1
|
Nielsen JLM, Majzoub A, Esteves S, Humaidan P. Unraveling the Impact of Sperm DNA Fragmentation on Reproductive Outcomes. Semin Reprod Med 2023; 41:241-257. [PMID: 38092034 DOI: 10.1055/s-0043-1777324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In recent years, there has been a growing interest in identifying subcellular causes of male infertility, and sperm DNA fragmentation (SDF) research has been at the forefront of this focus. DNA damage can occur during spermatogenesis due to faulty chromatin compaction or excessive abortive apoptosis. It can also happen as sperm transit through the genital tract, often induced by oxidative stress. There are several methods for SDF testing, with the sperm chromatin structure assay, terminal deoxynucleotidyl transferase d-UTI nick end labeling (TUNEL) assay, comet assay, and sperm chromatin dispersion test being the most commonly used. Numerous studies strongly support the negative impact of SDF on male fertility potential. DNA damage has been linked to various morphological and functional sperm abnormalities, ultimately affecting natural conception and assisted reproductive technology outcomes. This evidence-based review aims to explore how SDF influences male reproduction and provide insights into available therapeutic options to minimize its detrimental impact.
Collapse
Affiliation(s)
- Jeanett L M Nielsen
- The Fertility Clinic, Skive Regional Hospital, Skive, Denmark
- Department of Obstetrics and Gynecology, Viborg Regional Hospital, Viborg, Denmark
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Urology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Humaidan
- The Fertility Clinic, Skive Regional Hospital, Skive, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
New evidence for deleterious effects of environmental contaminants on the male gamete. Anim Reprod Sci 2022; 246:106886. [PMID: 34774338 DOI: 10.1016/j.anireprosci.2021.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
The decreasing trend in human and domestic animal fertility in recent decades has resulted in the question of whether reduced sperm quality is associated with changes in global climate and the environment. Proposed causes for reduced sperm quality include environmental contaminants, which enter into the body of animals through the food chain and are transported to the reproductive tract, where contaminating agents can have effects on fertilization capacities of gametes. In this review, there is a focus on various environmental contaminants and potential effects on male fertility. Human-derived contaminants, particularly endocrine-disrupting phthalates and the pesticide atrazine, are discussed. Naturally occurring toxins are also addressed, in particular mycotoxins such as aflatoxin which can be components in food consumed by humans and animals. Mechanisms by which environmental contaminants reduce male fertility are not clearly defined; however, are apparently multifactorial (i.e., direct and indirect effects) with there being diverse modes of action. Results from studies with humans, rodents and domestic animals indicate there are deleterious effects of contaminants on male gametes at various stages of spermatogenesis (i.e., in the testis) during passage through the epididymis, and in mature spermatozoa, after ejaculation and during capacitation. Considering there is never detection of a single contaminant, this review addresses synergistic or additive effects of combinations of contaminants. There is new evidence highlighted for the long-lasting effects of environmental contaminants on spermatozoa and developing embryos. Understanding the risk associated with environmental contaminants for animal reproduction may lead to new management strategies, thereby improving reproductive processes.
Collapse
|
3
|
Ahrari K, Omolaoye TS, Goswami N, Alsuwaidi H, du Plessis SS. Effects of space flight on sperm function and integrity: A systematic review. Front Physiol 2022; 13:904375. [PMID: 36035496 PMCID: PMC9402907 DOI: 10.3389/fphys.2022.904375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the advancement in space exploration and the intention to establish an inhabitable human settlement on Mars, it is important to investigate the effects of exposure to space/microgravity and the associated radiations on procreation. Sperm function and integrity are fundamental to male reproduction and can potentially be affected by the environmental changes experienced in space. Therefore, this study was conducted to systematically gather, filter, and collate all the relevant information on the effects of spaceflight on male reproductive parameters and functions. A search was performed utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were extracted from the major electronic databases including PubMed, and other credible literature sources. MeSH search terms that were employed included "spermatozoa", "microgravity", and "ionizing radiation". The literature search did not discriminate against papers published before a certain date due to the very limited number of articles available. However, there was a restriction on the male gender and language (English). The parameters included in this study are sperm motility, total sperm count, sperm DNA fragmentation hormonal levels and testicular histology. Following a comprehensive literature search, a total of 273 articles were retrieved and screened, 252 articles were excluded due to the irrelevance to the topic, duplication, and non-original articles. A total of 21 articles met the inclusion criteria and are included in the current study. Findings from these studies showed that sperm motility was decreased after exposure to microgravity and ionizing radiation. Total sperm count was also found to be reduced by microgravity only. Sperm DNA fragmentation was increased by both ionizing radiation and microgravity. Testosterone levels and testicular weight were also decreased by microgravity. Although there is a dearth in the literature regarding the effects of microgravity and ionizing radiation on male reproductive parameters, the available findings showed that exposure to microgravity poses a risk to male reproductive health. Therefore, it is essential to develop countermeasures to either manage, treat, or prevent these consequential adverse effects. Hence, this review also highlights some potential countermeasure approaches that may mitigate the harmful effects of microgravity and associated exposures on male reproductive health.
Collapse
Affiliation(s)
- Khulood Ahrari
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nandu Goswami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Otto Loewi Research Center of Vascular Biology, Inflammation, and Immunity, Medical University of Graz, Graz, Austria
| | - Hanan Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan S. du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
4
|
Godschalk RWL, Janssen MCM, Vanhees K, van Doorn-Khosrovani SBVW, van Schooten FJ. Maternal exposure to genistein during pregnancy and oxidative DNA damage in testes of male mouse offspring. Front Nutr 2022; 9:904368. [PMID: 35923192 PMCID: PMC9340160 DOI: 10.3389/fnut.2022.904368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background Genistein is a dietary supplement with phyto-estrogenic properties. Therefore, high intake of genistein during pregnancy may have adverse effects on the genetic integrity of testes and germ cells of male offspring. In this study, we examined whether maternal exposure to genistein during pregnancy induced oxidative DNA damage in the male germline at adolescence. Methods Atm-ΔSRI mice have lower glucose-6-phosphate dehydrogenase (G6PDH) activity, which is important for maintaining levels of reduced glutathione and therefore these mice have an increased susceptibility to oxidative stress. Parental heterozygous Atm-ΔSRI mice received a genistein-rich or control diet, after which they were mated to obtain offspring. During pregnancy, mothers remained on the respective diets and after delivery all animals received control diets. Redox status and oxidative DNA damage were assessed in testes and sperm of 12 weeks old male offspring. Gene expression of Cyp1b1, Comt, and Nqo1 was assessed in testes, and DNA methylation as possible mechanism for transmission of effects to later life. Results Intake of genistein during pregnancy increased oxidative DNA damage in testes of offspring, especially in heterozygous Atm-ΔSRI mice. These increased DNA damage levels coincided with decreased expression of Comt and Nqo1. Heterozygous Atm-ΔSRI mice had higher levels of DNA strand breaks in sperm compared to wild type littermates, and DNA damage was further enhanced by a genistein-rich maternal diet. G6PDH activity was higher in mice with high maternal intake of genistein compared to control diets, suggesting compensation against oxidative stress. A positive correlation was observed between the levels of DNA methylation and oxidative DNA damage in testes. Conclusion These data indicate that prenatal exposure to genistein altered gene expression and increased DNA damage in testes and sperm of adolescent male offspring. These effects of genistein on DNA damage in later life coincided with alterations in DNA methylation.
Collapse
|
5
|
Zhang Z, Dai C, Shan G, Chen X, Liu H, Abdalla K, Kuznyetsova I, Moskovstev S, Huang X, Librach C, Jarvi K, Sun Y. Quantitative selection of single human sperm with high DNA integrity for intracytoplasmic sperm injection. Fertil Steril 2021; 116:1308-1318. [PMID: 34266663 DOI: 10.1016/j.fertnstert.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To study at the single-cell level whether a sperm's motility and morphology parameters reflect its DNA integrity, and to establish a set of quantitative criteria for selecting single sperm with high DNA integrity. DESIGN Prospective study. SETTING In vitro fertilization center and university laboratories. PATIENT(S) Male patients undergoing infertility treatments. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The motility and morphology parameters of each sperm were measured with the use of computer vision algorithms. The sperm was then aspirated and transferred for DNA fragmentation measurement by single-cell gel electrophoresis (comet assay). RESULT(S) We adapted the World Health Organization criteria, which were originally defined for semen analysis, and established a set of quantitative criteria for single-sperm selection in intracytoplasmic sperm injection. Sperm satisfying the criteria had significantly lower DNA fragmentation levels than the sample population. Both normal motility and normal morphology were required for a sperm to have low DNA fragmentation. The quantitative criteria were integrated into a software program for sperm selection. In blind tests in which our software and three embryologists selected sperm from the same patient samples, our software outperformed the embryologists and selected sperm with the highest DNA integrity. CONCLUSION(S) At the single-cell level, a sperm's motility and morphology parameters reflect its DNA integrity. The developed technique and criteria hold the potential to mitigate the risk factor of sperm DNA fragmentation in intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Zhuoran Zhang
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Changsheng Dai
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Guanqiao Shan
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Chen
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hang Liu
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Xi Huang
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Keith Jarvi
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
7
|
Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants (Basel) 2021; 10:antiox10071025. [PMID: 34202126 PMCID: PMC8300781 DOI: 10.3390/antiox10071025] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell's antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.
Collapse
|
8
|
Simas JN, Mendes TB, Fischer LW, Vendramini V, Miraglia SM. Resveratrol improves sperm DNA quality and reproductive capacity in type 1 diabetes. Andrology 2021; 9:384-399. [PMID: 32808479 DOI: 10.1111/andr.12891] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND In the coming decades, diabetes mellitus might affect 628 million individuals. Its final impact on male fertility and reproductive outcomes should be considered since the number of adolescents and young adults presenting diabetes is rising. Resveratrol (RES), a polyphenol, is a biological modulator with multitarget and multi-action characteristics. OBJECTIVES to evaluate if RES is effective against the male reproductive damage caused by type 1 diabetes (DM1), focusing on sperm DNA integrity and reproductive outcome. MATERIALS AND METHODS At 30 dpp (days postpartum), male rats were divided into 7 groups: Sham control (SC); RES vehicle (RV); RES (R); STZ-diabetic (D; induced at 30dpp with 65 mg/kg of streptozotocin); STZ-diabetic + insulin (DI); STZ-diabetic + RES (DR); STZ-diabetic + insulin +RES (DIR). DR, DIR, and R groups received 150mg RES/kg b.w./day by gavage (from 33 to 110dpp). DI and DIR received insulin (from day 5 after DM1 induction until 110dpp). Blood glucose was monitored in different time points. Animals were mated with healthy females. Euthanasia occurred at 110 dpp. RESULTS DM1 increased lipid peroxidation (testis and epididymis) and sperm DNA fragmentation, alterations of chromatin structure, reduced mitochondrial mass and acrosome integrity, causing a decline in fertility and pregnancy rates. RES improved the parameters. DISCUSSION RES, as an adjuvant, activates specific reactions against hyperglycemia, the main trigger of most complications of diabetes, by controlling oxidative stress, probably as a result of SIRT1 activation. We present here more evidences showing its valuable role in diminishing diabetes seriousness to male reproduction, not only to spermatogenesis in the first instance, but also to sperm overall quality and fertility outcomes, regardless of insulin treatment. CONCLUSION RES attenuated lipid peroxidation and sperm DNA damage in DM1-induced animals, which positively reflected on male fertility. Our results show RES potential against DM1 complications in male reproduction.
Collapse
Affiliation(s)
- Joana N Simas
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Talita B Mendes
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Leonardo W Fischer
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Vanessa Vendramini
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sandra M Miraglia
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| |
Collapse
|
9
|
Yin X, Liu Y, Zeb R, Chen F, Chen H, Wang KJ. The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a]pyrene exposure via interference of the circadian rhythm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115437. [PMID: 32866872 DOI: 10.1016/j.envpol.2020.115437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a widely existed polycyclic aromatic hydrocarbon pollutant in aquatic environment, has toxic effects on marine animals and their generations, but the intergenerational immunotoxic mechanism underlying has not been clearly understood. In the study, the offspring of marine medaka (oryzias melastigma) which were exposed to 0.5 μg L-1 BaP suffered from circadian rhythm oscillation disorders and severe DNA damage. Many clock-associated genes like per1 were significantly modulated in offspring, both per1 and p53 were significantly inhibited that altered the progression of cell cycle and inhibited DNA repair, which possibly resulted in the increased mortality of offspring. The hypermethylation of the per1 promotor and abnormal levels of N6-methyladenosine (m6A) suggested that the underlying mechanism was probably related to the epigenetic modification. Moreover, the offspring from paternal BaP exposure had more severe DNA damage and a higher degree of hypermethylation than those from maternal exposure. F1 larvae from BaP-exposed parents were more sensitive to BaP exposure, showing that the expression of immune and metabolism-related genes were significantly up-regulated. Taken together, the parental toxicity induced by BaP could be passed to F1 generation and the mechanism underlying was probably associated with a characteristic circadian rhythm disorder.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Roth Z, Komsky-Elbaz A, Kalo D. Effect of environmental contamination on female and male gametes - A lesson from bovines. Anim Reprod 2020; 17:e20200041. [PMID: 33029217 PMCID: PMC7534576 DOI: 10.1590/1984-3143-ar2020-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) and foodborne contaminants are environmental pollutants that are considered reproductive toxicants due to their deleterious effects on female and male gametes. Among the EDCs, the phthalate plasticizers are of growing concern. In-vivo and in-vitro models indicate that the oocyte is highly sensitive to phthalates. This review summarizes the effects of di(2-ethylhexyl) phthalate and its major metabolite mono(2-ethyhexyl) phthalate (MEHP) on the oocyte. MEHP reduces the proportion of oocytes that fertilize, cleave and develop to the blastocyst stage. This is associated with negative effects on meiotic progression, and disruption of cortical granules, endoplasmic reticulum and mitochondrial reorganization. MEHP alters mitochondrial membrane polarity, increases reactive oxygen species levels and induces alterations in genes associated with oxidative phosphorylation. A carryover effect from the oocyte to the blastocyst is manifested by alterations in the transcriptomic profile of blastocysts developed from MEHP-treated oocytes. Among foodborne contaminants, the pesticide atrazine (ATZ) and the mycotoxin aflatoxin B1 (AFB1) are of high concern. The potential hazards associated with exposure of spermatozoa to these contaminants and their carryover effect to the blastocyst are described. AFB1 and ATZ reduce spermatozoa's viability, as reflected by a high proportion of cells with damaged plasma membrane; induce acrosome reaction, expressed as damage to the acrosomal membrane; and interfere with mitochondrial function, characterized by hyperpolarization of the membrane. ATZ and AFB1-treated spermatozoa show a high proportion of cells with fragmented DNA. Exposure of spermatozoa to AFB1 and ATZ reduces fertilization and cleavage rates, but not that of blastocyst formation. However, fertilization with AFB1- or ATZ-treated spermatozoa impairs transcript expression in the formed blastocysts, implying a carryover effect. Taken together, the review indicates the risk of exposing farm animals to environmental contaminants, and their deleterious effects on female and male gametes and the developing embryo.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alisa Komsky-Elbaz
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dorit Kalo
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
11
|
Salian SR, Uppangala S, Cheredath A, D’Souza F, Kalthur G, Nayak VC, Anderson RA, Adiga SK. Early prepubertal cyclophosphamide exposure in mice results in long-term loss of ovarian reserve, and impaired embryonic development and blastocyst quality. PLoS One 2020; 15:e0235140. [PMID: 32574203 PMCID: PMC7310698 DOI: 10.1371/journal.pone.0235140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/09/2020] [Indexed: 01/11/2023] Open
Abstract
Background Due to improved treatment, there is an increasing focus on the reproductive potential of survivors of childhood cancer. Cytotoxic chemotherapy accelerates the decline in the number of primordial follicles within the mammalian ovary at all ages, but effects on the developmental potential of remaining oocytes following prepubertal cancer treatment are unclear. Objectives To investigate whether cyclophosphamide (CY) exposure in the prepubertal period in female mice influences ovarian function and the functional competence of oocytes in adulthood. Methods This study used Swiss albino mice as the experimental model. Female mice were treated with 200 mg/kg CY on either postnatal day 14 (CY14), 21 (CY21) or 28 (CY28) i.e at a prepubertal and 2 young postpubertal ages. At 14 weeks of life, ovarian function, functional competence of oocytes, and embryo quality were assessed. Results The number of primordial follicles decreased significantly in CY14 and CY21 groups compared to control (p < 0.01). The number of oocytes from superovulated was 8.5 ± 1.4, 24.1 ± 2.9 and 26.8 ± 2.1 in CY14, CY21 and CY28 respectively which was significantly lower than control (50.2 ± 3.2; p < 0.001). In vitro culture of CY14 embryos demonstrated only 55.4% blastocyst formation (p < 0.0001) and reduced ability of inner cell mass (ICM) to proliferate in vitro (p < 0.05) at 120 and 216 h post insemination respectively. On the other hand, ICM proliferation was unaltered in 2 young postpubertal ages. Conclusion Our results indicate long-term effects on the developmental competence of oocytes exposed to CY in early but not adult life. These data provide a mechanism whereby long-term fertility can be impaired after chemotherapy exposure, despite the continuing presence of follicles within the ovary, and support the need for fertility preservation in prepubertal girls before alkylating agent exposure.
Collapse
Affiliation(s)
- Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aswathi Cheredath
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Fiona D’Souza
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vinod C. Nayak
- Department of Forensic Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- * E-mail:
| |
Collapse
|
12
|
Abstract
With the increasing incidence of male infertility, routine detection of semen is insufficient to accurately assess male fertility. Infertile men, who have lower odds of conceiving naturally, exhibit high levels of sperm DNA fragmentation (SDF). The mechanisms driving SDF include abnormal spermatogenesis, oxidative stress damage, and abnormal sperm apoptosis. As these factors can induce SDF and subsequent radical changes leading to male infertility, detection of the extent of SDF has become an efficient routine method for semen analysis. Although it is still debated, SDF detection has become a research hotspot in the field of reproductive medicine as a more accurate indicator for assessing sperm quality and male fertility. SDF may be involved in male infertility, reproductive assisted outcomes, and growth and development of offspring. The effective detection methods of SDF are sperm chromatin structure analysis (SCSA), terminal transferase-mediated dUTP end labeling (TUNEL) assay, single-cell gel electrophoresis (SCGE) assay, and sperm chromatin dispersion (SCD) test, and all of these methods are valuable for assisted reproductive techniques. Currently, the preferred method for detecting sperm DNA integrity is SCSA. However, the regulation network of SDF is very complex because the sperm DNA differs from the somatic cell DNA with its unique structure. A multitude of molecular factors, including coding genes, non-coding genes, or methylated DNA, participate in the complex physiological regulation activities associated with SDF. Studying SDF occurrence and the underlying mechanisms may effectively improve its clinical treatments. This review aimed to outline the research status of SDF mechanism and detection technology-related issues, as well as the effect of increased SDF rate, aiming to provide a basis for clinical male infertility diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Qiu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Hua Yang
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Chunyuan Li
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
13
|
Souza FD, Asampille G, Uppangala S, Kalthur G, Atreya HS, Adiga SK. Sperm-mediated DNA lesions alter metabolite levels in spent embryo culture medium. Reprod Fertil Dev 2019; 31:443-450. [PMID: 30223941 DOI: 10.1071/rd18136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022] Open
Abstract
Paternal genetic alterations may affect embryo viability and reproductive outcomes. Currently it is unknown whether embryo metabolism is affected by sperm-mediated abnormalities. Hence, using a mouse model, this study investigated the response to paternally transmitted DNA lesions on genetic integrity and metabolism in preimplantation embryos. Spent embryo culture media were analysed for metabolites by nuclear magnetic resonance spectroscopy and embryonic genetic integrity was determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay on embryonic Day 4.5 (E4.5). Metabolic signatures were compared between normally derived embryos (control) and embryos derived from spermatozoa carrying induced DNA lesions (SDL). SDL embryos showed a significant reduction in blastocyst formation on E3.5 and E4.5 (P<0.0001) and had an approximately 2-fold increase in TUNEL-positive cells (P<0.01). A cohort of SDL embryos showing delayed development on E4.5 had increased uptake of pyruvate (P<0.05) and released significantly less alanine (P<0.05) to the medium compared with the corresponding control embryos. On the other hand, normally developed SDL embryos had a reduced (P<0.001) pyruvate-to-alanine ratio compared with normally developed embryos from the control group. Hence, the difference in the metabolic behaviour of SDL embryos may be attributed to paternally transmitted DNA lesions in SDL embryos.
Collapse
Affiliation(s)
- Fiona D Souza
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| | | | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| |
Collapse
|
14
|
Beaud H, Tremblay AR, Chan PTK, Delbes G. Sperm DNA Damage in Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:189-203. [PMID: 31301053 DOI: 10.1007/978-3-030-21664-1_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fertility is a growing healthcare issue for a rising number of cancer survivors. In men, cancer itself and its treatment can negatively affect spermatogenesis by targeting the dividing spermatogonia and their cellular environment, ultimately leading to a reduction of testicular germ cells and sperm count. Experimental data and prospective longitudinal studies have shown that sperm production can recover after cancer treatment. But despite this, yet unpredictable, recovery in sperm production, cancer survivors are more at risk to produce sperm with aneuploidy, DNA damage, abnormal chromatin structure, and epigenetic defects even 2 years post-treatment. Sperm DNA alteration is of clinical concern, as these patients may father children or seek assisted reproduction technologies (ART) using gametes with damaged genome that could result in adverse progeny outcomes. Interestingly, large cohort studies revealed lower birth rate but no significant impact on the health of the children born from male cancer survivors (naturally or using ART). Nevertheless, a better understanding of how cocktail of chemotherapy and new anticancer agents affect spermatogenesis and sperm quality is needed to reduce side effects. Moreover, developing new fertility preservation strategies is essential as sperm cryopreservation before treatment is currently the only option but does not apply for prepubertal/young postpubertal patients.
Collapse
Affiliation(s)
- Hermance Beaud
- Institut national de la recherche scientifique, Centre INRS - Institut Armand-Frappier, QC, Canada
| | - Amelie R Tremblay
- Institut national de la recherche scientifique, Centre INRS - Institut Armand-Frappier, QC, Canada
| | - Peter T K Chan
- Division of Urology, McGill University Health Center, QC, Canada
| | - Geraldine Delbes
- Institut national de la recherche scientifique, Centre INRS - Institut Armand-Frappier, QC, Canada.
| |
Collapse
|
15
|
Abstract
During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH 44195 USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 South Africa
| |
Collapse
|
16
|
Spent embryo culture medium metabolites are related to the in vitro attachment ability of blastocysts. Sci Rep 2018; 8:17025. [PMID: 30451915 PMCID: PMC6242932 DOI: 10.1038/s41598-018-35342-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
The metabolomic profile of an embryo culture medium can aid in the advanced prediction of embryonic developmental potential and genetic integrity. But it is not known if this technology can be used to determine the in vitro potential of inner cell mass (ICM) in adherence and proliferation. Here, we investigated the developmental potential of mouse 2-cell embryos carrying cisplatin-induced DNA lesions (IDL), beyond blastocyst stage using ICM outgrowth assay. The genetic integrity of ICM cells was determined by comet assay. The metabolic signatures of spent medium were recorded 84 hours post injection of hCG (hpi-hCG), and after 96 hours of extended in vitro culture (Ex 96) by NMR spectroscopy. We observed that blastocysts that lack the ability to adhere in vitro had an increased requirement of pyruvate (p < 0.01), lactate (p < 0.01), and were accompanied by a significant reduction of pyruvate-alanine ratio in the culture medium. We propose that the aforementioned metabolites from 84 hpi-hCG spent medium be further explored using appropriate experimental models, to prove their potential as biomarkers in the prediction of implantation ability of in vitro derived human embryos in clinical settings.
Collapse
|
17
|
Suitability of the hemi-zona assay for the evaluation of the effect of the length of the equilibration period before cryopreservation. Theriogenology 2018; 106:157-163. [PMID: 29059603 DOI: 10.1016/j.theriogenology.2017.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test the suitability of the interspecific hemizona assay (HZA) to predict the fertilizing capacity of bovine sperm after modifying the length of the equilibration period before freezing and thawing. Ejaculates from 10 proven fertile bulls were split after dilution, equilibrated at 4 °C for either 24 h (control sperm = CS) or 6, 48, 72 or 96 h (test sperm = TS) and cryopreserved. Hemizona (HZ) pairs from in vitro matured pig oocytes were used for the heterologous HZA: After thawing and swim-up (1 h) CS and TS were co-incubated with matching HZ (125,000 S/HZ in 25 μL Fert-TALP) for 4 h. Spermatological analyses (progressive motile sperm (PMS), plasma membrane- and acrosome-intact sperm (PMAI), sperm showing a high degree of DNA fragmentation (%DFI)) were performed after 0 and 3 h of incubation after thawing. After an equilibration time of 48 h and 72 h values for PMAI0h were higher (P < 0.05) compared to PMAI0h values of sperm equilibrated for 6 h, and %DFI3h values were higher after 96 h (P < 0.05) compared to 6 h equilibration. Between 12 and 90 TS and 13-97 CS were tightly bound to each HZ, respectively. The mean Hemizona Index (HZI) after a sperm equilibration for 48 h (HZI = 92.3 ± 12.7) or 72 h (HZI = 98.9 ± 16.23) was higher (P < 0.01) than after an equilibration for 6 h (HZI = 73.3 ± 13.93) or 96 h (HZI = 81.3 ± 11.41). The HZI for 96 h equilibration was moderately negatively related to PMS0h and PMS3h (r < -0.35, P < 0.05). Furthermore the HZI for 6 h equilibration was highly negatively correlated with DFI0h (r = -0,46, P < 0.01). On the basis of these results it can be concluded that the hemi-zona assay is a suitable test to detect alterations in the fertilizing capacity of bovine sperm after modifying the equilibration period.
Collapse
|
18
|
Bohrer RC, Dicks N, Gutierrez K, Duggavathi R, Bordignon V. Double‐strand DNA breaks are mainly repaired by the homologous recombination pathway in early developing swine embryos. FASEB J 2018; 32:1818-1829. [DOI: 10.1096/fj.201700800r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Raj Duggavathi
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
19
|
Aflatoxin B1 impairs sperm quality and fertilization competence. Toxicology 2017; 393:42-50. [PMID: 29113834 DOI: 10.1016/j.tox.2017.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Aflatoxins are poisonous byproducts of the soilborne fungus Aspergillus, involved in the decomposition of plant materials. Aflatoxins can be found in various food products, such as maize, sorghum, millet, rice and wheat. AFB1 is the most toxic of these, classified as a carcinogen and mutagen for both humans and animals. AFB1 has been detected in human cord blood and placenta; however, its toxic effect on sperm is less known. The current study examines sperm responses associated with AFB1 exposure. These included acrosome integrity and function, mitochondrial polarity, DNA fragmentation, fertilization competence and early embryonic development. Spermatozoa were obtained from bull ejaculate and epididymis and capacitated in vitro for 4h with 0, 0.1, 1, 10 and 100μM AFB1. Following capacitation, acrosome reaction (AR) was induced by Ca2+ ionophore. The integrity and functionality of sperm were examined simultaneously by florescent staining. A Halosperm DNA fragmentation kit was used to evaluate DNA integrity. An in-vitro culture system was used to evaluate fertilization competence and blastocyst formation rate, using bovine oocytes. Findings indicate dose-responsive variation among compartments to AFB1 exposure. Sperm viability, expressed by integrity of the plasma membrane, was lower in sperm isolated from ejaculate or epididymis after culturing with AFB1. Exposure to AFB1 reduced the proportion of sperm from the epididymis tail undergoing acrosome reaction induced by Ca2+ ionophore. AFB1 impaired mitochondrial membrane potential (ΔYm) in sperm isolated from ejaculate and the epididymis tail. Exposing ejaculated sperm to AFB1 increased the proportion of sperm with fragmented DNA and reduced the proportion of embryos that cleaved to the 2- to 4-cell stage, 42h postfertilization, however, the proportion of embryos that developed to blastocysts, 7days postfertilization, did not differ among groups. The findings explore the harmful effects of AFB1 on sperm viability, ΔΨm and DNA integrity associated with fertility competence. We postulate that AFB1-induced fragmentation in paternal DNA might have a carryover effect on the quality of developing embryos. Further evaluation for the quality of blastocysts derived from sperm exposed to AFB1 is warranted.
Collapse
|
20
|
Ornellas F, Carapeto PV, Mandarim‐de‐Lacerda CA, Aguila MB. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Ornellas F, Carapeto PV, Mandarim-de-Lacerda CA, Aguila MB. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies. J Pediatr (Rio J) 2017; 93:551-559. [PMID: 28822233 DOI: 10.1016/j.jped.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To discuss the recent literature on paternal obesity, focusing on the possible mechanisms of transmission of the phenotypes from the father to the children. SOURCES A non-systematic review in the PubMed database found few publications in which paternal obesity was implicated in the adverse transmission of characteristics to offspring. Specific articles on epigenetics were also evaluated. As the subject is recent and still controversial, all articles were considered regardless of year of publication. SUMMARY OF FINDINGS Studies in humans and animals have established that paternal obesity impairs their hormones, metabolism, and sperm function, which can be transmitted to their offspring. In humans, paternal obesity results in insulin resistance/type 2 diabetes and increased levels of cortisol in umbilical cord blood, which increases the risk factors for cardiovascular disease. Notably, there is an association between body fat in parents and the prevalence of obesity in their daughters. In animals, paternal obesity led to offspring alterations on glucose-insulin homeostasis, hepatic lipogenesis, hypothalamus/feeding behavior, kidney of the offspring; it also impairs the reproductive potential of male offspring with sperm oxidative stress and mitochondrial dysfunction. An explanation for these observations (human and animal) is epigenetics, considered the primary tool for the transmission of phenotypes from the father to offspring, such as DNA methylation, histone modifications, and non-coding RNA. CONCLUSIONS Paternal obesity can induce programmed phenotypes in offspring through epigenetics. Therefore, it can be considered a public health problem, affecting the children's future life.
Collapse
Affiliation(s)
- Fernanda Ornellas
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico, Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Rio de Janeiro, RJ, Brazil
| | - Priscila V Carapeto
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico, Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Rio de Janeiro, RJ, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico, Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Rio de Janeiro, RJ, Brazil.
| | - Marcia B Aguila
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico, Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Lemos J, Neuparth T, Trigo M, Costa P, Vieira D, Cunha L, Ponte F, Costa PS, Metello LF, Carvalho AP. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:190-195. [PMID: 28025689 DOI: 10.1007/s00128-016-2006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.
Collapse
Affiliation(s)
- J Lemos
- ICBAS - Institute of Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
| | - T Neuparth
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - M Trigo
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - P Costa
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
| | - D Vieira
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
| | - L Cunha
- IsoPor SA, PO box 4028, 4445, Ermesinde, Portugal
| | - F Ponte
- Radiotherapy Deptartment, Júlio Teixeira SA, Rua Arquitecto Cassiano Barbosa 6, F, Sala 26, 4100-009, Porto, Portugal
| | - P S Costa
- Radiotherapy Deptartment, Júlio Teixeira SA, Rua Arquitecto Cassiano Barbosa 6, F, Sala 26, 4100-009, Porto, Portugal
| | - L F Metello
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
- IsoPor SA, PO box 4028, 4445, Ermesinde, Portugal
| | - A P Carvalho
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
23
|
Uppangala S, Pudakalakatti S, D'souza F, Salian SR, Kalthur G, Kumar P, Atreya H, Adiga SK. Influence of sperm DNA damage on human preimplantation embryo metabolism. Reprod Biol 2016; 16:234-241. [PMID: 27492188 DOI: 10.1016/j.repbio.2016.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Understanding the embryo metabolic response to sperm induced specific abnormalities could help in developing the metabolic markers to prevent the transfer of embryos carrying sperm mediated defects. In this study, NMR based metabolic profiling of the embryo spent media was employed in 34 patients undergoing ICSI cycles. Processed ejaculates were tested for DNA damage using comet assay. Relative intensities of the metabolites from 74 embryo spent media samples from 34 patients and 23 medium controls were profiled using 1H NMR and compared between 'male-factor' and control groups. Relative intensities in the subgroups which are independent of patients with male factor or tubal factors, but related to the extent of sperm DNA damage were also compared. Sperm characteristics including DNA damage levels (Olive tail moment, OTM) were significantly different between 'male factor' and control groups (P<0.001-0.0001). Of the metabolites analyzed, glutamine intensity was significantly lower in 'male factor' group (P<0.01) whereas, pyruvate intensity was significantly lower in embryos derived from the processed sperm fraction having <1.0 OTM (P=0.003). In contrast glutamine and alanine intensities were significantly higher in the embryos derived from sperm population having OTM <1.0. (P=0.03 & 0.005 respectively). Pyruvate to alanine ratio was significantly lower in <1.0 OTM group (P<0.0001). This study indicates that increased level of sperm DNA damage in the processed ejaculate affects embryo metabolism which could be related to embryonic genetic integrity.
Collapse
Affiliation(s)
- Shubhashree Uppangala
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | | | - Fiona D'souza
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | - Sujith Raj Salian
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | - Guruprasad Kalthur
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pratap Kumar
- Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Hanudatta Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, India; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India.
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India.
| |
Collapse
|
24
|
Uppangala S, Dhiman S, Salian SR, Singh VJ, Kalthur G, Adiga SK. In vitro matured oocytes are more susceptible than in vivo matured oocytes to mock ICSI induced functional and genetic changes. PLoS One 2015; 10:e0119735. [PMID: 25786120 PMCID: PMC4364773 DOI: 10.1371/journal.pone.0119735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Background Concerns regarding the safety of ICSI have been intensified recently due to increased risk of birth defects in ICSI born children. Although fertilization rate is significantly higher in ICSI cycles, studies have failed to demonstrate the benefits of ICSI in improving the pregnancy rate. Poor technical skill, and suboptimal in vitro conditions may account for the ICSI results however, there is no report on the effects of oocyte manipulations on the ICSI outcome. Objective The present study elucidates the influence of mock ICSI on the functional and genetic integrity of the mouse oocytes. Methods Reactive Oxygen Species (ROS) level, mitochondrial status, and phosphorylation of H2AX were assessed in the in vivo matured and IVM oocytes subjected to mock ICSI. Results A significant increase in ROS level was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P<0.05-0.001) whereas unique mitochondrial distribution pattern was found only in IVM oocytes (P<0.01-0.001). Importantly, differential H2AX phosphorylation was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P <0.001). Conclusion The data from this study suggests that mock ICSI can alter genetic and functional integrity in oocytes and IVM oocytes are more vulnerable to mock ICSI induced changes.
Collapse
Affiliation(s)
- Shubhashree Uppangala
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Shilly Dhiman
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Sujit Raj Salian
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Vikram Jeet Singh
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Guruprasad Kalthur
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
- * E-mail:
| |
Collapse
|
25
|
Sudhakaran S, Uppangala S, Salian SR, Honguntikar SD, Nair R, Kalthur G, Adiga SK. Oocytes recovered after ovarian tissue slow freezing have impaired H2AX phosphorylation and functional competence. Reprod Fertil Dev 2014; 27:1242-8. [PMID: 25023890 DOI: 10.1071/rd14048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
It has been shown that oocytes isolated from ovarian tissue cryopreservation acquire DNA damage during the process of freeze-thawing. Using a mouse model, here we have investigated the functional competence and phosphorylation of H2AX (γ-H2AX) in germinal vesicle (GV) and parthenogenetically activated oocytes derived from conventional ovarian tissue slow freezing and vitrification techniques. The number of GV-stage oocytes with γ-H2AX foci was not significantly different between the slow-freezing and vitrification groups. Although the in vitro maturation (IVM) potential of GV oocytes in the slow-freezing group showed a significant delay (P<0.0001) in the process of germinal vesicle breakdown, no difference in the maturation rate was observed between the two protocols. Nevertheless, parthenogenetic activation of IVM oocytes using strontium chloride showed a significantly lower activation rate in the slow-freezing group compared with the vitrification (P<0.05) and control (P<0.01) groups. Importantly, H2AX phosphorylation was significantly perturbed in the slow-freezing group in comparison to the control (P<0.05). Therefore, we conclude that impaired sensing of DNA strand breaks and repair processes are associated with the reduced functional competence of the oocytes recovered from the slow-freezing group, which may have a significant impact on the reproductive outcome.
Collapse
Affiliation(s)
- Sam Sudhakaran
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Shubhashree Uppangala
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Sujith Raj Salian
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Sachin D Honguntikar
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Ramya Nair
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Guruprasad Kalthur
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India
| |
Collapse
|
26
|
McPherson NO, Fullston T, Bakos HW, Setchell BP, Lane M. Obese father's metabolic state, adiposity, and reproductive capacity indicate son's reproductive health. Fertil Steril 2014; 101:865-73. [PMID: 24424359 DOI: 10.1016/j.fertnstert.2013.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine whether dietary and exercise regimes in obese males can provide a novel intervention window for improving the reproductive health of the next generation. DESIGN Experimental animal study. SETTING University research facilities. ANIMAL(S) C57BL6 male and female mice. INTERVENTION(S) Mice were fed a control diet (6% fat) or high-fat diet (21% fat) for 9 weeks. After the initial feeding, high-fat-diet males were allocated to diet and/or exercise interventions for a further 9 weeks. After intervention males were mated with females fed standard chow (4% fat) before and during pregnancy. MAIN OUTCOME MEASURE(S) F1 sperm motility, count, morphology, capacitation, mitochondrial function, and sperm binding and weight of reproductive organs. RESULT(S) Our primary finding was that diet intervention alone in founders improved offspring sperm motility and mitochondrial markers of sperm health (decreased reactive oxygen species and mitochondrial membrane potential), ultimately improving sperm binding. Sperm binding and capacitation was also improved in F1 males born to a combined diet and exercise intervention in founders. Founder sperm parameters and metabolic measures as a response to diet and/or exercise (i.e., lipid/glucose homeostasis, sperm count and morphology) correlated with offspring's sperm function, independent of founder treatment. This implicates paternal metabolic and reproductive status in predicting male offspring's reproductive function. CONCLUSION(S) This is the first study to show that improvements to both metabolic (lipids, glucose and insulin sensitivity) and reproductive function (sperm motility and morphology) in obese fathers via diet and exercise interventions can improve subsequent reproductive health in offspring.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia; Freemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Tod Fullston
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hassan W Bakos
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia
| | - Brian P Setchell
- Discipline of Anatomy, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Lane
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
27
|
Kumar D, Upadhya D, Uppangala S, Salian SR, Kalthur G, Adiga SK. Nuclear DNA fragmentation negatively affects zona binding competence of Y bearing mouse spermatozoa. J Assist Reprod Genet 2013; 30:1611-5. [PMID: 24141830 DOI: 10.1007/s10815-013-0123-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/10/2013] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the influence of sperm DNA integrity on the zona binding ability of mouse spermatozoa in relation to their sex chromosomal constitution. METHOD(S) In this prospective experimental study, the sperm DNA fragmentation was induced by exposing testicular area of Swiss Albino mice (Mus musculus) to different doses of γ-radiation (0, 2.5, 5.0 and 10.0 Gy). Sperm DNA fragmentation was quantified by single cell gel electrophoresis (comet assay). In vitro sperm zona binding assay was performed and the numbers of zona bound X and Y bearing spermatozoa were determined using fluorescence in situ hybridization (FISH). RESULT(S) The assessment of zona pellucida bound X and Y-bearing spermatozoa using fluorescence in situ hybridization has revealed a unique binding pattern. The number of zona bound Y-spermatozoa declined significantly (P < 0.01 to 0.0001) with increase in the DNA damage. The skewed binding pattern of X and Y-bearing sperm was strongly correlated with the extent of sperm DNA damage. CONCLUSION(S) The zona pellucida may have a role in preventing DNA damaged mouse sperm binding especially towards Y-bearing sperm. However, the exact mechanism behind this observation needs to be elucidated further.
Collapse
Affiliation(s)
- Dayanidhi Kumar
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, 576 104, India
| | | | | | | | | | | |
Collapse
|
28
|
Grygoryev D, Moskalenko O, Hinton TG, Zimbrick JD. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in Medaka fish ( Oryzias latipes ). Radiat Res 2013; 180:235-46. [PMID: 23919310 DOI: 10.1667/rr3190.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of transgenerational exposure to low dose rate (2.4 and 21 mGy/day) gamma irradiation on the yield of DNA double-strand breaks and oxidized guanine (8-hydroxyguanine) has been studied in the muscle and liver tissue of a model organism, the Japanese medaka fish. We found the level of unrepaired 8-hydroxyguanine in muscle tissue increased nonlinearly over four generations and the pattern of this change depended on the radiation dose rate, suggesting that our treatment protocols initiated genomic instability and an adaptive response as the generations progressed. The yield of unrepaired double-strand breaks did not vary significantly among successive generations in muscle tissue in contrast to liver tissue in which it varied in a nonlinear manner. The 8-hydroxyguanine and DSB radiation yields were significantly higher at 2.4 mGy/day than at 21 mGy/day in both muscle and liver tissue in all generations. These data are consistent with the hypothesis of a threshold for radiation-induced activation of DNA repair systems below which tissue levels of DNA repair enzymes remain unchanged, leading to the accumulation of unrepaired damage at very low doses and dose rates.
Collapse
Affiliation(s)
- D Grygoryev
- a Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | |
Collapse
|
29
|
Kumar D, Salian SR, Kalthur G, Uppangala S, Kumari S, Challapalli S, Chandraguthi SG, Krishnamurthy H, Jain N, Kumar P, Adiga SK. Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PLoS One 2013; 8:e69927. [PMID: 23922858 PMCID: PMC3726700 DOI: 10.1371/journal.pone.0069927] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/13/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cytogenetic studies have demonstrated that low levels of chronic radiation exposure can potentially increase the frequency of chromosomal aberrations and aneuploidy in somatic cells. Epidemiological studies have shown that health workers occupationally exposed to ionizing radiation bear an increased risk of hematological malignancies. OBJECTIVES To find the influence of occupational radiation exposure on semen characteristics, including genetic and epigenetic integrity of spermatozoa in a chronically exposed population. METHODS This cross sectional study included 134 male volunteers of which 83 were occupationally exposed to ionizing radiation and 51 were non-exposed control subjects. Semen characteristics, sperm DNA fragmentation, aneuploidy and incidence of global hypermethylation in the spermatozoa were determined and compared between the non-exposed and the exposed group. RESULTS Direct comparison of the semen characteristics between the non-exposed and the exposed population revealed significant differences in motility characteristics, viability, and morphological abnormalities (P<0.05-0.0001). Although, the level of sperm DNA fragmentation was significantly higher in the exposed group as compared to the non-exposed group (P<0.05-0.0001), the incidence of sperm aneuploidy was not statistically different between the two groups. However, a significant number of hypermethylated spermatozoa were observed in the exposed group in comparison to non-exposed group (P<0.05). CONCLUSIONS We provide the first evidence on the detrimental effects of occupational radiation exposure on functional, genetic and epigenetic integrity of sperm in health workers. However, further studies are required to confirm the potential detrimental effects of ionizing radiation in these subjects.
Collapse
Affiliation(s)
- Dayanidhi Kumar
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Sujith Raj Salian
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Guruprasad Kalthur
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Shubhashree Uppangala
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Sandhya Kumari
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | | | | | | | - Navya Jain
- National Centre for Biological Sciences, Bangalore, India
| | - Pratap Kumar
- Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|
30
|
Fullston T, Ohlsson Teague EMC, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 2013; 27:4226-43. [PMID: 23845863 DOI: 10.1096/fj.12-224048] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity is highly prevalent, and its incidence is increasing. The previous study showing a major effect of paternal obesity on metabolic health of offspring is confounded by comorbidity with diabetes. Therefore, we investigated the effect of diet-induced paternal obesity, in the absence of diabetes, on the metabolic health of two resultant generations and the molecular profiles of the testes and sperm. Founder (F0) male C57BL6 mice were fed either a high-fat diet (HFD) or a control diet (CD); n = 10/diet for a period of 10 wk. Testis expression of mRNA/microRNAs was analyzed by microarray and qPCR and sperm microRNA abundance by qPCR. Two subsequent generations were generated by mating F0 and then F1 mice to CD mice, and their metabolic health was investigated. All mice, other than F0 males, were maintained on a CD. HFD feeding induced paternal obesity with a 21% increase in adiposity, but not overt diabetes, and initiated intergenerational transmission of obesity and insulin resistance in two generations of offspring. This distinct phenotypic constellation is either partially or fully transmitted to both female and male F1 offspring and further transmitted through both parental lineages to the F2 generation, with a heightened effect on female F1 offspring (+67% in adiposity) and their F2 sons (+24% in adiposity). Founder male obesity altered the testes expression of 414 mRNAs by microarray and 11 microRNAs by qPCR, concomitant with alterations in sperm microRNA content and a 25% reduction in global methylation of germ cell DNA. Diet-induced paternal obesity modulates sperm microRNA content and germ cell methylation status, which are potential signals that program offspring health and initiate the transmission of obesity and impaired metabolic health to future generations. This study implicates paternal obesity in the transgenerational amplification of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Tod Fullston
- 1Level 3 Medical School South, University of Adelaide, Adelaide, SA, Australia 5005.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bose R, Adiga SK, D’Souza F, Salian SR, Uppangala S, Kalthur G, Jain N, Radhakrishnan RA, Bhat N, Krishnamurthy H, Kumar P. Germ cell abnormalities in streptozotocin induced diabetic mice do not correlate with blood glucose level. J Assist Reprod Genet 2012; 29:1405-13. [PMID: 23070821 PMCID: PMC3528875 DOI: 10.1007/s10815-012-9873-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/02/2012] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To assess the effect of streptozotocin induced hyperglycemia on germ cell integrity, DNA ploidy and methylation status for a period of two spermatogenesis cycles in adult male Swiss albino mice. METHODS Streptozotocin injected mice were monitored for hyperglycemia at a regular interval for a period of 36 and 72 days. The DNA integrity in epididymal spermatozoa was determined by the comet assay. Flow cytometric analysis was done in germ cells to assess the DNA ploidy. The global methylation analysis in germ cells was done by 5-methyl cytosine immunostaining. RESULTS Streptozotocin administration successfully resulted in hyperglycemic response which significantly affected serum testosterone level, sperm DNA integrity and DNA ploidy at the end of 36 days. However, no changes were observed in either epididymal sperm concentration or germ cell methylation status. In contrast, at the end of 76 days, although serum testosterone level, sperm DNA integrity and DNA ploidy status were unperturbed significantly in hyperglycemic group, the epididymal sperm concentration and methylation status of preleptotene/zygotene cells were significantly altered. Importantly, an attempt to find out the association between the blood glucose levels and the abnormalities in hyperglycemic group failed to demonstrate any correlation. CONCLUSIONS The germ cell abnormalities observed in hyperglycemic group could be interpreted as a primary effect of streptozotocin and not due to hyperglycemia. Our results call for further evaluation of streptozotocin before its application to study the hyperglycemic responses on male germ cells.
Collapse
Affiliation(s)
- Rohini Bose
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | - Satish K. Adiga
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | - Fiona D’Souza
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | - Sujith R. Salian
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | - Shubhashree Uppangala
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | - Guruprasad Kalthur
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | - Navya Jain
- />National Centre for Biological Sciences, Bangalore, India
| | - Raghu A. Radhakrishnan
- />Department of Oral Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, 576 104 India
| | - Nalini Bhat
- />Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| | | | - Pratap Kumar
- />Clinical Embryology, Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, 576 104 India
| |
Collapse
|
32
|
Salian SR, Kalthur G, Uppangala S, Kumar P, Adiga SK. Frozen-thawed spermatozoa from oligozoospermic ejaculates are susceptible to in situ DNA fragmentation in polyvinylpyrrolidone-based sperm-immobilization medium. Fertil Steril 2012; 98:321-5. [DOI: 10.1016/j.fertnstert.2012.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 11/25/2022]
|
33
|
Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online 2012; 25:307-14. [PMID: 22809864 DOI: 10.1016/j.rbmo.2012.05.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 02/08/2023]
Abstract
Varicocele, a cause of male infertility, occurs in nearly 40% of infertile males. It has been postulated that varicoceles may cause sperm DNA damage. Sperm DNA integrity has been recognized as one of the important determinants of normal fertilization and embryo growth in natural and assisted conception. Eighty-three human studies were identified after an extensive literature search involving the role of varicoceles in sperm DNA damage. Of the 83 studies, 12 were selected that measured similar types of reactive sperm DNA damage. Seven studies determined the damage of sperm DNA in varicocele-associated patients and six studies evaluated the efficacy of varicocelectomy. One study was a duplicate because both outcomes were included. Data were analysed using RevMan software. The overall estimate showed that patients with varicoceles have significantly higher sperm DNA damage than controls, with a mean difference of 9.84% (95% CI 9.19 to 10.49; P<0.00001). A varicocelectomy can improve sperm DNA integrity, with a mean difference of -3.37% (95% CI -4.09 to -2.65; P<0.00001). In conclusion, there is increased sperm DNA damage in patients with varicoceles and varicocelectomy may be a possible treatment; however, more studies with appropriate controls are needed to confirm this finding. A varicocele is an important cause of male infertility and occurs in nearly 40% of infertile males. The recent understanding of the effect of varicoceles in male reproduction has led some researchers to postulate varicoceles as the possible cause of sperm DNA damage. Eighty-three human studies were identified after an extensive literature search involving the role of varicoceles in sperm DNA damage. Of the 83 studies, 12 were selected that measured similar types of reactive sperm DNA damage by a similar method. Seven studies determined the damage of sperm DNA in varicocele-associated patients and six studies evaluated the efficacy of varicocelectomy. One study was a duplicate because both outcomes were included. The data were then entered in the RevMan software for analysis. The overall estimate showed that patients with varicoceles have significantly higher sperm DNA damage than controls, with a mean difference of 9.84% (95% CI 9.19 to 10.49; P<0.00001). A varicocelectomy can improve sperm DNA integrity, with a mean difference of -3.37% (95% CI -4.09 to -2.65; P<0.00001). Based on the results, it can be concluded that there is increased sperm DNA damage in patients with varicoceles and that varicocelectomy may be a possible treatment; however, more studies with appropriate controls are needed to confirm this finding.
Collapse
Affiliation(s)
- Ying-Jun Wang
- Department of Urologic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
34
|
Fullston T, Palmer NO, Owens JA, Mitchell M, Bakos HW, Lane M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod 2012; 27:1391-400. [PMID: 22357767 DOI: 10.1093/humrep/des030] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Obesity and related conditions, notably subfertility, are increasingly prevalent. Paternal influences are known to influence offspring health outcome, but the impact of paternal obesity and subfertility on the reproductive health of subsequent generations has been overlooked. METHODS A high-fat diet (HFD) was used to induce obesity but not diabetes in male C57Bl6 mice, which were subsequently mated to normal-weight females. First-generation offspring were raised on a control diet and their gametes were investigated for signs of subfertility. Second-generation offspring were generated from both first generation sexes and their gametes were similarly assessed. RESULTS We demonstrate a HFD-induced paternal initiation of subfertility in both male and female offspring of two generations of mice. Furthermore, we have shown that diminished reproductive and gamete functions are transmitted through the first generation paternal line to both sexes of the second generation and via the first generation maternal line to second-generation males. Our previous findings that founder male obesity alters the epigenome of sperm, could provide a basis for the developmental programming of subfertility in subsequent generations. CONCLUSIONS This is the first observation of paternal transmission of diminished reproductive health to future generations and could have significant implications for the transgenerational amplification of subfertility observed worldwide in humans.
Collapse
Affiliation(s)
- T Fullston
- Research Centre for Reproductive Health , Discipline of Obstetrics and Gynaecology, Level 3 Medical School South, Robinson Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Varshini J, Srinag BS, Kalthur G, Krishnamurthy H, Kumar P, Rao SBS, Adiga SK. Poor sperm quality and advancing age are associated with increased sperm DNA damage in infertile men. Andrologia 2011; 44 Suppl 1:642-9. [PMID: 22040161 DOI: 10.1111/j.1439-0272.2011.01243.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With increasing evidence for faulty paternal contribution to reproduction, there has been a steady increase in studies highlighting an association between sperm DNA damage, failed/delayed fertilisation and aberrant embryo development. Owing to prevailing ambiguity, the aims of the study were to analyse the genetic integrity of the male gamete and then to understand its association with age, standard semen parameters, lifestyle and occupational factors. The study included 504 subjects, attending university infertility clinic for fertility evaluation and treatment. Semen characteristics were analysed by standard criteria; terminal deoxynucelotidyl transferase-mediated nick end-labelling assay was employed for DNA damage assessment. The average incidence of sperm DNA damage in patients with normozoospermic semen parameters was <10%. Patients with oligozoospermia, severe oligozoospermia, oligoasthenoteratospermia, asthenoteratozoospermia and necrozoospermia had significantly higher level of sperm DNA damage (P < 0.001). Patients above 40 years of age had significantly high levels of DNA damage (P < 0.001) compared with their counterparts. Patients with varicocele and a history of alcohol consumption had higher incidence of spermatozoa with DNA damage (P < 0.01). Poor sperm characteristics in the ejaculate are associated with increased sperm DNA damage. Age-related increase in sperm DNA damage and association of the same with varicocele and alcohol consumption are also demonstrated.
Collapse
Affiliation(s)
- J Varshini
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tichy ED. Mechanisms maintaining genomic integrity in embryonic stem cells and induced pluripotent stem cells. Exp Biol Med (Maywood) 2011; 236:987-96. [PMID: 21768163 DOI: 10.1258/ebm.2011.011107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent, self-renewing cells that are isolated during the blastocyst stage of embryonic development. Whether these cells are derived from humans, mice or other organisms, all ESCs must employ mechanisms that prevent the propagation of mutations, generated as a consequence of DNA damage, to somatic cells produced by normal programmed differentiation. Thus, the prevention of mutations in ESCs is important not only for the health of the individual organism derived from these cells but also, in addition, for the continued survival and genetic viability of the species by preventing the accumulation of mutations in the germline. Induced pluripotent stem cells (IPSCs) are reprogrammed somatic cells that share several characteristics with ESCs, including a similar morphology in culture, the re-expression of pluripotency markers and the ability to differentiate into defined cell lineages. This review focuses on the mechanisms employed by murine ESCs, human ESCs and, where data are available, IPSCs to preserve genetic integrity.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Molecular Genetics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA.
| |
Collapse
|
37
|
Kumar D, Kalthur G, Mascarenhas C, Kumar P, Adiga SK. Ejaculate fractions of asthenozoospermic and teratozoospermic patients have differences in the sperm DNA integrity. Andrologia 2011; 43:416-21. [DOI: 10.1111/j.1439-0272.2010.01105.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Yamauchi Y, Riel JM, Ward MA. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. ACTA ACUST UNITED AC 2011; 33:229-38. [PMID: 21546611 DOI: 10.2164/jandrol.111.013532] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In spite of its highly condensed state, sperm DNA is vulnerable to damage that can originate from oxidative stress, the activity of sperm-specific nucleases, or both. After fertilization, in the oocyte, paternal chromatin undergoes dramatic changes, and during this extensive remodeling, it can be both repaired and degraded, and these processes can be linked to DNA synthesis. Here, we analyzed sperm response to damage-inducing treatments both before and after fertilization and before or after zygotic DNA replication. Epididymal mouse spermatozoa were either frozen without cryoprotection (FT) or treated with detergent Triton X-100 coupled with dithiothreitol (TX+DTT) to induce DNA damage. Fresh, untreated sperm served as control. Immediately after preparation, spermatozoa from 3 groups were taken for comet assay, or for intracytoplasmic sperm injection into prometaphase I oocytes to visualize prematurely condensed single-chromatid chromosomes, or into mature metaphase II oocytes to visualize chromosomes after DNA replication. Comet assay revealed increased DNA fragmentation in treated sperm when compared with control, with FT sperm more severely affected. Chromosome analysis demonstrated paternal DNA damage in oocytes injected with treated, but not with fresh, sperm, with FT and TX+DTT groups now yielding similar damage. There were no differences in the incidence of abnormal paternal karyoplates before and after DNA synthesis in all examined groups. This study provides evidence that subjecting sperm to DNA damage-inducing treatments results in degradation of highly condensed sperm chromatin when it is still packed within the sperm head, and that this DNA damage persists after fertilization. The difference in DNA damage in sperm subjected to 2 treatments was ameliorated in the fertilized oocytes, suggesting that some chromatin repair might have occurred. This process, however, was independent of DNA synthesis and took place during oocyte maturation.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
39
|
Upadhya D, Kalthur G, Kumar P, Rao BS, Adiga SK. Association between the extent of DNA damage in the spermatozoa, fertilization and developmental competence in preimplantation stage embryos. J Turk Ger Gynecol Assoc 2010; 11:182-6. [PMID: 24591933 DOI: 10.5152/jtgga.2010.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/24/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To examine the fertilizing ability and DNA damage response of preimplantation stage embryos derived from the γ-irradiated mouse sperm carrying varying amounts of DNA strand-breaks. MATERIAL AND METHODS The DNA damage in the sperm was induced by exposing the testicular area to different doses of γ-radiation. After mating with healthy female mice, sperm zona binding, fertilizing ability of DNA damaged sperm and developmental competence of embryos derived from the DNA damaged sperm were assessed. RESULTS The in vivo zona binding ability and fertilizing ability of DNA damaged sperm was significantly affected in the 5.0 and 10.0 Gy sperm irradiation groups. Although the development of the embryos derived from the DNA damaged sperm was not significantly affected until day 2.5 post-coitus, further development was significantly altered, as evidenced by the total cell number in the embryos. CONCLUSION The sperm carrying DNA strand breaks still has the ability to fertilize the oocyte normally. However, the events like zona-binding and successful fertilization depend on the extent of sperm DNA fragmentation. The study has also showed a great heterogeneity in embryonic development at peri-implantation period with respect to the degree of sperm DNA damage.
Collapse
Affiliation(s)
- Dinesh Upadhya
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Guruprasad Kalthur
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pratap Kumar
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Bola S Rao
- Department of Radiobiology and Toxicology, Manipal Life Science Centre, Manipal University, Manipal, India
| | - Satish K Adiga
- Clinical Embryology, Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|