1
|
Nguyen HT, Nguyen NT, Nguyen LV, Bui XN, Nguyen VH, Nguyen VK, Vu HTT, Nguyen ST, Nguyen HT. The effects of pretreatment with Cyclosporin A and Docetaxel before vitrification of porcine immature oocytes on subsequent embryo development. Reprod Biol 2023; 23:100798. [PMID: 37717489 DOI: 10.1016/j.repbio.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
In the present study, we attempted to improve the developmental competence of vitrified immature porcine oocytes by the preservation of mitochondrial properties using Cyclosporin A (CsA, inhibitor of mitochondrial membrane permeability transition) and Docetaxel (stabilizer of microtubules, hence mitochondrial distribution). In Experiment 1, Mitotracker red staining revealed reduced mitochondrial activity (MA) in vitrified/warmed oocytes at 0 and 22 h of in vitro maturation (IVM) compared with fresh ones. However, by at 46 h of IVM, MA levels in vitrified oocytes were similar to those in fresh control. Treatment of oocytes with CsA or Docetaxel improved MA at 0 h and 22 h of IVM compared with non-treated vitrified oocytes. However, there were no significant differences among groups in percentages of survival, maturation and embryo development after subsequent IVM and parthenogenetic activation. Nevertheless, a pretreatment with a combination of 10 µg/mL CsA and 0.05 µM Docetaxel improved the blastocyst formation of vitrified oocytes compared with non-treatment counterparts (11.2 ± 1.6% vs 5.9 ± 1.6%, P < 0.05). In conclusion, vitrification reduced mitochondrial activity in GV-stage oocytes during 0-22 h of IVM; however, it was normalized by 46 h IVM. Docetaxel or CsA pretreatment alone did not improve development competence of vitrified oocytes. However, pretreatment with a combination of CsA and Docetaxel could improve blastocyst formation rates.
Collapse
Affiliation(s)
- Hong Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nhung Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Linh Viet Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Xuan Nguyen Bui
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Van Hanh Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Van Khanh Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science (NIAS), Hanoi, Vietnam
| | - Huong Thu Thi Vu
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science (NIAS), Hanoi, Vietnam
| | - Sam Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hiep Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
| |
Collapse
|
2
|
Angel-Velez D, De Coster T, Azari-Dolatabad N, Fernández-Montoro A, Benedetti C, Pavani K, Van Soom A, Bogado Pascottini O, Smits K. Embryo morphokinetics derived from fresh and vitrified bovine oocytes predict blastocyst development and nuclear abnormalities. Sci Rep 2023; 13:4765. [PMID: 36959320 PMCID: PMC10036495 DOI: 10.1038/s41598-023-31268-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Embryo development is a dynamic process and critical stages may go unnoticed with the use of traditional morphologic assessments, especially the timing of embryonic divisions and aberrant zygotic cleavage patterns. Bovine embryo development is impaired after oocyte vitrification, but little is known about the underlying morphokinetic behavior. Here, bovine zygotes from fresh (n = 708) and vitrified oocytes (n = 182) were monitored by time-lapse imaging and the timing and nature of early blastomere divisions were modeled to find associations with blastocyst development at day 8. The predictive potential of morphokinetic parameters was analyzed by logistic regression and receiver operating characteristic curve analysis to determine optimal cut-off values. Lag-phase was highly correlated with embryo development. Remarkably, 100% of zygotes that reached the blastocyst stage showed a lag-phase. Fast first cleavage increased the chance of blastocyst development to 30% with a cut-off of 32 h and 22 min. Aberrant zygotic cleavage events, including multipolar division, unequal blastomere sizes, and membrane ruffling resulted in decreased blastocyst development. Multipolar division leads to uneven blastomeres, which was associated with anuclear and multinuclear blastomeres, indicating genome segregation errors. Moreover, we described for the first time morphokinetics of embryos derived from vitrified bovine oocytes. Vitrification severely affected blastocyst development, although lower cryoprotectant concentration in equilibration solutions seems to be less detrimental for embryo yield. Impaired development was linked to slow cleavages, lower lag-phase incidence, and increased early embryonic arrest. Typically, less than 15% of the embryos produced from vitrified oocytes reached more than eight cells. Interestingly, the rate of abnormal first cleavage events was not affected by oocyte vitrification. In conclusion, time to first cleavage, the presence of a lag-phase, and the absence of aberrant zygotic cleavage were the best predictors of bovine blastocyst development for both fresh and vitrified oocytes.
Collapse
Affiliation(s)
- Daniel Angel-Velez
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium.
- Research Group in Animal Sciences - INCA-CES, Universidad CES, Medellin, Colombia.
| | - Tine De Coster
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Krishna Pavani
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Wu Y, Yang R, Lan J, Wu Y, Huang J, Fan Q, You Y, Lin H, Jiao X, Chen H, Cao C, Zhang Q. Iron overload modulates follicular microenvironment via ROS/HIF-1α/FSHR signaling. Free Radic Biol Med 2023; 196:37-52. [PMID: 36638901 DOI: 10.1016/j.freeradbiomed.2022.12.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Iron is essential for the health of reproductive system, and women with iron overload suffer from ovarian dysfunction and lack effective treatment in fertility preservation. However, the underlying mechanism of the detrimental effects of iron overload on ovarian function remains ambiguous. Here, we confirmed the excess iron in the circumjacent follicle near endometriomas, which negatively impacted the oocyte development in the affected ovaries. Further, by integrating cell line and chronic iron overload mice model, we demonstrated that iron overload can function as a ROS inducer to amplify mitochondria damage, which significantly elevated the release of cytochrome C and ultimately induced the apoptosis of granular cells. Besides, for the first time, our findings revealed that disruption of HIF-1α/FSHR/CYP19A1 signaling was critical for decreased estrogen synthesis of granular cells in response to iron overload, which can lead to apparent oocyte maldevelopment and subfertility. Overall. this study uncovered that iron overload modulated the follicular microenvironment and generated a deleterious effect on female infertility via ROS/HIF-1α/FSHR signaling. These results might provide potential implications for future clinical risk management of patients with endometrioma and hemopathy.
Collapse
Affiliation(s)
- Yaoqiu Wu
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Rong Yang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Jie Lan
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yingchen Wu
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Jianyun Huang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qi Fan
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yang You
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Haiyan Lin
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xuedan Jiao
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Hui Chen
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangzhou Laboratory, Guangzhou, 510320, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qingxue Zhang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
4
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Luo Y, Zhou D, Liu H, Wan P, Hou Y, Fu X. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol 2022; 13:95. [PMID: 35971139 PMCID: PMC9380387 DOI: 10.1186/s40104-022-00742-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation. Antioxidants were always used to antagonist the oxidative stress caused by vitrification. However, the comprehensive mechanism underlying the protective role of antioxidants has not been studied. Procyanidin B2 (PCB2) is a potent natural antioxidant and its functions in response to vitrification are still unknown. In this study, the effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored, and the mechanisms underlying the protective role of PCB2 were systematically elucidated. RESULTS Vitrification induced a marked decline in oocyte quality, while PCB2 could improve oocyte viability and further development after parthenogenetic activation. A subsequent study indicated that PCB2 effectively attenuated vitrification-induced oxidative stress, rescued mitochondrial dysfunction, and improved cell viability. Moreover, PCB2 also acts as a cortical tension regulator apart from strong antioxidant properties. Increased cortical tension caused by PCB2 would maintain normal spindle morphology and promote migration, ensure correct meiosis progression and finally reduce the aneuploidy rate in vitrified oocytes. Further study reveals that ATP biosynthesis plays a crucial role in cortical tension regulation, and PCB2 effectively increased the cortical tension through the electron transfer chain pathway. Additionally, PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and further improve blastocyst quality. What's more, targeted metabolomics shows that PCB2 has a beneficial effect on blastocyst formation by mediating saccharides and amino acids metabolism. CONCLUSIONS Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochondria-mediated cortical tension regulation.
Collapse
Affiliation(s)
- Qingrui Zhuan
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jun Li
- grid.452458.aDepartment of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Xingzhu Du
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Luyao Zhang
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwen Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dan Zhou
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Hongyu Liu
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Wan
- grid.469620.f0000 0004 4678 3979State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| | - Yunpeng Hou
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China. .,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China.
| |
Collapse
|
5
|
Lan T, Zhang K, Lin F, He Q, Wu S, Xu Z, Zhang Y, Quan F. Effects of MICU1-Mediated Mitochondrial Calcium Uptake on Energy Metabolism and Quality of Vitrified-Thawed Mouse Metaphase II Oocytes. Int J Mol Sci 2022; 23:ijms23158629. [PMID: 35955764 PMCID: PMC9368797 DOI: 10.3390/ijms23158629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Oocyte vitrification has been widely used in the treatment of infertility and fertility preservation. However, vitrification-induced mitochondrial damage adversely affects oocyte development. Several studies have reported that mitochondrial calcium uptake protein 1 (MICU1) regulates the uptake of mitochondrial calcium by the mitochondrial calcium uniporter (MCU) and subsequently controls aerobic metabolism and oxidative stress in mitochondria, but research considering oocytes remains unreported. We evaluated whether the addition of MICU1 modulators enhances mitochondrial activity, pyruvate metabolism, and developmental competence after warming of MII oocytes. Methods: Retrieved MII oocytes of mice were classified as vitrified or control groups. After thawing, oocytes of vitrified group were cultured with or without DS16570511 (MICU1 inhibitor) and MCU-i4 (MICU1 activator) for 2 h. Results: Mitochondrial Ca2+ concentration, pyruvate dephosphorylation level, and MICU1 expression of MII oocytes were significantly increased after vitrification. These phenomena were further exacerbated by the addition of MCU-i4 and reversed by the addition of DS16570511 after warming. However, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) in vitrified-warmed MII oocytes drop significantly after vitrification, which was improved after MCU-i4 treatment and decreased significantly after DS16570511 treatment. The vitrification process was able to elicit a development competence reduction. After parthenogenetic activation, incubation of the thawed oocytes with MCU-i4 did not alter the cleavage and blastocyst rates. Moreover, incubation of the thawed oocytes with DS16570511 reduced the cleavage and blastocyst rates. Conclusions: MICU1-mediated increasing mitochondrial calcium uptake after vitrification of the MII oocytes promoted the pyruvate oxidation, and this process may maintain oocyte development competence by compensating for the consumption of ATP under stress state.
Collapse
|
6
|
Ikeda S, Fukasawa H, Mabuchi T, Hirata S. Cytoplasmic streaming induced by intracytoplasmic spindle translocation contributes to developmental competence through mitochondrial distribution in mouse oocytes. F&S SCIENCE 2022; 3:210-216. [PMID: 35661817 DOI: 10.1016/j.xfss.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the developmental competency of mouse metaphase II oocytes and the pattern of mitochondrial positioning through cytoplasmic streaming in mouse metaphase II oocytes. DESIGN We observed cytoplasmic streaming as movement indicated by fluorescently stained mitochondria using a newly developed method in which the spindle is translocated to the opposite site of the oocyte. This method is termed as intracytoplasmic spindle translocation (ICST). SETTING University research laboratory. ANIMALS Female B6D2F1 mice. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Fresh oocytes, postovulatory-aged oocytes, and oocytes treated with cytochalasin B were classified based on the presence of cytoplasmic streaming induced by ICST. The pattern of redistributed mitochondria and developmental competence caused by parthenogenetic activation were evaluated in oocytes with or without cytoplasmic streaming. RESULT(S) Induced cytoplasmic streaming occurred in 84% of the fresh oocytes but not in the postovulatory-aged oocytes and the oocytes treated with cytochalasin B. Abnormal mitochondrial aggregation was observed in oocytes in which cytoplasmic streaming was not induced. Furthermore, the developmental competence was significantly lower in oocytes without cytoplasmic streaming. CONCLUSION(S) Cytoplasmic streaming induced by ICST contributes to developmental competence through the redistribution of mitochondria and may be a valuable criterion for predicting early developmental competence in mouse oocytes.
Collapse
Affiliation(s)
- Shoko Ikeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroko Fukasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tadashi Mabuchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
7
|
Du X, Li J, Zhuan Q, Zhang L, Meng L, Ren P, Huang X, Bai J, Wan P, Sun W, Hou Y, Zhu S, Fu X. Artificially Increasing Cortical Tension Improves Mouse Oocytes Development by Attenuating Meiotic Defects During Vitrification. Front Cell Dev Biol 2022; 10:876259. [PMID: 35399525 PMCID: PMC8987233 DOI: 10.3389/fcell.2022.876259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
Oocyte cryopreservation demonstrates great benefits in the conservation of animal germplasm resources and assisted reproductive technology. However, vitrification causes damages in oocytes, which would lead to the decrease of oocyte quality, and embryonic development post fertilization. Cytoskeleton plays an important role in regulating cell shape, organelle migration, cell division and mechanical signal transduction. Cortical tension is a reflection of the physiological state and contractile ability of cortical cytoskeleton. Appropriate cortical tension is prerequesite for normal oocyte meiosis. In the present study, oocyte cortical tension was examined by evaluating the levels of cortical tension-related protein pERM (Phospho-Ezrin/Radixin/Moesin) and pMRLC (Phospho-Myosin Light Chain 2). We found that the cortical tension of vitrified oocytes was decreased. Increasing cortical tension of vitrified oocytes by adding 10 μg/ml ConA during in vitro culture could significantly improve the polar body extrusion rate and embryo development. Furthermore, increasing the cortical tension could improve spindle positioning, maintain kinetochore-microtubule (KT-MT) attachment, strengthen spindle assembly checkpoint (SAC) activity, and reduce the aneuploidy rate in vitrified oocytes. In conclusion, vitrification induced a remarkable decrease in cortical tension, and increasing the cortical tension could rescue the meiosis defect and improve oocyte quality.
Collapse
Affiliation(s)
- Xingzhu Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Panyu Ren
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohan Huang
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiachen Bai
- Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wenquan Sun
- Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- *Correspondence: Xiangwei Fu,
| |
Collapse
|
8
|
Antioxidant supplementation of mouse embryo culture or vitrification media support more in-vivo-like gene expression post-transfer. Reprod Biomed Online 2021; 44:393-410. [DOI: 10.1016/j.rbmo.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022]
|
9
|
Saadeldin IM, Moulavi F, Swelum AAA, Khorshid SS, Hamid HF, Hosseini SM. Vitrification of camel oocytes transiently impacts mitochondrial functions without affecting the developmental potential after intracytoplasmic sperm injection and parthenogenetic activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44604-44613. [PMID: 33029771 DOI: 10.1007/s11356-020-11070-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Oocyte vitrification preserves the female genetic resources of elite dromedary camels. In the current study, we aimed to explore the effects of vitrification of camel oocytes on mitochondrial activity, redox stress, and expression of genes related to mitochondrial function, apoptosis, pluripotency, and cytoskeleton. Moreover, we investigated developmental competence of vitrified oocytes after parthenogenetic activation. Oocytes vitrified with the Cryotop method were compared with the fresh oocytes. Our results showed that vitrification led to increased ROS production in oocytes as evidenced by an increase in the DCFDHA fluorescence intensity, and lower mitochondrial activity. At the molecular level, vitrification reduced mRNA expression of many genes, including those related to mitochondrial function (TFAM, MT-CO1, MFN1, ATP1A1, NRF1), pluripotency (SOX2 and POU5F1), and apoptosis (p53 and BAX). In contrast, expression of KLF4 and cytoskeleton-related genes (ACTB and KRT8) was not affected. However, we found no difference in the rates of oocyte survival, cleavage, and blastocyst development, and blastocyst hatching between fresh and vitrified oocytes after warming. Our results indicate that although vitrification of camel metaphase II (MII) oocytes adversely affected mitochondrial functions, the effect was transient without compromising the developmental potential of the oocytes after parthenogenetic activation.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Fariba Moulavi
- Department of Embryology, Camel Advanced Reproductive Technologies Centre, Government of Dubai, Dubai, United Arab Emirates
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Sokhangouy Saiede Khorshid
- Department of Embryology, Camel Advanced Reproductive Technologies Centre, Government of Dubai, Dubai, United Arab Emirates
| | - Hossini-Fahraji Hamid
- Department of Embryology, Camel Advanced Reproductive Technologies Centre, Government of Dubai, Dubai, United Arab Emirates
| | - Sayyed Morteza Hosseini
- Department of Embryology, Camel Advanced Reproductive Technologies Centre, Government of Dubai, Dubai, United Arab Emirates.
| |
Collapse
|
10
|
Gao Z, Yao G, Zhang H, Liu H, Yang Z, Liu C, Li W, Zhao X, Wei Q, Ma B. Resveratrol protects the mitochondria from vitrification injury in mouse 2-cell embryos. Cryobiology 2020; 95:123-129. [PMID: 32464144 DOI: 10.1016/j.cryobiol.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
Mitochondria play a key role in embryo development by providing energy. However, vitrification often causes mitochondrion damage of embryo, which further impairs embryo development. Therefore, the efficiency of embryo development after vitrification could be improved by protecting mitochondrial function from vitrification injury. The purpose of this study was to investigate the effects of resveratrol on mitochondrial damage after vitrification. The results showed that vitrification induced the abnormal mitochondrial distribution and damage mitochondrial function of mouse 2-cell embryos. However, co-culturing with resveratrol for 2 h could repair the abnormal mitochondrial distribution and mitochondrial dysfunction of embryos after vitrification. More than anything, the subsequent development ability of vitrified-thawed 2-cell embryos was significantly higher than that with no resveratrol treatment. In conclusion, resveratrol could protect the mitochondrial from injury caused by vitrification.
Collapse
Affiliation(s)
- Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ge Yao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Haokun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhenshan Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wei Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Gutnisky C, Morado S, Gadze T, Donato A, Alvarez G, Dalvit G, Cetica P. Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology 2019; 143:18-26. [PMID: 31830686 DOI: 10.1016/j.theriogenology.2019.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to evaluate the effect of vitrification on morphological, biochemical and functional parameters of matured bovine oocytes at different recovery times. To this end, matured bovine oocytes were vitrified using the Cryotech® kit (a minimum-volume system) and then incubated in maturation medium for different post-warming durations (0 h, 3 h or 21 h). Morphology, viability and biochemical parameters were assessed at each time point mentioned above and the recovery of the metaphase plate was analyzed at 2 h, 3 h and 4 h post-warming. The vitrification-warming process did not affect the viability or morphology of oocytes at any time point. However, the recovery of the metaphase plate occurred mostly between 3 and 4 h rather than at 2 h after warming (P < 0.05). Both control and vitrified-warmed oocytes showed changes in cytosolic oxidative activity, quantification of active mitochondria, reactive oxygen species (ROS) levels and redox status at the different time points studied (P < 0.05). However, differences between control and vitrified-warmed oocytes were found only in the quantification of active mitochondria and ROS production (P < 0.05). Finally, in vitro fertilization and embryo culture were carried out as functional studies to establish whether vitrification-warming affected oocyte competence, and a significant decrease was found both in the cleavage rate and embryo development (P < 0.05). We concluded that major improvements in oocyte vitrification, at list with Cryotech® kit, are still needed to avoid variations in oocyte metabolism which could contribute to the reduction in the developmental competence of bovine oocytes.
Collapse
Affiliation(s)
- C Gutnisky
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina; Unidad Ejecutora de Investigaciones en Producción Animal (INPA, UBA-CONICET), Buenos Aires, Argentina.
| | - S Morado
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - T Gadze
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - A Donato
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - G Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina; Unidad Ejecutora de Investigaciones en Producción Animal (INPA, UBA-CONICET), Buenos Aires, Argentina
| | - G Dalvit
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - P Cetica
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina; Unidad Ejecutora de Investigaciones en Producción Animal (INPA, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Huang J, Ma Y, Wei S, Pan B, Qi Y, Hou Y, Meng Q, Zhou G, Han H. Dynamic changes in the global transcriptome of bovine germinal vesicle oocytes after vitrification followed by in vitro maturation. Reprod Fertil Dev 2019; 30:1298-1313. [PMID: 29661269 DOI: 10.1071/rd17535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to investigate the effect of vitrification on the dynamics of the global transcriptome in bovine germinal vesicle (GV) oocytes and their in vitro-derived metaphase II (MII) oocytes. The GV oocytes were vitrified using the open-pulled straw method. After warming, GV oocytes and the resulting MII-stage oocytes were cultured in vitro for 2h and 24h respectively and were then collected. The fresh GV oocytes and their in vitro-derived MII oocytes were used as controls. Then, each pool (fresh GV, n=3; vitrified GV, n=4; fresh MII, n=1 and MII derived from vitrified GV, n=2) from the different stages was used for mRNA transcriptome sequencing. The results showed that the in vitro maturation rates of GV oocytes were significantly decreased (32.36% vs 53.14%) after vitrification. Bovine GV oocyte vitrification leads to 12 significantly upregulated and 19 downregulated genes. After culturing in vitro, the vitrification-derived MII oocytes showed 47 significantly upregulated and six downregulated genes when compared with those from fresh GV oocytes. Based on molecular function-gene ontology terms analysis and the Kyoto encyclopaedia of genes (KEGG) pathway database, the differentially expressed genes were associated with the pathways of cell differentiation and mitosis, transcription regulation, regulation of actin cytoskeleton, apoptosis and so on, which potentially result in the lower in vitro development of GV bovine oocytes.
Collapse
Affiliation(s)
- Jianwei Huang
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - YongShun Ma
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Shao Wei
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Bo Pan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - YunPeng Hou
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China
| | - QingYong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China
| | - GuangBin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - HongBing Han
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
13
|
Wu Z, Pan B, Qazi IH, Yang H, Guo S, Yang J, Zhang Y, Zeng C, Zhang M, Han H, Meng Q, Zhou G. Melatonin Improves In Vitro Development of Vitrified-Warmed Mouse Germinal Vesicle Oocytes Potentially via Modulation of Spindle Assembly Checkpoint-Related Genes. Cells 2019; 8:E1009. [PMID: 31480299 PMCID: PMC6770451 DOI: 10.3390/cells8091009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effect of melatonin (MT) supplementation on in vitro maturation of vitrified mouse germinal vesicle (GV) oocytes. The fresh oocytes were randomly divided into three groups: untreated (control), or vitrified by open-pulled straw method without (vitrification group) or with MT supplementation (vitrification + MT group). After warming, oocytes were cultured in vitro, then the reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, ATP levels, spindle morphology, mRNA expression of spindle assembly checkpoint (SAC)-related genes (Mps1, BubR1, Mad1, Mad2), and their subsequent developmental potential in vitro were evaluated. The results showed that vitrification/warming procedures significantly decreased the percentage of GV oocytes developed to metaphase II (MII) stage, the mitochondrial membrane potential, ATP content, and GSH levels, remarkably increased the ROS levels, and significantly impaired the spindle morphology. The expressions of SAC-related genes were also altered in vitrified oocytes. However, when 10-7 mol/L MT was administered during the whole length of the experiment, the percentage of GV oocytes matured to MII stage was significantly increased, and the other indicators were also significantly improved and almost recovered to the normal levels relative to the control. Thus, we speculate that MT might regulate the mitochondrial membrane potential, ATP content, ROS, GSH, and expression of SAC-related genes, potentially increasing the in vitro maturation of vitrified-warmed mouse GV oocytes.
Collapse
Affiliation(s)
- Zhenzheng Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Li J, Yang X, Liu F, Song Y, Liu Y. Evaluation of differentially expressed microRNAs in vitrified oocytes by next generation sequencing. Int J Biochem Cell Biol 2019; 112:134-140. [DOI: 10.1016/j.biocel.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
|
15
|
Melatonin Improves Parthenogenetic Development of Vitrified⁻Warmed Mouse Oocytes Potentially by Promoting G1/S Cell Cycle Progression. Int J Mol Sci 2018; 19:ijms19124029. [PMID: 30551578 PMCID: PMC6321189 DOI: 10.3390/ijms19124029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effect of melatonin on the cell cycle of parthenogenetic embryos derived from vitrified mouse metaphase II (MII) oocytes. Fresh oocytes were randomly allocated into three groups: untreated (control), or vitrified by the open-pulled straw method without (Vitrification group) or with melatonin (MT) supplementation (Vitrification + MT group). After warming, oocytes were parthenogenetically activated and cultured in vitro, then the percentage of embryos in the G1/S phase, the levels of reactive oxygen species (ROS) and glutathione (GSH), and the mRNA expression of cell cycle-related genes (P53, P21 and E2F1) in zygotes and their subsequent developmental potential in vitro were evaluated. The results showed that the vitrification/warming procedures significantly decreased the frequency of the S phase, markedly increased ROS and GSH levels and the expression of P53 and P21 genes, and decreased E2F1 expression in zygotes at the G1 stage and their subsequent development into 2-cell and blastocyst stage embryos. However, when 10−9 mol/L MT was administered for the whole duration of the experiment, the frequency of the S phase in zygotes was significantly increased, while the other indicators were also significantly improved and almost recovered to the normal levels shown in the control. Thus, MT might promote G1-to-S progression via regulation of ROS, GSH and cell cycle-related genes, potentially increasing the parthenogenetic development ability of vitrified–warmed mouse oocytes.
Collapse
|
16
|
Sanaei B, Movaghar B, Valojerdi MR, Ebrahimi B, Bazrgar M, Jafarpour F, Nasr-Esfahani MH. An improved method for vitrification of in vitro matured ovine oocytes; beneficial effects of Ethylene Glycol Tetraacetic acid, an intracellular calcium chelator. Cryobiology 2018; 84:82-90. [PMID: 30244698 DOI: 10.1016/j.cryobiol.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/03/2018] [Accepted: 07/02/2018] [Indexed: 01/17/2023]
Abstract
Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.
Collapse
Affiliation(s)
- Batool Sanaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | | | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
17
|
Yoon SY, Eum JH, Cha SK, Yoon TK, Lee DR, Lee WS. Prematuration Culture with Phosphodiesterase Inhibitors After Vitrification May Induce Recovery of Mitochondrial Activity in Vitrified Mouse Immature Oocytes. Biopreserv Biobank 2018; 16:296-303. [DOI: 10.1089/bio.2018.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Soo Kyoung Cha
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Tae Ki Yoon
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| |
Collapse
|
18
|
Pitchayapipatkul J, Somfai T, Matoba S, Parnpai R, Nagai T, Geshi M, Vongpralub T. Microtubule stabilisers docetaxel and paclitaxel reduce spindle damage and maintain the developmental competence of in vitro-mature bovine oocytes during vitrification. Reprod Fertil Dev 2018; 29:2028-2039. [PMID: 28147214 DOI: 10.1071/rd16193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 12/10/2016] [Indexed: 11/23/2022] Open
Abstract
This study compared the efficacy of docetaxel (DT) and paclitaxel (PT) in reducing spindle damage during vitrification and maintaining the developmental competence of in vitro-matured (IVM) bovine oocytes after vitrification and warming. Pretreatment of IVM oocytes with 0.05µM DT for 30min before vitrification resulted in significantly higher (P<0.05) rates of oocyte survival and cleavage after IVF, as well as subsequent blastocyst rates on Days 7-9 and hatching on Days 8-9, compared with oocytes pretreated with 1.0µM PT before vitrification or those vitrified without pretreatment. When nuclear status and spindle morphology of vitrified oocytes were assess after warming by immunostaining, DT pretreatment before vitrification resulted in a significantly higher (P<0.05) percentage of oocytes at the MII stage with a normal, intact spindle compared with PT pretreatment or no pretreatment, but the percentage of MII oocytes was still significantly lower (P<0.05) than in the control group. Pretreatment of IVM bovine oocytes with 0.05µM DT or 1.0µM PT for 30min before vitrification reduces spindle damage to the same extent, without side effects on fertilisation and development. Pretreatment with 0.05µM DT improved the developmental competence of vitrified-warmed oocytes to a greater degree than 1.0µM PT pretreatment.
Collapse
Affiliation(s)
| | - Tamás Somfai
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organisation (NARO) Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Satoko Matoba
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organisation (NARO) Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Rangsan Parnpai
- Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Takashi Nagai
- Food and Fertilizer Technology Center, Taipei 10648, Taiwan
| | - Masaya Geshi
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organisation (NARO) Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Thevin Vongpralub
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
In-vitro development of vitrified–warmed bovine oocytes after activation may be predicted based on mathematical modelling of cooling and warming rates during vitrification, storage and sample removal. Reprod Biomed Online 2018; 36:500-507. [DOI: 10.1016/j.rbmo.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 01/26/2023]
|
20
|
A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology 2018; 110:18-26. [DOI: 10.1016/j.theriogenology.2017.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
|
21
|
Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci Rep 2017; 7:10652. [PMID: 28878377 PMCID: PMC5587528 DOI: 10.1038/s41598-017-10907-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/16/2017] [Indexed: 01/25/2023] Open
Abstract
Vitrification reduces the fertilisation capacity and developmental ability of mammalian oocytes; this effect is closely associated with an abnormal increase of cytoplasmic free calcium ions ([Ca2+]i). However, little information about the mechanism by which vitrification increases [Ca2+]i levels or a procedure to regulate [Ca2+]i levels in these oocytes is available. Vitrified bovine oocytes were used to analyse the effect of vitrification on [Ca2+]i, endoplasmic reticulum Ca2+ (ER Ca2+), and mitochondrial Ca2+ (mCa2+) levels. Our results showed that vitrification, especially with dimethyl sulfoxide (DMSO), can induce ER Ca2+ release into the cytoplasm, consequently increasing the [Ca2+]i and mCa2+ levels. Supplementing the cells with 10 μM 1,2-bis (o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM or BAPTA) significantly decreased the [Ca2+]i level and maintained the normal distribution of cortical granules in the vitrified bovine oocytes, increasing their fertilisation ability and cleavage rate after in vitro fertilisation (IVF). Treating vitrified bovine oocytes with 1 μM ruthenium red (RR) significantly inhibited the Ca2+ flux from the cytoplasm into mitochondria; maintained normal mCa2+ levels, mitochondrial membrane potential, and ATP content; and inhibited apoptosis. Treating vitrified oocytes with a combination of BAPTA and RR significantly improved embryo development and quality after IVF.
Collapse
|
22
|
Nair R, Manikkath J, Hegde AR, Mutalik S, Kalthur G, Adiga SK. Liposome-encapsulated diacyl glycerol and inositol triphosphate-induced delayed oocyte activation and poor development of parthenotes. J Turk Ger Gynecol Assoc 2017; 18:102-109. [PMID: 28890423 PMCID: PMC5590204 DOI: 10.4274/jtgga.2017.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: To explore the ability of diacyl glycerol (DAG) and inositol triphosphate (IP3), two major secondary messengers in the calcium signaling pathway, in activating oocytes. Material and Methods: Oocyte cumulus complex obtained from superovulated Swiss albino mice were incubated in M16 medium with liposome-encapsulated 1,2-Dipalmitoyl-sn-glycerol (LEDAG) and/or IP3 for 3 h. Strontium chloride was used as positive control. The activation potential, ploidy status, and blastocyst rate was calculated. Results: Both DAG and IP3, individually, induced activation in ~98% of oocytes, which was significantly higher (p<0.01) than activation induced by strontium chloride (60%). Delayed pronucleus formation and a higher percentage of diploid parthenotes was observed in oocytes activated with LEDAG and/or IP3. However, these embryos failed to progress beyond the 6-8–cell stage. Only when the medium was supplemented with LEDAG (5 μg/mL) and IP3 (10 μg/mL) could activated oocytes progress till the blastocyst stage (5.26%), which was lower than the blastocyst rate in the positive controls (13.91%). Conclusion: The results of the present study indicate that DAG and IP3 can induce delayed oocyte activation and poor development of parthenotes in vitro.
Collapse
Affiliation(s)
- Ramya Nair
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|
23
|
Vitrification of mouse MII oocytes: Developmental competency using paclitaxel. Taiwan J Obstet Gynecol 2017; 55:796-800. [PMID: 28040122 DOI: 10.1016/j.tjog.2016.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Oocyte cryopreservation provides an important alternative for fertility preservation for women who will be treated with cytotoxic drugs. However, it can cause spindle disorganization of microtubules, putting the zygote at risk for aneuploidy. Paclitaxel is known to stabilize the microtubules that constitute the spindle. The aim of this study was to investigate the suitable concentration of paclitaxel for adding to the vitrification media to improve the developmental potential of post-thawed mature oocytes to blastocyst formation in mice. MATERIALS AND METHODS A total of 300 MII oocytes were retrieved from superovulated mice, and were divided into three groups of control, Experimental I, and Experimental II. Oocytes in Experimental I and Experimental II were cryopreserved in the presence of 0.5μM or 1μM of paclitaxel in vitrification media, respectively. After thawing, all oocytes were incubated in G-IVF medium for 1 hour. From each group,12 oocytes were selected for viability evaluation by Hoechst/propidium iodide nuclear staining. Standard in vitro fertilization was performed on the rest of the oocytes and embryo development was followed to the blastocyst stage. RESULTS Fertilization rate was not significantly different between the three groups. However, the cleavage rate (55%) in Experimental II group was significantly lower compared to Experimental I (88%) and control groups (83%). There was a detectable difference between the three groups at the blastocyst rate (Experimental I and control groups, p = 0.004; Experimental II vs. control and Experimental I, p < 0.001). The highest rates of parthenogenesis and arrest were in Experimental II (16% and 21%, respectively) compared with control (6% and 5%, respectively) and Experimental I (5% and 3%, respectively). There was also a significant decrease in viability rate of oocytes in Experimental II compared to the other groups. CONCLUSION A high concentration of paclitaxel, an anticancer drug, interrupted the mouse oocyte competency when supplemented to vitrification media. Consequently, the optimal concentration of this cytoskeleton stabilizer may improve the post-thawed developmental abilities of oocytes.
Collapse
|
24
|
Vitrification of immature and in vitro matured bovine cumulus-oocyte complexes: Effects on oocyte structure and embryo development. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Hosseinzadeh E, Zavareh S, Lashkarbolouki T. Antioxidant properties of coenzyme Q10-pretreated mouse pre-antral follicles derived from vitrified ovaries. J Obstet Gynaecol Res 2016; 43:140-148. [PMID: 27935208 DOI: 10.1111/jog.13173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Abstract
AIM This study evaluated the antioxidant status of pre-antral follicles derived from vitrified ovaries pretreated with coenzyme Q10 (CoQ10). METHODS Mouse pre-antral follicles derived from fresh and vitrified warmed ovarian tissue were cultured with or without CoQ10 (50 μmol/L). Follicular growth, total antioxidant capacity (TAC), malondialdehyde (MDA) level, and superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activity during cultivation were assessed. RESULTS The growth rate of the fresh pre-antral follicles was higher compared with the vitrified groups, especially in the CoQ10-treated than non-treated groups. MDA increased while TAC decreased at 96 h of the cultivation period. TAC was higher while MDA was lower in the fresh pre-antral follicles than in the vitrified groups. These rates were higher in the CoQ10-treated than non-treated groups. The vitrified and fresh CoQ10-pretreated groups had significantly higher SOD, GPX, and CAT activity compared with the CoQ10 non-treated groups. CONCLUSION CoQ10-supplemented maturation medium can increase antioxidant enzyme activity and decrease lipid peroxidation in cultured pre-antral follicles derived from fresh and vitrified mouse ovaries.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
26
|
Improved development by melatonin treatment after vitrification of mouse metaphase II oocytes. Cryobiology 2016; 73:335-342. [PMID: 27725165 DOI: 10.1016/j.cryobiol.2016.09.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
The study was aimed to investigate the effect of melatonin on the development potential of mouse MII oocytes after cryopreservation. Mouse MII oocytes were subjected first to vitrification/warming and 2 h of in vitro culture (phase 1), then to parthenogenetic activation (PA) followed by in vitro culture of parthenogenetic embryos (phase 2). Different concentrations of melatonin (0, 10-9, 10-6 mol/L) were added to the medium during either phase 1, phase 2 or both phases. The fresh oocytes were used as control. When melatonin was used during both phases, 10-9 mol/L melatonin-treated group showed similar rates of cleavage and 4-cell embryo development compared with control, which were significantly higher than those of melatonin-free group, while the rates in either 10-6 mol/L melatonin-treated or melatonin-free groups were significantly lower than that in control. When 10-9 mol/L melatonin was added during either phase 1 or phase 2, both cleavage and 4-cell embryo development rates of either group were significantly lower than those of control. After oocyte vitrification/warming and PA, the ROS levels increased significantly and maternal-to-zygotic transition (MZT) related genes (Dcp1a, Dcp2, Hspa1a, Eif1ax, Pou5f1, Sox2) expression were disorganized. However, after 10-9 mol/L melatonin supplementation, the ROS levels decreased significantly compared with melatonin-free group, and the gene expressions were almost recovered to normal level of control group. These results demonstrated that 10-9 mol/L melatonin supplementation could increase the developmental potential of vitrified-warmed mouse MII oocytes, which may result from ROS scavenging activities and recovery of normal levels of the expressions of MZT-related genes.
Collapse
|
27
|
Li W, Cheng K, Zhang Y, Meng Q, Zhu S, Zhou G. No effect of exogenous melatonin on development of cryopreserved metaphase II oocytes in mouse. J Anim Sci Biotechnol 2015; 6:42. [PMID: 26380081 PMCID: PMC4568589 DOI: 10.1186/s40104-015-0041-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
Background This study was conducted to investigate effect of exogenous melatonin on the development of mouse mature oocytes after cryopreservation. Results First, mouse metaphase II (MII) oocytes were vitrified in the open-pulled straws (OPS). After warming, they were cultured for 1 h in M2 medium containing melatonin at different concentrations (0, 10−9, 10−7, 10−5, 10−3 mol/L). Then the oocytes were used to detect reactive oxygen species (ROS) and glutathione (GSH) levels (fluorescence microscopy), and the developmental potential after parthenogenetic activation. The experimental results showed that the ROS level and cleavage rate in 10−3 mol/L melatonin group was significantly lower than that in melatonin-free group (control). The GSH levels and blastocyst rates in all melatonin-treated groups were similar to that in control. Based on the above results, we detected the expression of gene Hsp90aa1, Hsf1, Hspa1b, Nrf2 and Bcl-x1 with qRT-PCR in oocytes treated with 10−7, or 10−3 mol/L melatonin and untreated control. After warming and culture for 1 h, the oocytes showed higher Hsp90aa1 expression in 10−7 mol/L melatonin-treated group than in the control (P < 0.05); the Hsf1, Hsp90aa1 and Bcl-x1 expression were significantly decreased in 10−3 mol/L melatonin-treated group when compared to the control. Based on the above results and previous research, we detected the development of vitrified-warmed oocytes treated with either 10−7 or 0 mol/L melatonin by in vitro fertilization. No difference was observed between them. Conclusions Our results indicate that the supplementation of melatonin (10−9 to 10−3 mol/L) in culture medium and incubation for 1 h did not improve the subsequent developmental potential of vitrified-warmed mouse MII oocytes, even if there were alteration in gene expression.
Collapse
Affiliation(s)
- Wei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Wenjiang, 611130 P.R. China ; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P.R. China
| | - Keren Cheng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah USA
| | - Yue Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Wenjiang, 611130 P.R. China
| | - Qinggang Meng
- Nanjing Biomedical Research Institute of Nanjing University, Nanjing, 210089 P.R. China
| | - Shi'en Zhu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah USA
| | - Guangbin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Wenjiang, 611130 P.R. China
| |
Collapse
|
28
|
Dai J, Wu C, Muneri CW, Niu Y, Zhang S, Rui R, Zhang D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 2015; 71:291-8. [PMID: 26247316 DOI: 10.1016/j.cryobiol.2015.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/02/2015] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to investigate the changes in mitochondria in porcine MII-stage oocytes after open pulled straw (OPS) vitrification and to determine their roles in apoptosis and in vitro developmental ability. The mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) level, adenosine-5'-triphosphate (ATP) concentration, mitochondrial distribution, mitochondrial ultrastructure, early-stage apoptosis with Annexin V-FITC staining, survival rate, parthenogenetic developmental ability and related gene expression were measured in the present experiments. The results showed that: (1) the mitochondrial ΔΨm of vitrified-thawed oocytes (1.05) was lower than that of fresh oocytes 1.24 (P<0.05). (2) ROS level in the OPS vitrification group was much higher than that of the fresh group, while the ATP concentration was much lower than that of fresh group (P<0.05). (3) Early-stage apoptosis rate from the OPS vitrification group (57.6%) was much higher than that of fresh group (8.53%) (P<0.05), and the survival rate and parthenogenetic cleavage rate of OPS vitrified oocytes were much lower than those from fresh ones (P<0.05). (4) Vitrification not only disrupted the mitochondrial distribution of porcine MII-stage oocytes, but also damaged the mitochondrial ultrastructure. (5) After vitrification, the gene expression level of Dnm1 was up-regulated, and other four genes (SOD1, Mfn2, BAX and Bcl2) were down-regulated. The present study suggested that not only the morphology and function of mitochondria were damaged greatly during the vitrification process, but also early-stage apoptosis was observed after vitrification. Intrinsic mitochondrial pathway could be in involved in the occurrence of apoptosis in vitrified-thawed porcine oocytes.
Collapse
Affiliation(s)
- Jianjun Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, China; Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Caifeng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Caroline W Muneri
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, China
| | - Yingfang Niu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, China.
| | - Defu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China.
| |
Collapse
|
29
|
Open versus closed systems for vitrification of human oocytes and embryos. Reprod Biomed Online 2015; 30:325-33. [DOI: 10.1016/j.rbmo.2014.12.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
|
30
|
Doyle JO, Lee HJ, Selesniemi K, Styer AK, Rueda BR. The impact of vitrification on murine germinal vesicle oocyte In vitro maturation and aurora kinase A protein expression. J Assist Reprod Genet 2014; 31:1695-702. [PMID: 25318984 DOI: 10.1007/s10815-014-0336-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Investigate the effect of vitrification on in vitro maturation (IVM) and expression of Aurora kinases A, B, and C in germinal vesicle (GV)-stage oocytes. METHODS GV-stage oocytes from B6D2F1 female mice 7-11 weeks of age were vitrified after collection, thawed, and matured in vitro for 0, 4, 8, and 12 h (hrs). The rate of germinal vesicle breakdown (GVBD), spindle apparatus assembly, and Aurora kinase mRNA and protein expression during IVM was measured. RESULTS Oocyte vitrification was associated with significant delays in both GVBD and normal spindle apparatus assembly at 4 and 8 h of IVM (p < 0.05). There was no difference in mRNA levels between control and vitrified oocytes for any of the Aurora kinases. Aurora A protein levels were reduced in vitrified compared to control oocytes at 0 h (p = 0.008), and there was no difference at 4 and 8 h (p = 0.08 and 0.69, respectively) of IVM. CONCLUSIONS Vitrified oocytes have delayed GVBD and normal spindle assembly during in vitro maturation. Reduced levels of Aurora A protein immediately post-thaw may be associated with the impaired oocyte maturation manifested by the delayed progression through meiosis I and II, and the atypical timing of the formation of meiotic spindles in vitrified GV-stage oocytes.
Collapse
Affiliation(s)
- Joseph O Doyle
- Vincent Center for Reproductive Biology, Thier 9, MGH Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | | | | | | | | |
Collapse
|
31
|
Moawad AR, Xu B, Tan SL, Taketo T. l-carnitine supplementation during vitrification of mouse germinal vesicle stage-oocytes and their subsequent in vitro maturation improves meiotic spindle configuration and mitochondrial distribution in metaphase II oocytes. Hum Reprod 2014; 29:2256-68. [PMID: 25113843 DOI: 10.1093/humrep/deu201] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION How does l-carnitine (LC) supplementation during vitrification and in vitro maturation (IVM) of germinal vesicle stage (GV)-oocytes improve the developmental competence of the resultant metaphase II (MII) oocytes? SUMMARY ANSWER LC supplementation during both vitrification of GV-oocytes and their subsequent IVM improved nuclear maturation as well as meiotic spindle assembly and mitochondrial distribution in MII oocytes. WHAT IS KNOWN ALREADY Vitrification of GV-oocytes results in a lower success rate of blastocyst development compared with non-vitrified oocytes. LC supplementation during both vitrification and IVM of mouse GV-oocytes significantly improves embryonic development after IVF. STUDY DESIGN, SIZE, DURATION GV-oocytes were collected from (B6.DBA)F1 and B6 mouse strains and subjected to vitrification and warming with or without 3.72 mM LC supplementation. After IVM with or without LC supplementation, the rate of nuclear maturation and the quality of MII oocytes were evaluated. At least 20 oocytes/group were examined, and each experiment was repeated at least three times. All experiments were conducted during 2013-2014. PARTICIPANTS/MATERIALS, SETTING, METHODS Extrusion of the first polar body in IVM oocytes was observed as an indication of nuclear maturation. Spindle assembly and chromosomal alignment were examined by immunostaining of α-tubulin and nuclear staining with 4,6-diamidino-2-phenylindole (DAPI). Mitochondrial distribution and oxidative activity were measured by staining with Mitotracker Green Fluorescence Mitochondria (Mitotracker Green FM) and chloromethyltetramethylrosamine (Mitotracker Orange CMTMRos), respectively. ATP levels were determined by using the Bioluminescent Somatic Cell Assay Kit. MAIN RESULTS AND THE ROLE OF CHANCE LC supplementation during both vitrification and IVM of GV-oocytes significantly increased the proportions of oocytes with normal MII spindles to the levels comparable with those of non-vitrified oocytes in both mouse strains. While vitrification of GV-oocytes lowered the proportions of MII oocytes with peripherally concentrated mitochondrial distribution compared with non-vitrified oocytes, LC supplementation significantly increased the proportion of such oocytes in the (B6.DBA)F1 strain. LC supplementation decreased the proportion of oocytes with mitochondrial aggregates in both vitrified and non-vitrified oocytes in the B6 strain. The oxidative activity of mitochondria was mildly decreased by vitrification and drastically increased by LC supplementation irrespective of vitrification in both mouse strains. No change was found in ATP levels irrespective of vitrification or LC supplementation. Results were considered to be statistically significant at P < 0.05 by either χ(2)- or t-test. LIMITATIONS, REASONS FOR CAUTION It remains to be tested whether beneficial effect of LC supplementation during vitrification and IVM of GV-oocytes leads to fetal development and birth of healthy offspring after embryo transfer to surrogate females. WIDER IMPLICATIONS OF THE FINDINGS This protocol has the potential to improve the quality of vitrified human oocytes and embryos during assisted reproduction treatment. STUDY FUNDING/COMPETING INTEREST Partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and Mitacs Elevate Postdoctoral Fellowship, Canada.
Collapse
Affiliation(s)
- Adel R Moawad
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Surgery, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Baozeng Xu
- Department of Surgery, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Surgery, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Wang L, Fu X, Zeng Y, Zhu S. Epinephrine promotes development potential of vitrified mouse oocytes. Pak J Biol Sci 2014; 17:254-9. [PMID: 24783810 DOI: 10.3923/pjbs.2014.254.259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cryopreserved oocytes show low developmental ability. To understand the mechanism underlying their development impairment, study was designed to determine the effect of epinephrine on the in vitro developmental competence of vitrified mouse oocytes. Mature oocytes were vitrified using Open Pulled Straw (OPS) method. The vitrified oocytes were warmed and introduced into M2 medium which contains epinephrine at different concentrations (10(-2), 10(-4), 10(-6), 10(-8) mol L(-1) in an incubator for 1 h. Then the survival rate of the oocytes was evaluated and the subsequent development of oocytes was assessed through in vitro Fertilization (IVF). Furthermore, the levels of intracellular ROS, GSH and the concentration of ATP were determined among 10(-4) mol L(-1) epinephrine-treated group, vitrification group and fresh group. Results showed that vitrified oocytes treated with 10(-4)) mol L(-1) epinephrine had significant higher rates of cleavage (66.4 vs.45.2%) and blastocyst (47.2 vs. 34.7%) than no epinephrine treated group, as well as more blastocyst cells (54.5 vs. 36.8) and lower ratio of apoptotic cells (5.9 vs. 21.5%; p < 0.05). Further experiment found that 10(-4) mol L(-1) epinephrine treatment could significantly reduce intracellular ROS level and enhance cytoplasmic ATP concentration (p < 0.05), but there was no different in GSH level compared to vitrification group. In conclusion, epinephrine could promote vitrified oocytes cryosurvival and their subsequent development ability, which maybe related with the changes of intracellular ROS level and ATP content.
Collapse
|
33
|
Does cryopreservation of ovarian tissue affect the distribution and function of germinal vesicle oocytes mitochondria? BIOMED RESEARCH INTERNATIONAL 2013; 2013:489032. [PMID: 23956986 PMCID: PMC3730362 DOI: 10.1155/2013/489032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate mitochondrial alteration and ATP content of germinal vesicle (GV) oocytes isolated from fresh and vitrified ovaries. After superovulation, the ovaries from adult mice were collected and divided into control and vitrified groups. GV oocytes were isolated mechanically from each group. Half were cultured for 24 hours and their maturation was assessed. Metaphase II oocytes were collected and submitted to in vitro fertilization and their fertilization rates and development to the blastocyst stage were evaluated. In the remaining GV oocytes, ATP levels were quantified, and mitochondrial distribution, mitochondrial membrane potential, and intracellular free calcium were detected with rhodamine 123, JC-1 and Flou-4 AM staining, using laser-scanning confocal microscopy. Maturation and fertilization rates of GV oocytes and the developmental rates of subsequent embryos were significantly lower in vitrified samples (P < 0.05). The ATP content and Ca(2+) levels differed significantly in fresh and vitrified GV oocytes (P < 0.05). Most mitochondria were seen as large and homogenous aggregates (66.6%) in fresh GV oocytes compared to vitrified oocytes (50%). No significant differences in mitochondrial membrane potential were found between the groups. The lower maturation and fertilization rates of GV oocytes from vitrified ovaries may be due to changes in their mitochondrial function and distribution.
Collapse
|
34
|
Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Qin T, Liu Y, Zhu HB. Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril 2013; 100:256-61. [DOI: 10.1016/j.fertnstert.2013.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022]
|
35
|
Wei X, Xiangwei F, Guangbin Z, Jing X, Liang W, Ming D, Dianshuai Y, Mingxing Y, Jianhui T, Shien Z. Cytokeratin distribution and expression during the maturation of mouse germinal vesicle oocytes after vitrification. Cryobiology 2013; 66:261-6. [DOI: 10.1016/j.cryobiol.2013.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
36
|
Zhou GB, Li N. Bovine Oocytes Cryoinjury and How to Improve Their Development Following Cryopreservation. Anim Biotechnol 2013; 24:94-106. [DOI: 10.1080/10495398.2012.755466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, Zhu HB. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev 2011; 78:942-50. [PMID: 21919110 DOI: 10.1002/mrd.21389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/18/2011] [Indexed: 11/08/2022]
Abstract
This study was designed to examine the recovery of mitochondrial function and endogenous antioxidant systems in vitrified oocytes during extended incubations. After 16 hr of in vitro maturation, bovine meiosis-II oocytes were vitrified, and then surviving oocytes were cultured an additional 8 hr. ATP content, ATP synthase activity, expression of ATP synthase F0 subunit 6 (ATP6) and 8 (ATP8) genes, and reactive oxygen species (ROS) levels were investigated in the vitrified oocytes during this additional period (4 or 8 hr). The results showed that: (1) the ATP content and ATP synthase activities in vitrified oocytes at 8 hr post-warming (754.6 fmol, 25.9 nmol NADH/min/mg) were significantly higher than in oocytes immediately warmed (568.3 fmol, 8.7 nmol NADH/min/mg), but still lower than in control oocytes (901.5 fmol, 30.7 nmol NADH/min/mg); (2) the relative expression of ATP6 and ATP8 was initially down-regulated in oocytes when they were first warmed, increased by 4 hr post-warming, and were again down-regulated by 8 hr post-warming; (3) ROS levels in oocytes at 0, 4, and 8 hr post-warming were significantly higher than in control oocytes; and (4) after parthenogenetic activation, the blastocyst rate of oocytes at 8 hr post-warming (26.7%) was significantly higher than that of oocytes immediately warmed (16.9%). These results indicated that mitochondrial function and endogenous antioxidant systems recovered significantly better in vitrified-thawed bovine oocytes with 8 hr of additional incubation, but they did not achieve the activity levels found in fresh oocytes.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang L, Liu J, Zhou GB, Hou YP, Li JJ, Zhu SE. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures. Biol Reprod 2011; 85:884-94. [PMID: 21697515 DOI: 10.1095/biolreprod.110.090118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.
Collapse
Affiliation(s)
- Liang Wang
- College of Animal Science and Technology, State Key Laboratories for Agrobiotechnology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, Zhu HB. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril 2011; 95:2786-8. [PMID: 21641592 DOI: 10.1016/j.fertnstert.2011.04.089] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/09/2011] [Accepted: 04/25/2011] [Indexed: 11/24/2022]
Abstract
Vitrification had a significantly negative impact on the mitochondrial function of bovine oocytes. However, 40 μg/mL cyclosporine pretreatment before vitrification contributed greatly to maintaining mitochondrial membrane potential and adenosine triphosphate content, decreasing reactive oxygen species level, and thereby increasing the developmental ability of vitrified oocytes.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|