM) using the M Fuzz algorithm analysis showed that the same 87 proteins changed significantly in both the GnRH-a and GnRH-ant groups compared with those in the control. Moreover, Gene Ontology (GO) analysis showed that, of these 87, downregulated proteins were associated with energy metabolism and upregulated proteins were linked to cytoskeleton maintenance. Upregulated proteins involved in complement-mediated immunity were present in 151 proteins that exhibited significantly different expression in the GnRH-ant group only. Conclusion: We demonstrated that comparative proteomic analysis is useful for accessing endometrial receptivity, which seemed more strongly impaired by GnRH-ant than GnRH-a treatments. Our findings also revealed that energy metabolism and immunity response may be the key biological mechanisms underlying human endometrial receptivity.
Collapse
Affiliation(s)
- Qian Chen
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Feng Yu
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Li
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ai-Jun Zhang
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Bin Zhu
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
14
|
iTRAQ comparison of proteomic profiles of endometrial receptivity. J Proteomics 2019; 203:103381. [PMID: 31102758 DOI: 10.1016/j.jprot.2019.103381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Abstract
Endometrial receptivity is a limiting step in human reproduction. A disruption in the development of endometrial receptivity is responsible for recurrent implantation failures (RIF) of endometrial origin. To understand the molecular mechanisms behind the endometrial receptivity process, we used the isobaric tag for relative and absolute quantitation (iTRAQ) method to compare three different endometrial statuses: fertile women, intrauterine device (IUD) carriers, and RIF patients. Overall, iTRAQ allowed identified 1889 non-redundant proteins. Of these, 188 were differentially expressed proteins (DEP) (p-value < .05). Pairwise comparisons revealed 133 significant DEP in fertile vs. IUD carriers and 158 DEP in RIF vs. IUD carriers. However, no DEP were identified between fertile and RIF patients. Western blot validation of three DEP involved in endometrial receptivity (plastin 2, lactotransferrin, and lysozyme) confirmed our iTRAQ results. Moreover, functional KEGG enrichment revealed that complement and coagulation cascades and peroxisome were the two most significant pathways for the RIF vs. IUD comparison and ribosome and spliceosome for the fertile vs. IUD comparison, as possible important pathways involved in the endometrial receptivity acquisition. The lack of DEP between fertile and RIF patient endometria suggest that idiopathic RIF may not have an endometrial origin, with other as-yet-unknown factors involved. SIGNIFICANCE: A pilot study where a comparison of the endometrial protein profile from women with different endometrial receptive grade (fertile women, IUD carriers and RIF patients) during the same period of time (overlapping with the window of implantation) of a hormone replacement therapy was performed using a high-throughput proteomic technique. This approach lead us to better understand the molecular mechanisms undergoing endometrial receptivity, a time-limiting step to achieve pregnancy in humans. Moreover, the number of samples per group (10 Fertile women, 10 IUD carriers and 8 RIF patients) according to the methodology here employed (8plex iTRAQ), give more robustness to our results. Our findings confirm that an IUD introduces numerous changes in the endometrial protein profile when compared to fertile and RIF endometria, revealing some key proteins involved in endometrial receptivity. Finding no significant differences between Fertile and RIF patient endometria could suggest that other as-yet-unknown factors could be involved in the etiology of idiopathic RIF.
Collapse
|
15
|
Dhaenens L, Lierman S, De Clerck L, Govaert E, Deforce D, Tilleman K, De Sutter P. Endometrial stromal cell proteome mapping in repeated implantation failure and recurrent pregnancy loss cases and fertile women. Reprod Biomed Online 2018; 38:442-454. [PMID: 30612956 DOI: 10.1016/j.rbmo.2018.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
RESEARCH QUESTION Are there proteomic differences between endometrial stromal cells of repeated implantation failure (RIF), recurrent pregnancy loss (RPL) and normal fertile women, and is there differential protein expression upon decidualization? DESIGN This exploratory study investigated the proteome of in-vitro cultured endometrial stromal cells of women with RIF (n = 4), women with RPL (n = 3) and normal fertile women (n = 4), comparing day 0 with 5 days of decidualization. Total proteins extracted from cell lysates were analysed by high-definition mass spectrometry. Data analysis was performed using significance analysis of microarray in R (P < 0.05; false discovery rate [FDR] 10%). RESULTS In the RIF group, ANXA6, PSMC5 and FSCN1 were up-regulated (1.9-fold, 2.5-fold and 1.9-fold, respectively), whereas PBXIP1 was down-regulated (7.7-fold) upon decidualization. In the RPL group, RPS25 and ACADVL were down-regulated (1.9-fold and 2.4-fold, respectively; FDR 10%) between the non-decidualized and the decidualized samples. In the normal fertile group VIM and RPL23A were down-regulated (1.9-fold and 2.4-fold, respectively). Comparing ratios of expression of decidualized over non-decidualized samples in the different groups revealed six differentially expressed proteins: DUX4L2, CNPY4, PDE7A, CTSK, PCBP2 and PSMD4. Comparison of RPL versus normal fertile in the decidualized condition revealed serotransferrin to be differentially expressed. The changes in expression levels for serotransferrin, ANX6, ACDVL and VIM were confirmed by western blot. CONCLUSIONS Results show a varying response of endometrial stromal cells in distinct clinical groups (RIF, RPL and normal fertile) upon in-vitro decidualization. Serotransferrin could serve as a marker for the aberrant decidualization process in RPL.
Collapse
Affiliation(s)
- Lien Dhaenens
- Department of Reproductive Medicine, Ghent Fertility and Stem Cell Team (G-Fast), Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| | - Sylvie Lierman
- Department of Reproductive Medicine, Ghent Fertility and Stem Cell Team (G-Fast), Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Laura De Clerck
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Elisabeth Govaert
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Kelly Tilleman
- Department of Reproductive Medicine, Ghent Fertility and Stem Cell Team (G-Fast), Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Petra De Sutter
- Department of Reproductive Medicine, Ghent Fertility and Stem Cell Team (G-Fast), Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| |
Collapse
|
16
|
Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 2018; 24:535-555. [DOI: 10.1093/humupd/dmy017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel, Barcelona, Spain
| |
Collapse
|
17
|
Matorras R, Quevedo S, Corral B, Prieto B, Exposito A, Mendoza R, Rabanal A, Diaz-Nuñez M, Ferrando M, Elortza F, Ametzazurra A, Nagore D. Proteomic pattern of implantative human endometrial fluid in in vitro fertilization cycles. Arch Gynecol Obstet 2018; 297:1577-1586. [DOI: 10.1007/s00404-018-4753-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/14/2018] [Indexed: 01/11/2023]
|
18
|
Kang JH, Lee YH, Kho HS. Clinical factors affecting salivary transferrin level, a marker of blood contamination in salivary analysis. BMC Oral Health 2018; 18:49. [PMID: 29562925 PMCID: PMC5863384 DOI: 10.1186/s12903-018-0510-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diagnostic value of whole saliva may be compromised when blood contamination is present in saliva samples. Measuring transferrin level in saliva samples has been used for detecting the level of blood contamination in saliva. The aim of this study was to investigate the validity of transferrin as a proper biomarker for blood contamination in whole saliva. METHODS Thirty younger (mean age: 25.9 ± 2.1 years) and twenty older (mean age: 65.1 ± 9.0 years) females were included. The index reflecting overall gingival inflammation (total gingival index), salivary flow rate, and salivary concentration and secretion rate of transferrin of each subject were analyzed. RESULTS Salivary transferrin concentrations and secretion rates were higher in the younger females than in the older ones despite a lower total gingival index in the younger females. The total gingival index showed no significant correlations with the concentration or secretion rate of transferrin in either unstimulated or stimulated whole saliva of younger and older subjects. The salivary concentration of transferrin showed negative correlations with the flow rate of saliva in both the younger and older groups. There were significant positive correlations between the salivary concentrations and secretion rates of transferrin in both the younger and older groups. CONCLUSIONS Salivary transferrin levels could be affected by other factors as well as the level of blood contamination. The influences of age, gonadal hormones, salivary flow rate, and chewing performance need to be considered when using the salivary level of transferrin as a blood contamination marker.
Collapse
Affiliation(s)
- Jeong-Hyun Kang
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yeon-Hee Lee
- Department of Orofacial Pain and Medicine, Kyung Hee University Dental Hospital, 613 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea
| | - Hong-Seop Kho
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Institute on Aging, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
19
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics II. Which proteins in sexual organs. J Proteomics 2017; 178:18-30. [PMID: 28988880 DOI: 10.1016/j.jprot.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
In continuity with the review dealing with differences by gender in non-sexual organs [1], this review collects data on the proteomes of the sexual organs as involved in human reproduction, under both physiological and pathological conditions. It also collects data on the tissue structures and biological fluids typical of pregnancy, such as placenta and amniotic fluid, as well as what may be tested on preimplantation embryos during medically assisted reproduction. The review includes as well mention to all fluids and secretions connected with sex organs and/or reproduction, including sperm and milk, to exemplify two distinctive items in male and female physiology. SIGNIFICANCE The causes of infertility are only incompletely understood; the same holds for the causes, and even the early markers, of the most frequent complications of pregnancy. To these established medical challenges, present day practice adds new issues connected with medically assisted reproduction. Omics approaches, including proteomics, are building the database for basic knowledge to possibly translate into clinical testing and eventually into medical routine in this critical branch of health care.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
20
|
Kosteria I, Anagnostopoulos AK, Kanaka-Gantenbein C, Chrousos GP, Tsangaris GT. The Use of Proteomics in Assisted Reproduction. In Vivo 2017; 31:267-283. [PMID: 28438852 PMCID: PMC5461434 DOI: 10.21873/invivo.11056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally.
Collapse
Affiliation(s)
- Ioanna Kosteria
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George T Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
21
|
Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form. Sci Rep 2016; 6:33811. [PMID: 27665743 PMCID: PMC5036034 DOI: 10.1038/srep33811] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity.
Collapse
|
22
|
Abstract
PURPOSE OF THE REVIEW For a successful pregnancy, the synchronic coordination between the embryonic development and the endometrial status is crucial. The endometrium is a hormonally regulated organ that is nonadhesive to embryos throughout most of the menstrual cycle in humans. Endometrial receptivity refers to a hormone-limited period in which the endometrial tissue acquires a functional and transient ovarian steroid-dependent status allowing blastocyst implantation and therefore pregnancy initiation. RECENT FINDINGS Our group has developed the endometrial receptivity array (ERA), a customized array based on the expression of 238 genes coupled to a computational predictor capable of diagnosing a functionally receptive endometrium regardless of its histological appearance. Clinical results obtained in our laboratory demonstrate the diagnostic and therapeutic efficiency of the ERA test in patients with implantation failure, allowing the personalization of the optimal day for embryo transfer. SUMMARY To keep improving the global knowledge of endometrial receptivity stage, new high-throughput techniques like RNA-seq or genome-wide association studies will be crucial in the near future. Also the identification of new biomarkers of endometrial receptivity that could be assessed by noninvasive methods has become a challenging goal to help diagnose the endometrial status to increase implantation rates and pregnancy outcomes in patients undergoing assisted reproductive treatments.
Collapse
|
23
|
Bissonnette L, Drissennek L, Antoine Y, Tiers L, Hirtz C, Lehmann S, Perrochia H, Bissonnette F, Kadoch IJ, Haouzi D, Hamamah S. Human S100A10 plays a crucial role in the acquisition of the endometrial receptivity phenotype. Cell Adh Migr 2016; 10:282-98. [PMID: 26760977 DOI: 10.1080/19336918.2015.1128623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In assisted reproduction, about 30% of embryo implantation failures are related to inadequate endometrial receptivity. To identify molecules involved in endometrial receptivity acquisition, we investigated, using a SELDI-TOF approach, the protein expression profile of early-secretory and mid-secretory endometrium samples. Among the proteins upregulated in mid-secretory endometrium, we investigated the function of S100A10 in endometrial receptivity and implantation process. S100A10 was expressed in epithelial and stromal cells of the endometrium of fertile patients during the implantation windows. Conversely, it was downregulated in the mid-secretory endometrium of infertile patients diagnosed as non-receptive. Transcriptome analysis of human endometrial epithelial and stromal cells where S100A10 was silenced by shRNA revealed the deregulation of 37 and 256 genes, respectively, related to components of the extracellular matrix and intercellular connections. Functional annotations of these deregulated genes highlighted alterations of the leukocyte extravasation signaling and angiogenesis pathways that play a crucial role during implantation. S100A10 silencing also affected the migration of primary endometrial epithelial and stromal cells, decidualization and secretory transformation of primary endometrial stromal cells and epithelial cells respectively, and promoted apoptosis in serum-starved endometrial epithelial cells. Our findings identify S100A10 as a player in endometrial receptivity acquisition.
Collapse
Affiliation(s)
- Laurence Bissonnette
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France.,d OVO Fertility , Montréal , Québec , Canada
| | - Loubna Drissennek
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Yannick Antoine
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France
| | - Laurent Tiers
- b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France
| | - Christophe Hirtz
- b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Sylvain Lehmann
- b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Hélène Perrochia
- e CHU Montpellier, Hôpital Gui de Chauliac, Service Anatomie cytologie pathologiques , Montpellier , France
| | | | | | - Delphine Haouzi
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Samir Hamamah
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France.,f CHU Montpellier, Département de Biologie de la Reproduction et du DPI, Hôpital Arnaud de Villeneuve , Montpellier , France
| |
Collapse
|
24
|
Salamonsen LA, Evans J, Nguyen HPT, Edgell TA. The Microenvironment of Human Implantation: Determinant of Reproductive Success. Am J Reprod Immunol 2015; 75:218-25. [PMID: 26661899 DOI: 10.1111/aji.12450] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022] Open
Abstract
Successful implantation requires synchronous development of embryo and endometrium. Endometrial receptivity results from progesterone-induced differentiation of endometrial cells, generally achieved during the mid-secretory phase of the cycle. Failure to properly develop receptivity results in failed or inadequate implantation and hence no ongoing pregnancy. The blastocyst undergoes final development, apposition, attachment and initiates invasion of the endometrial epithelium within the uterine cavity. Thus, the microenvironment provided by uterine fluid, particularly glandular secretions, is essential for implantation. Analysis of endometrial fluid has identified cytokines, chemokines, proteases, antiproteases and other factors that modulate blastocyst functions relevant to implantation. Exosomes/microvesicular bodies released from the endometrium (and likely also the embryo) are present in uterine fluid. These can transfer miRNA, proteins and lipids between cells, thus providing endometrial-embryo communication in the peri-implantation period. Understanding the uterine microenvironment, and its effects on endometrial-embryo interactions, will provide opportunities to modify current infertility treatments to improve success rates.
Collapse
Affiliation(s)
| | - Jemma Evans
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Hong P T Nguyen
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Tracey A Edgell
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| |
Collapse
|
25
|
Jalali BM, Bogacki M, Dietrich M, Likszo P, Wasielak M. Proteomic analysis of porcine endometrial tissue during peri-implantation period reveals altered protein abundance. J Proteomics 2015; 125:76-88. [PMID: 25976747 DOI: 10.1016/j.jprot.2015.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED In mammals, successful pregnancy depends upon the readiness of uterus for implantation, followed by correct communication between the endometrium and the developing conceptus. The objective of this study was to elucidate changes in protein abundance associated with progression of estrous cycle and pregnancy from Day 9 to Day 12. We analyzed porcine endometrial tissue lysates by 2D-DIGE. Abundance of several proteins was altered depending upon the pregnancy status of animals. MALDI-TOF/TOF was used to identify a number of these proteins. Endometrial proteins that increased from Day 9 to Day 12 of cycle included annexin A4, beta-actin, apolipoprotein, ceruloplasmin and afamin. Changes in protein abundances associated with conceptus secreted factors, including haptoglobin, prolyl-4-hydroxylase, aldose-reductase and transthyretin, were also observed. Functional analysis revealed that endometrial proteins with altered abundance on Day 12 irrespective of the reproductive status were related to growth and remodeling, acute phase response and free radical scavenging, whereas transport and small molecule biochemistry were the functions activated in the pregnant endometrium as compared to the cyclic endometrium. These data provide information on dynamic physiological processes associated with uterine endometrial function of the cyclic and pregnant endometrium during period of maternal recognition of pregnancy in pigs and may potentially demonstrate a protein profile associated with successful pregnancy. BIOLOGICAL SIGNIFICANCE In pigs, the fertility rates are generally very high but the early embryonic loss that occurs during the second and third weeks of gestation critically affects the potential litter size. Temporal changes that take place in the uterine environment during the period of early pregnancy in pigs and a cross-talk between the uterus and the embryo play an important role in embryonic survival and successful pregnancy. A better understanding of the molecular changes associated with these processes will pave way for understanding of endometrial functions and help towards increasing embryo survival. In this study, we present a 2D-DIGE based analysis of changes in porcine endometrial proteome that are associated with progression of cycle and progression of pregnancy. The network analysis of the results clearly revealed the pathways that are involved in rendering the endometrium receptive to the presence of embryo and also the changes that are result of molecular communication between the endometrium and the conceptuses. This comprehensive identification of proteomic changes in the porcine endometrium could be a foundation for targeted studies of proteins and pathways potentially involved in abnormal endometrial receptivity, placentation and embryo loss.
Collapse
Affiliation(s)
- Beenu Moza Jalali
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Marek Bogacki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Mariola Dietrich
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Pawel Likszo
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marta Wasielak
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
26
|
Mitra A, Boroujeni MB. Application of gel-based proteomic technique in female reproductive investigations. J Hum Reprod Sci 2015; 8:18-24. [PMID: 25838744 PMCID: PMC4381377 DOI: 10.4103/0974-1208.153121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 01/06/2023] Open
Abstract
Recently, gel-based proteomics has been increasingly applied to investigate proteins involved in female reproductive tract in healthy and disease states. Gel-based proteomics coupled by mass spectrometry (MS) facilitate the identification of new proteins playing roles in cellular and molecular interactions underlying female reproductive biology and it is a useful method to identify novel biomarkers of diseases by studying thousands of proteins simultaneously involved in female reproductive tract in healthy state compared to disease state. This review will discuss the best studies areas contributed to female reproductive biology in which gel-based proteomics coupled by MS has been applied to generate proteome of female reproductive tract in a healthy state.
Collapse
Affiliation(s)
- Arianmanesh Mitra
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mandana Beigi Boroujeni
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
27
|
Chen Q, Zhang A, Yu F, Gao J, Liu Y, Yu C, Zhou H, Xu C. Label-free proteomics uncovers energy metabolism and focal adhesion regulations responsive for endometrium receptivity. J Proteome Res 2015; 14:1831-42. [PMID: 25728905 DOI: 10.1021/acs.jproteome.5b00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The menstrual cycle of the female uterus leads to periodic changes of the endometrium. These changes are important for developing the endometrial receptivity and for achieving competency of embryo implantation. However, the molecular events underlying the endometrial receptivity process remain poorly understood. Here we applied an LC-MS-based label-free quantitative proteomic approach to compare the endometrial tissues in the midsecretory (receptive) phase with the endometrial tissues in the proliferative phase from age-matched woman (n = 6/group). The proteomes of endometrial tissues were extracted using an SDS-based detergent, digested by the filter-aided sample preparation procedures, and subsequently analyzed by nano-LC-MS/MS (Orbitrap XL) with a 4 h gradient. Reliable protein expression profiles were reproducibly obtained from the endometrial tissues in the receptive and proliferative phases. A total of 2138 protein groups were quantified under highly stringent criteria with a false discovery rate of <1% for peptide and protein groups. Among these proteins, 317 proteins had differences in expression that were statistically significant between the receptive and proliferative phases. Direct protein-protein interaction network analyses of these significantly changed proteins showed that the up-regulation of creatine kinase B-type (CKB) in the receptive phase may be related to endometrium receptivity. The interaction network also showed that proteins related to cell-cell adhesion were down-regulated. Moreover, the results from KEGG pathway analyses are consistent with the protein-protein interaction results. The proteins, including alpha-actinin (ACTN), extracellular matrix proteins, integrin alpha-V, and so on, that are involved in the focal adhesion pathway were down-regulated in the receptive phase compared with the proliferative phase, which may facilitate the implantation of the fertilized ovum. Selected proteins were validated by Western blot analysis and indirect immunofluorescence, including the up-regulation of CKB and down-regulation ACTN in the receptive phase. In summary, our proteomic analysis study shows potential for predicting the endometrial remodeling from the proliferative to the receptivity phase in women, and these results also reveal the key biological mechanisms (such as energy metabolism and focal adhesion) underlying human endometrial receptivity.
Collapse
Affiliation(s)
- Qian Chen
- †Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,‡Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Zhang
- ‡Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Yu
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jing Gao
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yue Liu
- †Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengli Yu
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hu Zhou
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China.,∥E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Xu
- †Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
28
|
Ye TM, Pang RT, Leung CO, Chiu JF, Yeung WS. Two-dimensional liquid chromatography with tandem mass spectrometry–based proteomic characterization of endometrial luminal epithelial surface proteins responsible for embryo implantation. Fertil Steril 2015; 103:853-61.e3. [DOI: 10.1016/j.fertnstert.2014.12.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
29
|
Tamura K, Takashima H, Fumoto K, Kajihara T, Uchino S, Ishihara O, Yoshie M, Kusama K, Tachikawa E. Possible Role of α1-Antitrypsin in Endometriosis-Like Grafts From a Mouse Model of Endometriosis. Reprod Sci 2015; 22:1088-97. [PMID: 25667209 DOI: 10.1177/1933719115570901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous study indicated that bleeding into the peritoneum may accelerate inflammatory response in endometriosis-like grafts in mice. To identify changes in protein levels in the grafts from mice that underwent unilateral ovariectomy (uOVX), which causes bleeding from ovarian arteries and vein, the grafts were generated by injecting a suspension of human endometrial cells in BALB/c nude female mice, and protein profile changes were compared with non-uOVX control mice. The level of α1-antitrypsin (α1-AT) decreased in grafts from nude mice that underwent uOVX. The levels of phosphorylated Akt, mammalian target of rapamycin, S6K, regulatory factors for cell survival, and of phosphorylated nuclear factor κB, an inflammatory mediator, were higher in endometriosis-like grafts from the uOVX group than from the control. The grafts were mostly comprised of stromal cells. The bioactivity of α1-AT was assessed by investigating cytokine expression in protease-activated receptor (PAR) 1/2 agonists-stimulated stromal cells. The PARs promoted the expression of interleukin 8 (IL-8), but treatment with α1-AT blocked IL-8 expression dose dependently. Knocking down α1-AT expression increased the constitutive IL-6, IL-8, and cyclooxygenase 2 expression as well as PAR1 agonist-stimulated IL-6 expression. These findings support the notion that decreased α1-AT protein in the grafts constituted with human endometrial cells in mice may have exacerbated inflammation in endometriosis-like grafts, suggesting the possible involvement of α1-AT in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Kazuhiro Tamura
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Hachioji, Tokyo, Japan
| | - Haruka Takashima
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Hachioji, Tokyo, Japan
| | - Keiko Fumoto
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Hachioji, Tokyo, Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Satomi Uchino
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Mikihiro Yoshie
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Kusama
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Hachioji, Tokyo, Japan Present address: The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Eiichi Tachikawa
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
30
|
Thouas GA, Dominguez F, Green MP, Vilella F, Simon C, Gardner DK. Soluble ligands and their receptors in human embryo development and implantation. Endocr Rev 2015; 36:92-130. [PMID: 25548832 DOI: 10.1210/er.2014-1046] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extensive evidence suggests that soluble ligands and their receptors mediate human preimplantation embryo development and implantation. Progress in this complex area has been ongoing since the 1980s, with an ever-increasing list of candidates. This article specifically reviews evidence of soluble ligands and their receptors in the human preimplantation stage embryo and female reproductive tract. The focus will be on candidates produced by the human preimplantation embryo and those eliciting developmental responses in vitro, as well as endometrial factors related to implantation and receptivity. Pathways to clinical translation, including innovative diagnostics and other technologies, are also highlighted, drawing from this collective evidence toward facilitating joint improvements in embryo quality and endometrial receptivity. This strategy could not only benefit clinical outcomes in reproductive medicine but also provide broader insights into the peri-implantation period of human development to improve fetal and neonatal health.
Collapse
Affiliation(s)
- George A Thouas
- Reproductive Biology and Assisted Conception Laboratory (G.A.T., M.P.G., D.K.G.), School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia 3010; Fundación Instituto Valenciano de Infertilidad (F.D., F.V., C.S.), Department of Obstetrics and Gynecology, University of Valencia, 46010, Valencia, Spain; La Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana Health Research Institute (F.D., F.V., C.S.), 46010 Valencia, Spain; and Department of Obstetrics and Gynecology (C.S.), Stanford University, Stanford, California 90095
| | | | | | | | | | | |
Collapse
|
31
|
Kusama K, Yoshie M, Tamura K, Imakawa K, Tachikawa E. EPAC2-mediated calreticulin regulates LIF and COX2 expression in human endometrial glandular cells. J Mol Endocrinol 2015; 54:17-24. [PMID: 25378661 DOI: 10.1530/jme-14-0162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The proper production of the implantation-related factors, leukemia inhibitory factor (LIF), cyclooxygenase 2 (COX2, PTGS2), and prostaglandin E2 (PGE2) in the uterine glands is essential for embryo implantation and the establishment of endometrial receptivity. It has been shown that cAMP-mediated protein kinase A (PKA) signaling regulates the production of these factors. We have previously reported that exchange protein directly activated by cAMP 2 (EPAC2, RAPGEF4), another cAMP mediator, is involved in the differentiation of endometrial stromal cells through the regulation of the expression of calreticulin (CALR). To address whether EPAC2-CALR signaling is involved in the expression of implantation-related factors, we examined the effect of EPAC2 and CALR knockdown on their expression in cultured human endometrial glandular epithelial EM1 cells, treated with forskolin, an adenylyl cyclase activator, an EPAC-selective cAMP analog (8-(4-chlorophenylthio)-2'-O-methyl cAMP (CPT)), or a PKA-selective cAMP analog (N(6)-phenyl-cAMP (Phe)). In addition, the status of cell senescence was examined. EPAC2 knockdown suppressed the expression of CALR protein and mRNA in EM1 cells. Forskolin- or Phe-, but not CPT-, induced expression of LIF or PTGS2 and secretion of PGE2 was inhibited in EPAC2- or CALR-silenced EM1 cells. In addition, knockdown of EPAC2 or CALR increased senescence-associated beta galactosidase activity and expression of p21 but decreased expression of p53. These findings indicate that expression of CALR regulated by EPAC2 in endometrial glandular epithelial cells is critical for the expression of LIF and PTGS2-mediated production of PGE2 through cAMP signaling. Furthermore, EPAC2 and CALR could play a role in the maintenance of gland function.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine and Neural PharmacologyTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, JapanLaboratory of Theriogenology and Animal BreedingGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Department of Endocrine and Neural PharmacologyTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, JapanLaboratory of Theriogenology and Animal BreedingGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikihiro Yoshie
- Department of Endocrine and Neural PharmacologyTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, JapanLaboratory of Theriogenology and Animal BreedingGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiro Tamura
- Department of Endocrine and Neural PharmacologyTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, JapanLaboratory of Theriogenology and Animal BreedingGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiko Imakawa
- Department of Endocrine and Neural PharmacologyTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, JapanLaboratory of Theriogenology and Animal BreedingGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Eiichi Tachikawa
- Department of Endocrine and Neural PharmacologyTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, JapanLaboratory of Theriogenology and Animal BreedingGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Garrido-Gomez T, Quinonero A, Antunez O, Diaz-Gimeno P, Bellver J, Simon C, Dominguez F. Deciphering the proteomic signature of human endometrial receptivity. Hum Reprod 2014; 29:1957-67. [DOI: 10.1093/humrep/deu171] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
33
|
Al-Gubory KH, Arianmanesh M, Garrel C, Bhattacharya S, Cash P, Fowler PA. Proteomic analysis of the sheep caruncular and intercaruncular endometrium reveals changes in functional proteins crucial for the establishment of pregnancy. Reproduction 2014; 147:599-614. [DOI: 10.1530/rep-13-0600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The expression and regulation of endometrial proteins are crucial for conceptus implantation and development. However, little is known about site-specific proteome profiles of the mammalian endometrium during the peri-implantation period. We utilised a two-dimensional gel electrophoresis/mass spectrometry-based proteomics approach to compare and identify differentially expressed proteins in sheep endometrium. Caruncular and intercaruncular endometrium were collected on days 12 (C12) and 16 (C16) of the oestrous cycle and at three stages of pregnancy corresponding to conceptus pre-attachment (P12), implantation (P16) and post-implantation (P20). Abundance and localisation changes in differentially expressed proteins were determined by western blot and immunohistochemistry. In caruncular endometrium, 45 protein spots (5% of total spots) altered between day 12 of pregnancy (P12) and P16 while 85 protein spots (10% of total spots) were differentially expressed between P16 and C16. In intercaruncular endometrium, 31 protein spots (2% of total spots) were different between P12 and P16 while 44 protein spots (4% of total spots) showed differential expression between C12 and C16. The pattern of protein changes between caruncle and intercaruncle sites was markedly different. Among the protein spots with implantation-related changes in volume, 11 proteins in the caruncular endometrium and six proteins in the intercaruncular endometrium, with different functions such as protein synthesis and degradation, antioxidant defence, cell structural integrity, adhesion and signal transduction, were identified. Our findings highlight the different but important roles of the caruncular and intercaruncular proteins during early pregnancy.
Collapse
|
34
|
Kusama K, Yoshie M, Tamura K, Nakayama T, Nishi H, Isaka K, Tachikawa E. The role of exchange protein directly activated by cyclic AMP 2-mediated calreticulin expression in the decidualization of human endometrial stromal cells. Endocrinology 2014; 155:240-8. [PMID: 24169561 DOI: 10.1210/en.2013-1478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Decidualization of human endometrial stromal cells (ESCs) accompanied by the production of prolactin (PRL) and IGF-binding protein (IGFBP) 1 and rounded-cell morphology is indispensable for the establishment and maintenance of pregnancy. Protein kinase A (PKA)-mediated cAMP signaling is known to be crucial for decidualization. We previously reported that activation of a cAMP mediator, called Exchange protein directly activated by cAMP (EPAC) promotes cAMP analog- or ovarian steroid-induced decidualization in cultured human ESCs. In addition, small interfering RNA-mediated knock-down of the EPAC subtypes, EPAC1 or EPAC2, or knock-down of Rap1, a downstream factor of EPAC signaling, blocked functional and morphological decidualization of ESCs. However, factors downstream of EPAC2 other than Rap1 have not been determined. The present study was undertaken to identify additional downstream targets of EPAC2 associated with decidualization. Using proteomic analysis, we identified calreticulin (CRT) as a potential target of EPAC2. Knock-down of CRT expression in cultured ESCs significantly inhibited PKA-selective cAMP analog- or PKA-selective cAMP analog plus EPAC-selective cAMP analog-induced PRL and IGFBP1 expression. Furthermore, CRT knock-down suppressed the ovarian steroid-stimulated PRL and IGFBP1 expression and morphological differentiation, and silencing of EPAC2 or CRT significantly increased senescence-associated β-galactosidase activity with enhanced p21 expression and decreased p53 expression. These results suggest that EPAC2 and CRT are associated with cellular senescence in ESCs. In conclusion, we demonstrate here that EPAC2-mediated CRT expression is essential for the functional and morphological differentiation of ESCs into decidual cells. Furthermore, both EPAC2 and CRT might prevent ESCs from undergoing abnormal cellular senescence during decidualization.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine and Neural Pharmacology (K.K., M.Y., K.T., T.N., E.T.), Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; and Department of Obstetrics and Gynecology (H.N., K.I.), Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Gude NM, Stevenson JL, Sheehan PM, Brennecke SP. A Case of Adenomyosis with a High Titer of IgG Autoantibody to Calreticulin. J Investig Med High Impact Case Rep 2013; 1:2324709613509988. [PMID: 26425587 PMCID: PMC4528842 DOI: 10.1177/2324709613509988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. High prevalence of autoantibodies to the calcium-binding, endoplasmic reticulum chaperone protein calreticulin has been reported in various autoimmune and parasitic diseases. It has been reported that adenomyosis is associated with the presence of autoantibodies, in particular to phospholipids; however, it is not known whether it is associated with autoimmunity to calreticulin. Results. A 35-year-old gravida 4 para 4 woman presented with a history of many years of intractable menorrhagia. Histopathological examination of a subsequent hysterectomy specimen revealed a bulky uterus, a poorly developed secretory endometrium with decidualization of the stroma and chronic endometritis, as well as the presence of adenomyosis uteri. IgG autoantibodies to calreticulin were measured in the plasma of this and 234 other patients. Nine (3.8%) patients tested positive. The titer of anticalreticulin IgG autoantibody in the sole case with adenomyosis was approximately 8 times the average of other positive-testing samples. Conclusions. The etiology of adenomyosis is unclear. The presence of a high titer, blocking anticalreticulin autoantibody may directly increase the risk that adenomyosis might develop. It is also possible that the expansion of endometrial glandular tissue, as well as elevated estrogens, during adenomyosis may lead to elevated calreticulin, which induces an autoimmune reaction to it. Further study is required to determine whether there is a significant association between adenomyosis and the prevalence of calreticulin autoantibodies.
Collapse
Affiliation(s)
- Neil M. Gude
- Royal Women’s Hospital, Parkville, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Shaun P. Brennecke
- Royal Women’s Hospital, Parkville, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Check JH, Cohen R. The role of progesterone and the progesterone receptor in human reproduction and cancer. Expert Rev Endocrinol Metab 2013; 8:469-484. [PMID: 30754194 DOI: 10.1586/17446651.2013.827380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insufficient progesterone, effect possibly more on immune factors rather than adequate endometrial development, can be an easy remedial cause of infertility by simply supplementing the luteal phase with either vaginal or intramuscular or oral (dydrogesterone) progesterone. Progesterone will also help to reduce miscarriage rates when follicle maturing drugs are used for those with regular menses but follicular maturation defects, or women with recurrent miscarriages. One mechanism of action seems to be related to production of an immunomodulatory protein, the progesterone-induced blocking factor either in the cytoplasm or in the circulation. PIBF inhibits cytotoxicity of natural killer cells. Cancer cells may 'borrow' the same mechanism to escape NK cell immunosurveillance.
Collapse
Affiliation(s)
- Jerome H Check
- a Department of Obstetrics and Gynecology, Cooper Medical School of Rowan University, Division of Reproductive Endocrinology & Infertility, Camden, NJ, USA
| | - Rachael Cohen
- b Department of Obstetrics and Gynecology, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Edgell TA, Rombauts LJF, Salamonsen LA. Assessing receptivity in the endometrium: the need for a rapid, non-invasive test. Reprod Biomed Online 2013; 27:486-96. [PMID: 23933033 DOI: 10.1016/j.rbmo.2013.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/30/2013] [Accepted: 05/30/2013] [Indexed: 01/11/2023]
Abstract
Successful implantation of an embryo into the uterus requires synchrony between the blastocyst and the endometrium. Endometrial preparedness, or receptivity, occurs only for a very short time during the mid-secretory phase of the menstrual cycle in fertile women. Failure to achieve receptivity results in infertility and is a rate-limiting step for IVF success. Frozen embryo transfer in non-stimulation cycles is already improving live birth rates. However, an important tool that is missing in the armoury of reproductive specialists is a means to rapidly assess endometrial receptivity, either during initial assessment or immediately prior to embryo transfer. The development of a wealth of omics technologies now opens the way for identifying potential receptivity markers, although validation of these is still a major issue. This review assesses the current state of the field and the requirements to proceed to a valid clinical test.
Collapse
Affiliation(s)
- Tracey A Edgell
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
38
|
Anklesaria JH, Jagtap DD, Pathak BR, Kadam KM, Joseph S, Mahale SD. Prostate Secretory Protein of 94 amino acids (PSP94) binds to prostatic acid phosphatase (PAP) in human seminal plasma. PLoS One 2013; 8:e58631. [PMID: 23469287 PMCID: PMC3587604 DOI: 10.1371/journal.pone.0058631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/19/2022] Open
Abstract
Prostate Secretory Protein of 94 amino acids (PSP94) is one of the major proteins present in the human seminal plasma. Though several functions have been predicted for this protein, its exact role either in sperm function or in prostate pathophysiology has not been clearly defined. Attempts to understand the mechanism of action of PSP94 has led to the search for its probable binding partners. This has resulted in the identification of PSP94 binding proteins in plasma and seminal plasma from human. During the chromatographic separation step of proteins from human seminal plasma by reversed phase HPLC, we had observed that in addition to the main fraction of PSP94, other fractions containing higher molecular weight proteins also showed the presence of detectable amounts of PSP94. This prompted us to hypothesize that PSP94 could be present in the seminal plasma complexed with other protein/s of higher molecular weight. One such fraction containing a major protein of ~47 kDa, on characterization by mass spectrometric analysis, was identified to be Prostatic Acid Phosphatase (PAP). The ability of PAP present in this fraction to bind to PSP94 was demonstrated by affinity chromatography. Co-immunoprecipitation experiments confirmed the presence of PSP94-PAP complex both in the fraction studied and in the fresh seminal plasma. In silico molecular modeling of the PSP94-PAP complex suggests that β-strands 1 and 6 of PSP94 appear to interact with domain 2 of PAP, while β-strands 7 and 10 with domain 1 of PAP. This is the first report which suggests that PSP94 can bind to PAP and the PAP-bound PSP94 is present in human seminal plasma.
Collapse
Affiliation(s)
- Jenifer H. Anklesaria
- Division of Structural Biology, National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | - Dhanashree D. Jagtap
- Division of Structural Biology, National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | - Bhakti R. Pathak
- Division of Structural Biology, National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | - Kaushiki M. Kadam
- Proteomics Facility, National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | - Shaini Joseph
- ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | - Smita D. Mahale
- Division of Structural Biology, National Institute for Research in Reproductive Health, Parel, Mumbai, India
- ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health, Parel, Mumbai, India
- * E-mail:
| |
Collapse
|
39
|
Cheong Y, Boomsma C, Heijnen C, Macklon N. Uterine secretomics: a window on the maternal-embryo interface. Fertil Steril 2013; 99:1093-9. [DOI: 10.1016/j.fertnstert.2013.01.144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 01/11/2023]
|
40
|
Upadhyay RD, Balasinor NH, Kumar AV, Sachdeva G, Parte P, Dumasia K. Proteomics in reproductive biology: beacon for unraveling the molecular complexities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:8-15. [PMID: 23072795 DOI: 10.1016/j.bbapap.2012.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/10/2012] [Accepted: 10/04/2012] [Indexed: 12/21/2022]
Abstract
Proteomics, an interface of rapidly evolving advances in physics and biology, is rapidly developing and expanding its potential applications to molecular and cellular biology. Application of proteomics tools has contributed towards identification of relevant protein biomarkers that can potentially change the strategies for early diagnosis and treatment of several diseases. The emergence of powerful mass spectrometry-based proteomics technique has added a new dimension to the field of medical research in liver, heart diseases and certain forms of cancer. Most proteomics tools are also being used to study physiological and pathological events related to reproductive biology. There have been attempts to generate the proteomes of testes, sperm, seminal fluid, epididymis, oocyte, and endometrium from reproductive disease patients. Here, we have reviewed proteomics based investigations in humans over the last decade, which focus on delineating the mechanism underlying various reproductive events such as spermatogenesis, oogenesis, endometriosis, polycystic ovary syndrome, embryo development. The challenge is to harness new technologies like 2-DE, DIGE, MALDI-MS, SELDI-MS, MUDPIT, LC-MS etc., to a greater extent to develop widely applicable clinical tools in understanding molecular aspects of reproduction both in health and disease.
Collapse
Affiliation(s)
- Rahul D Upadhyay
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai-400012, India.
| | | | | | | | | | | |
Collapse
|
41
|
Almeida-Francia C, Keator C, Mah K, Holden L, Hergert C, Slayden O. Localization and hormonal regulation of endometrial matrix metalloproteinase-26 in the rhesus macaque. Hum Reprod 2012; 27:1723-34. [PMID: 22434853 PMCID: PMC3357194 DOI: 10.1093/humrep/des086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/06/2012] [Accepted: 02/21/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The current understanding of hormonal regulation of matrix metalloproteinase-26 (MMP-26) in the primate endometrium is incomplete. The goal of this work was to clarify estrogen and progesterone regulation of MMP-26 in the endometrium of ovariectomized, hormone-treated rhesus macaques. METHODS Ovariectomized rhesus macaques (n= 66) were treated with estradiol (E(2)), E(2) plus progesterone, E(2) followed by progesterone alone or no hormone. Endometrium was collected from the hormone-treated animals during the early, mid- and late proliferative and secretory phases of the artificial menstrual cycle. MMP-26 expression was quantified by real-time PCR, and MMP-26 transcript and protein were localized by in situ hybridization and immunohistochemistry and correlated with estrogen receptor 1 and progesterone receptor (PGR). RESULTS MMP-26 was localized to glandular epithelium and was undetectable in the endometrial stroma and vasculature. MMP-26 transcript levels were minimal in the hormone-deprived macaques and treatment with E(2) alone did not affect MMP-26 levels. Treatment with progesterone both in the presence and absence of E(2) stimulated MMP-26 expression in the early and mid-secretory phases (P < 0.001). MMP-26 expression preceded decidualization of endometrial stroma. MMP-26 levels then declined to baseline in the late secretory phase (P < 0.01) despite continued E(2) plus progesterone treatment. Loss of detectable MMP-26 expression in the late secretory phase was correlated with late secretory phase loss of glandular epithelial PGR. CONCLUSIONS Endometrial MMP-26 expression is dependent on the presence of progesterone in the early secretory phase and then gradually becomes refractory to progesterone stimulation in the late secretory phase. In the macaque, MMP-26 is a marker of the pre-decidual, secretory endometrium. During the second half of the late secretory phase, and during decidualization, MMP-26 loses its response to progesterone concurrent with the loss of epithelial PGR. The decline in MMP-26 levels between the mid- and late secretory phases may play a role in the receptive window for embryo implantation.
Collapse
Affiliation(s)
- C.C.D. Almeida-Francia
- Department of Anatomy, Institute of Biosciences, Univ Estadual Paulista (UNESP), Botucatu, São Paulo 18618-970, Brazil
| | - C.S. Keator
- Department of Physiology, Ross University School of Medicine, P.O. Box 266, Portsmouth Campus, Picard, Commonwealth of Dominica, West Indies
| | - K. Mah
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - L. Holden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - C. Hergert
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - O.D. Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
42
|
Russo N, Russo M, Daino D, Freschi L, Fiore L, Merlini S, Bucci F, Santoro AN, Pluchino N, Luisi S, Genazzani AR. Evaluation of brain-derived neurotrophic factor in menstrual blood and its identification in human endometrium. Gynecol Endocrinol 2012; 28:492-5. [PMID: 22339153 DOI: 10.3109/09513590.2011.633667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The presence of high-affinity brain-derived neurotrophic factor receptor Trk B in mouse and in human fetal oocytes, together with the presence of neurotrophins in human follicular fluid suggests a paracrine role for brain-derived neurotrophic factor (BDNF) in female biology. This study aims to evaluate if BDNF is present and quantitatively determined in human menstrual blood and endometrium. Twenty-one women were studied and subdivided in two groups: A, 11 fertile women (27 ± 2 days cycle length) and B, 10 anovulatory women and/or women with inadequate luteal phase (36 ± 2 days cycle length). In fertile women menstrual BDNF levels was higher than plasma (679.3 ± 92.2 vs 301.9 ± 46.7 pg/ml p <0.001). Similarly, in Group B, BDNF in menstrual blood was higher than plasma (386.1 ± 85.2 vs 166.8 ± 24.1 pg/ml p < 0.001). Moreover, both menstrual and plasma BDNF concentrations in Group A were significantly higher respect to Group B (679.3 ± 92.2 vs 386.1 ± 85.2 pg/ml p < 0.001; 301.9 ± 46.7 vs 166.8 ± 24.1 pg/ml p < 0.001). Immunohistochemistry evidence of BDNF in endometrium, during follicular and luteal phase, was also shown. The detection of BDNF in the human menstrual blood and endometrium further supports the role of this neurotrophin in female reproductive function.
Collapse
Affiliation(s)
- N Russo
- Department of Reproductive Medicine and Child Development, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fornasa F, Montemezzi S. Diffusion-weighted magnetic resonance imaging of the normal endometrium: temporal and spatial variations of the apparent diffusion coefficient. Acta Radiol 2012; 53:586-90. [PMID: 22619357 DOI: 10.1258/ar.2012.110717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diffusion-weighted magnetic resonance imaging (DWI) is increasingly used in the diagnosis of endometrial disease. No complete knowledge, however, exists yet of the influence of physiology on the endometrial apparent diffusion coefficient (ADC) values on which DWI is based. PURPOSE To establish whether the ADC values measured with DWI in the endometrium of healthy reproductive-aged women significantly vary from the early proliferative to the periovulatory phase of the menstrual cycle and between the fundus and the isthmus of the uterus. MATERIAL AND METHODS In 17 women the endometrial ADC values measured on the fifth menstrual day, both at the fundus and at the isthmus of the uterus, were compared to the values obtained on the 14th day before the subsequent cycle. In 81 women (menstrual day: fifth through 21st) the endometrial ADC values measured at the fundus were compared to the values obtained at the isthmus of the uterus. All examinations were performed with a 1.5 T magnet (b values: 0 and 800 mm/s(2)). The results were analyzed by means of Student's t-test per paired data. RESULTS The endometrial ADC values measured on the fifth day of the menstrual cycle were lower than those obtained in the periovulatory phase both at the fundus (mean 0.923 vs. 1.256 × 10(-3) mm(2)/s) and at the isthmus (mean 1.297 vs. 1.529 × 10(-3) mm(2)/s) of the uterus. The endometrial ADC values measured at the fundus of the uterus were lower than those obtained at the isthmus (mean 1.132 vs. 1.420 × 10(-3) mm(2)/s) through the menstrual cycle. All these differences were highly significant (P < 0.001) at statistical analysis. CONCLUSION Physiological variations occurring in endometrial ADC values of healthy women should be considered by the radiologists when interpreting DWI examinations in patients with endometrial disease.
Collapse
|
44
|
Haouzi D, Dechaud H, Assou S, De Vos J, Hamamah S. Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod Biomed Online 2012; 24:23-34. [DOI: 10.1016/j.rbmo.2011.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 01/11/2023]
|
45
|
Abstract
OBJECTIVE To provide a focused review of the scientific literature pertaining to endometrial receptivity. DESIGN Review of the literature and appraisal of relevant articles. SETTING Academic teaching hospital. PATIENT(S) Women with infertility. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Critical review of the literature. RESULT(S) Although a consensus has been achieved regarding the existence of a temporally defined period during which embryo attachment and invasion can occur (called the "window of implantation"), reliable methods to assess "receptivity" have not been established or adequately validated. In women with certain gynecologic disorders, including endometriosis, tubal disease, and polycystic ovary syndrome, endometrial receptivity seems to be compromised, leading to infertility and pregnancy loss. The establishment of reliable biomarkers for the detection of defects in endometrial receptivity has been a long-sought goal that remains an elusive target. The validation of endometrial biomarkers will require properly designed and implemented studies based on the recognition that endometrial receptivity defects are not equally distributed in women with endometriosis or these other conditions. CONCLUSION(S) Rapidly advancing technologies are bringing new biomarkers to the clinical arena that promise to further reveal the complexities of the implantation process.
Collapse
|
46
|
Chae JI, Kim J, Lee SG, Jeon YJ, Kim DW, Soh Y, Seo KS, Lee HK, Choi NJ, Ryu J, Kang S, Cho SK, Lee DS, Chung HM, Koo ADB. Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy. Proteome Sci 2011; 9:41. [PMID: 21791079 PMCID: PMC3162492 DOI: 10.1186/1477-5956-9-41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/26/2011] [Indexed: 01/11/2023] Open
Abstract
Many important molecular events associated with implantation and development occur within the female reproductive tract, especially within the uterus endometrium, during pregnancy periods. The endometrium includes the mucosal lining of the uterus, which provides a suitable site for implantation and development of a fertilized egg and fetus. To date, the molecular cascades in the uterus endometrium during pregnancy periods in pigs have not been elucidated fully. In this study, we compared the functional regulated proteins in the endometrium during pregnancy periods with those in non-pregnant conditions and investigated changes in expression patterns during pregnancy (days 40, 70, and 93) using two-dimensional gel electrophoresis (2-DE) and western blotting. The functional regulated proteins were identified and discovered from differentially expressed proteins in the uterus endometrium during pregnancy. We discovered 820 protein spots in a proteomic analysis of uterus endometrium tissues with 2-DE gels. We identified 63 of the 98 proteins regulated differentially among non-pregnant and pregnant tissues (matched and unmatched spots). Interestingly, 10 of these 63 proteins are development-, cytoskeleton- and chaperon-related proteins such as transferrin, protein DJ-1, transgelin, galectin-1, septin 2, stathmin 1, cofilin 1, fascin 1, heat shock protein (HSP) 90β and HSP 27. The specific expression patterns of these proteins in the endometrium during pregnancy were confirmed by western blotting. Our results suggest that the expressions of these genes involved in endometrium function and endometrium development from early to late gestation are associated with the regulation of endometrium development for maintaining pregnancy.
Collapse
Affiliation(s)
- Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Jumi Kim
- Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, 605-21 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - Seong G Lee
- Department of Obstetrics and Gynecology, College of Medicine, Yeungnam University, Daegu 705-717, Korea
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Dong-Wook Kim
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Yunjo Soh
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Kang S Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Hak K Lee
- Genomic Informatics Center, Hankyong National University, 67 Sukjong-dong, Ansung-city, Kyongi-do, 456-749, Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural & Life Science, Chonbuk National University, Jeonju, Korea
| | - Joohyun Ryu
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sunghyun Kang
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seong-Keun Cho
- Depart. of Animal Science, College of National Resources and Life Science, Pusan National University, Miryang-si, Gyeongnam 627-706, Korea
| | - Dong-Seok Lee
- College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hyung M Chung
- CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea.,Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, 605-21 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - And Deog-Bon Koo
- Department of Biotechnology, College of Engineering Daegu University, 15 Jillyang Gyeongsan, Gyeongbuk 712-714, Korea
| |
Collapse
|
47
|
“Spot”-ting differences between the ectopic and eutopic endometrium of endometriosis patients. Fertil Steril 2010; 94:1964-71, 1971.e1. [DOI: 10.1016/j.fertnstert.2010.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 11/18/2022]
|
48
|
Meehan KL, Rainczuk A, Salamonsen LA, Stephens AN. Proteomics and the search for biomarkers of female reproductive diseases. Reproduction 2010; 140:505-19. [PMID: 20628032 DOI: 10.1530/rep-10-0226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, high-throughput proteomics technologies have evolved considerably and have become increasingly more commonly applied to the investigation of female reproductive diseases. Proteomic approaches facilitate the identification of new disease biomarkers by comparing the abundance of hundreds of proteins simultaneously to find those specific to a particular clinical condition. Some of the best studied areas of female reproductive biology applying proteomics include gynaecological cancers, endometriosis and endometrial infertility. This review will discuss the progress that has been made in these areas and will highlight some of the emerging technologies that promise to contribute to better understanding of the female reproductive disease.
Collapse
Affiliation(s)
- Katie L Meehan
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
49
|
Abstract
Endometrium attains a secretory architecture in preparation for embryo implantation, but the identity of most endometrial secretory products remains unknown. Our objective was to characterize the endometrial secretome and compare protein expression between prereceptive (luteinizing hormone [LH]+4) and receptive (LH+9) phase endometrium. Endometrial lavage was performed in 11 participants and analyzed by difference gel electrophoresis (DIGE). LH+4 and LH+9 specimens were labeled with cyanine fluorescent dyes Cy3 and Cy5 tags, respectively, and combined. Proteins were separated using 2-dimensional gel electrophoresis, isolated, trypsin-digested, and subjected to mass spectrometry. In all, 152 proteins were identified; 82 were differentially expressed. Most proteins with increased expression on LH+9 functioned in host defense, while proteins with decreased expression had many functions. A total of 14 proteins had changes suggesting altered posttranslational modification. This article describes the first application of proteomic analysis to endometrial secretions, allowing identification of novel endometrial proteins as well as those differentially secreted in prereceptive and receptive phases.
Collapse
Affiliation(s)
- Jessica G Scotchie
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|