1
|
Li M, Han J, Yang N, Li X, Wu X. Transcriptome profiling reveals superovulation with the gonadotropin-releasing hormone agonist trigger impaired embryo implantation in mice. Front Endocrinol (Lausanne) 2024; 15:1354435. [PMID: 38469140 PMCID: PMC10925639 DOI: 10.3389/fendo.2024.1354435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Superovulation is a critical step in assisted reproductive technology, but the use of human chorionic gonadotropin (hCG) as a trigger for superovulation can result in ovarian hyperstimulation. Thus, the use of Gonadotropin-releasing hormone agonist (GnRHa) trigger has been increasingly adopted, although it has been associated with a higher rate of pregnancy failure compared to natural cycles. This study aimed to investigate the effect of GnRHa trigger on embryo implantation in a mouse model. Methods Mice in the superovulation (PG) group were administered 7.5 IU of PMSG, followed by the injection of 3.5 μg of GnRHa (Leuprorelin) 48 h later, while mice in the control group (CTR) mated naturally. We compared the number of oocytes, blastocysts, and corpus luteum between the two groups and the implantation sites after the transfer of natural blastocysts. Ovaries, uterus, and serum 2 and 4 days after mating were collected for qRT-PCR, transcriptome sequencing, and hormone assays. Results The PG group had more oocytes, blastocysts, and corpus luteum after superovulation than the CTR group. However, the mRNA expression of leukemia inhibitory factor (Lif) and the number of implantation sites were reduced in the PG group. The ELISA assay revealed that superovulation increased ovarian estrogen secretion. The transcriptome analysis showed that superphysiological estrogen led to a response of the uterus to a high estrogen signal, resulting in abnormal endometrium and extracellular matrix remodeling and up-regulation of ion transport and inflammation-related genes. Conclusion Our findings suggest that a combination of PMSG and GnRHa trigger impaired embryo implantation in mice, as the excessive uterine response to superphysiological estrogen levels can lead to the change of gene expression related to endometrial remodeling, abnormal expression of uterine ion transport genes and excessive immune-related genes.
Collapse
Affiliation(s)
- Meng Li
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| | - Jingmei Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Nana Yang
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| | - Xiangyun Li
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Bu LG, Sun Y, Li TY, Kong LL, Yu HN, Li SJ, Ding NZ, Ni H. Peri-implantation expression and regulation of ITGB8 in goat uterus. Theriogenology 2021; 180:130-136. [PMID: 34973644 DOI: 10.1016/j.theriogenology.2021.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 02/01/2023]
Abstract
Ruminants have a superficial implantation pattern. The extended conceptus attaches to the receptive endometrium to form the cotyledonary placenta. During the attachment, a large number of events occur at the maternal-fetal interface. However, the related molecular mechanisms have not been fully understood. Integrin beta8 (ITGB8) is a subunit of integrin beta involved in embryo implantation. In this study, we determined peri-implantation expression and regulation of ITGB8 in goat uterus. The mRNA and protein levels of ITGB8 were both high in goat endometrial luminal epithelium (LE) and superficial glandular epithelium (sGE) during the adhesion period (Days 16-19 of pregnancy). Such expression profile was opposite to that of microRNA-187 (miR-187). Then, we validated that miR-187 targeted the 3' untranslated region (UTR) of ITGB8 in primary goat endometrial epithelial cells (EECs). In EECs, inhibition of miR-187 resulted in not only up-regulated ITGB8 level but also reduced cell proliferation and focal adhesion kinase (FAK) activity. Moreover, ITGB8 and miR-187 were regulated by interferon tau (IFNT). Altogether, in goat, the miR-187/ITGB8 axis may be involved in conceptus attachment and is downstream of IFNT. Our results will help us better understand the mechanisms of ruminant implantation and may provide a useful tool to improve the reproduction ratio for ruminants.
Collapse
Affiliation(s)
- Li-Ge Bu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Ya Sun
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Ting-Yue Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Li Kong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Hao-Nan Yu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Shi-Jie Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Nai-Zheng Ding
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hua Ni
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor α transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod 2021; 27:gaab060. [PMID: 34524460 PMCID: PMC8786495 DOI: 10.1093/molehr/gaab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.
Collapse
Affiliation(s)
- Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angelos G Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - George A Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Ma WW, Xiao J, Song YF, Ding JH, Tan XJ, Song KK, Zhang MM. Effect and underlying mechanism of Bu-Shen-An-Tai recipe on ovarian apoptosis in mice with controlled ovarian hyperstimulation implantation dysfunction. ACTA ACUST UNITED AC 2017; 37:401-406. [PMID: 28585136 DOI: 10.1007/s11596-017-1747-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/04/2017] [Indexed: 12/19/2022]
Abstract
The effect and underlying mechanism of Bu-Shen-An-Tai recipe on ovarian apoptosis in mice with controlled ovarian hyperstimulation (COH) implantation dysfunction were studied. The COH implantation dysfunction model in mice was established by intraperitoneal injection of 7.5 IU pregnant mare's serum gonadotrophin (PMSG), followed by 7.5 IU human chorionic gonadotrophin (HCG) 48 h later. Then the female mice were mated with male at a ratio of 2:1 in the same cage at 6:00 p.m. The female mice from normal group were injected intraperitoneally with normal saline and mated at the corresponding time. Day 1 of pregnancy was recorded by examining its vaginal smears at 8:00 a.m. of the next day. Fifty successfully pregnant mice were equally randomly divided into 5 groups: normal control pregnant group (NC), COH implantation dysfunction model group (COH), low dosage of Bu-Shen-An-Tai recipe group (LOW), middle dosage of Bu-Shen-An-Tai recipe group (MID) and high dosage of Bu-Shen-An-Tai recipe group (HIGH). Then from day 1, the mice in different groups were respectively intragastrically given corresponding treatments at 9:00 a.m. for 5 consecutive days. The concentrations of 17β-estradiol (E2) and progesterone (P4) were determined by radioimmunoassay (RIA). The ultrastructural changes of ovarian tissues were observed by transmission electron microscope (TEM). The histopathological changes of ovarian tissues were observed by HE staining. The number of atretic follicles and pregnant corpus luteum were also recorded. TUNEL was applied to measure apoptotic cells of ovarian tissues. Western blotting was used to detect the protein expression of apoptosis- related factors like Bax, Bcl-2 and cleaved-caspase-3 in ovarian tissue of mice. The results showed that ovarian weight, the concentrations of E2 and P4, the number of atretic follicles and pregnant corpus luteum, as well as the apoptosis of granulosa cells were significantly increased in the COH group. The ultrastructures of ovarian tissues in the COH group showed that chromatin in granulosa cells was increased, agglutinated, aggregated or crescent-shaped. The focal cavitation and the typical apoptotic bodies could be seen in granulosa cells in the late stage of apoptosis. After the treatment with different doses of Bu-Shen-An-Tai recipe, the ultrastructural changes of ovarian granulosa cells apoptosis were dramatically improved and even disappeared under TEM. Visible mitochondria and mitochondrial cristae were increased and vacuoles were significantly reduced. The lipid dropltes were shown in a circluar or oval shape. The protein expression levels of Bax and cleaved-caspase-3 were decreased, and the expression of Bcl-2 protein was increased after treatment. It was concluded that Bu-Shen-An-Tai recipe can inhibit the apoptosis of ovarian granulosa cells, probably by up-regulating the protein expression of Bcl-2 and down-regulating Bax and cleaved-caspase-3, which contributes to the formation and maintenance of ovarian corpus luteum. It's helpful to promote the embryonic implantation, to reduce embryo loss and ultimately to improve the success rate of pregnancy.
Collapse
Affiliation(s)
- Wen-Wen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Xiao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Fan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Hui Ding
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiu-Juan Tan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun-Kun Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming-Min Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Shahzad H, Giribabu N, Karim K, Kassim NM, Muniandy S, Salleh N. Combinatorial effects of quercetin and sex-steroids on fluid and electrolytes' (Na+, Cl-, HCO3-) secretory mechanisms in the uterus of ovariectomised female Sprague-Dawley rats. PLoS One 2017; 12:e0172765. [PMID: 28253299 PMCID: PMC5333842 DOI: 10.1371/journal.pone.0172765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence.
Collapse
Affiliation(s)
- Huma Shahzad
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Normadiah M. Kassim
- Department of Anatomy, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jalan Elmu, Off Jalan University, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
6
|
Lou Y, Hu M, Mao L, Zheng Y, Jin F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J 2016; 31:447-456. [PMID: 27871060 DOI: 10.1096/fj.201600760r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
Reproductive processes, in particular events that concern pregnancy, are fine-tuned to produce offspring. Reproductive success is of prime importance for the survival of every species. The highly conserved and ubiquitously expressed serum glucocorticoid-regulated kinase 1 (SGK1) was first implicated in infertility as a regulator of a Na+ channel. In this review, we emphasize the prominent role of SGK1 during early pregnancy: 1) balancing uterine luminal fluid secretion and reabsorption to aid blastocyst adhesion and to import nutrients and energy; 2) transducing signals from the blastocyst to the receptive endometrium; 3) inducing multiple genes that are involved in uterine receptivity and trophoblast invasion; 4) regulating cell differentiation and antioxidant defenses at the fetomaternal interface; and 5) contributing to the proliferation and survival of decidual stromal cells. Accordingly, SGK1 coordinates many cellular processes that are crucial to reproductive activities. Aberrant expression or function of SGK1 results in implantation failure and early pregnancy loss. Further investigation of the molecular mechanisms of the function of SGK1 might provide novel diagnostic tools and interventions for reproductive complications.-Lou, Y., Hu, M., Mao, L., Zheng, Y., Jin, F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yingming Zheng
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China; .,Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Zhejiang, China.,Key Laboratory of Reproductive Genetics, National Ministry of Education, Zhejiang University, Zhejiang, China.,Women's Reproductive Health Laboratory of Zhejiang Province, National Ministry of Education, Zhejiang University, Zhejiang, China
| |
Collapse
|
7
|
Ren L, Wang Z, An L, Zhang Z, Tan K, Miao K, Tao L, Cheng L, Zhang Z, Yang M, Wu Z, Tian J. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum Reprod 2015; 30:2892-911. [PMID: 26385791 DOI: 10.1093/humrep/dev228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does in vitro fertilization (IVF) induce comprehensive and consistent changes in gene expression associated with mitochondrial biogenesis and function in mouse embryos from the pre- to post-implantation stage? SUMMARY ANSWER IVF-induced consistent mitochondrial dysfunction in early mouse embryos by altering the expression of a number of mitochondria-related genes. WHAT IS KNOWN ALREADY Although IVF is generally safe and successful for the treatment of human infertility, there is increasing evidence that those conceived by IVF suffer increased health risks. The mitochondrion is a multifunctional organelle that plays a crucial role in early development. We hypothesized that mitochondrial dysfunction is associated with increased IVF-induced embryonic defects and risks in offspring. STUDY DESIGN, SIZE, DURATION After either IVF and development (IVO groups as control) or IVF and culture (IVF groups), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5, and the expression profiles of mitochondria-related genes from the pre- to post-implantation stage were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR mice (5- to 6-week-old males and 8- to 9-week-old females) were used to generate IVO and IVF blastocysts. Embryo day (E) 3.5 blastocysts were transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5 for generating transcriptome data. Mitochondria-related genes were filtered for dynamic functional profiling. Mitochondrial dysfunctions indicated by bioinformatic analysis were further validated using cytological and molecular detection, morphometric and phenotypic analysis and integrated analysis with other high-throughput data. MAIN RESULTS AND THE ROLE OF CHANCE A total of 806, 795 and 753 mitochondria-related genes were significantly (P < 0.05) dysregulated in IVF embryos at E3.5, E7.5 and E10.5, respectively. Dynamic functional profiling, together with cytological and molecular investigations, indicated that IVF-induced mitochondrial dysfunctions mainly included: (i) inhibited mitochondrial biogenesis and impaired maintenance of DNA methylation of mitochondria-related genes during the post-implantation stage; (ii) dysregulated glutathione/glutathione peroxidase (GSH/Gpx) system and increased mitochondria-mediated apoptosis; (iii) disturbed mitochondrial β-oxidation, oxidative phosphorylation and amino acid metabolism; and (iv) disrupted mitochondrial transmembrane transport and membrane organization. We also demonstrated that some mitochondrial dysfunctions in IVF embryos, including impaired mitochondrial biogenesis, dysregulated GSH homeostasis and reactive oxygen species-induced apoptosis, can be rescued by treatment with melatonin, a mitochondria-targeted antioxidant, during in vitro culture. LIMITATIONS, REASONS FOR CAUTION Findings in mouse embryos and fetuses may not be fully transferable to humans. Further studies are needed to confirm these findings and to determine their clinical significance better. WIDER IMPLICATIONS OF THE FINDINGS The present study provides a new insight in understanding the mechanism of IVF-induced aberrations during embryonic development and the increased health risks in the offspring. In addition, we highlighted the possibility of improving existing IVF systems by modulating mitochondrial functions.
Collapse
Affiliation(s)
- Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhennan Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Linghua Cheng
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenni Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
8
|
Chen H, Guo JH, Zhang XH, Chan HC. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction 2015; 149:393-401. [PMID: 25646509 DOI: 10.1530/rep-14-0368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.
Collapse
Affiliation(s)
- Hui Chen
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Jing Hui Guo
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Xiao Hu Zhang
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Hsiao Chang Chan
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| |
Collapse
|
9
|
Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update 2014; 20:517-29. [PMID: 24591147 DOI: 10.1093/humupd/dmu006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although embryo implantation is a prerequisite for human reproduction, it remains a poorly understood process. The molecular mechanisms regulating endometrial receptivity and/or embryo implantation are still largely unclear. METHODS Pubmed and Medline literature databases were searched for articles in English published up to December 2013 with relevant keywords including 'endometrium', 'Na(+), Cl(-), K(+), or Ca(2+) channels', 'ion channels', 'endometrial receptivity', 'blastocyst implantation' and 'embryo implantation'. RESULTS At the time of writing, more than 14 types of ion channels, including the cystic fibrosis transmembrane conductance regulator, epithelial sodium channel and various Ca(2+) and K(+) channels, had been reported to be expressed in the endometrium or cells of endometrial origin. In vitro and/or in vivo studies conducted on different species, including rodents, pigs and humans, demonstrated the involvement of various ion channels in the process of embryo implantation by regulating: (i) uterine luminal fluid volume; (ii) decidualization; and (iii) the expression of the genes associated with implantation. Importantly, abnormal ion channel expression was found to be associated with implantation failure in IVF patients. CONCLUSIONS Ion channels in the endometrium are emerging as important players in regulating endometrial receptivity and embryo implantation. Abnormal expression or function of ion channels in the endometrium may lead to impaired endometrial receptivity and/or implantation failure. Further investigation into the roles of endometrial ion channels may provide a better understanding of the complex process of embryo implantation and thus reveal novel targets for diagnosis and treatment of implantation failure.
Collapse
Affiliation(s)
- Ye Chun Ruan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hui Chen
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hsiao Chang Chan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
10
|
Chinigarzadeh A, Kassim NM, Muniandy S, Salleh N. Genistein-induced fluid accumulation in ovariectomised rats' uteri is associated with increased cystic fibrosis transmembrane regulator expression. Clinics (Sao Paulo) 2014; 69:111-9. [PMID: 24519202 PMCID: PMC3912340 DOI: 10.6061/clinics/2014(02)07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE High genistein doses have been reported to induce fluid accumulation in the uteri of ovariectomised rats, although the mechanism underlying this effect remains unknown. Because genistein binds to the oestrogen receptor and the cystic fibrosis transmembrane regulator mediates uterine fluid secretion, we hypothesised that this genistein effect involves both the oestrogen receptor and cystic fibrosis transmembrane regulator. METHODS Ovariectomised adult female Sprague-Dawley rats were treated with 25, 50, or 100 mg/kg/day genistein for three consecutive days with and without the ER antagonist ICI 182780. One day after the final drug injection, the animals were humanely sacrificed, and the uteri were removed for histology and cystic fibrosis transmembrane regulator mRNA and protein expression analysis using real-time polymerase chain reaction and Western blotting, respectively. The cystic fibrosis transmembrane regulator protein distribution was analysed visually by immunohistochemistry. RESULTS The histological analysis revealed an increase in the circumference of the uterine lumen with increasing doses of genistein, which was suggestive of fluid accumulation. Moreover, genistein stimulated a dose-dependent increase in the expression of cystic fibrosis transmembrane regulator protein and mRNA, and high-intensity cystic fibrosis transmembrane regulator immunostaining was observed at the apical membrane of the luminal epithelium following 50 and 100 mg/kg/day genistein treatment. The genistein-induced increase in uterine luminal circumference and cystic fibrosis transmembrane regulator expression was antagonised by treatment with ICI 182780. CONCLUSION Genistein-induced luminal fluid accumulation in ovariectomised rats' uteri involves the oestrogen receptor and up-regulation of cystic fibrosis transmembrane regulator expression, and these findings reveal the mechanism underlying the effect of this compound on changes in fluid volume in the uterus after menopause.
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| | - Normadiah M Kassim
- University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur/Malaysia
| | - Sekaran Muniandy
- University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur/Malaysia
| | - Naguib Salleh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| |
Collapse
|
11
|
Lindsay LA, Murphy CR. Ovarian hyperstimulation affects fluid transporters in the uterus: a potential mechanism in uterine receptivity. Reprod Fertil Dev 2014; 26:982-90. [DOI: 10.1071/rd12396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Controlled ovarian hyperstimulation is commonly used in fertility treatment. Evidence suggests that this could alter the endometrial environment and influence implantation rate. However, the mechanisms underlying this disruption are unknown. A recently developed rat ovarian hyperstimulation (OH) model found alterations in the localisation and expression of several molecules associated with implantation, as well as an increase in luminal fluid at the time of implantation. The present study investigated the effects of OH in rats on the expression of fluid-transporting molecules aquaporin 5 (AQP5) and claudin 4. The expression of these proteins was investigated in uterine luminal epithelial cells of rats undergoing OH and compared with normal pregnancy. There was a significant increase in AQP5 protein in OH rats at the time of implantation, along with a loss of the mesometrial staining gradient, which is thought to contribute to implantation position. At the same time, there was a significant decrease in claudin 4 protein. These results suggest that OH in rats causes a dysregulation in uterine fluid dynamics through modifications to fluid-transporting molecules, resulting in an unfavourable implantation environment for the blastocyst.
Collapse
|
12
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Gholami K, Muniandy S, Salleh N. In-vivo functional study on the involvement of CFTR, SLC26A6, NHE-1 and CA isoenzymes II and XII in uterine fluid pH, volume and electrolyte regulation in rats under different sex-steroid influence. Int J Med Sci 2013; 10:1121-34. [PMID: 23869188 PMCID: PMC3714388 DOI: 10.7150/ijms.5918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/30/2013] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Precise control of uterine fluid pH, volume and electrolytes is important for the reproductive processes. In this study, we examined the functional involvement of multiple proteins including Cystic Fibrosis Transmembrane Regulator (CFTR), Cl(-)/HCO3 (-) exchanger (SLC26A6), sodium-hydrogen exchanger-1 (NHE-1) and carbonic anhydrase (CA) in the regulation of these uterine fluid parameters. METHODS Adult female WKY rats were divided into intact, non-ovariectomised at different oestrous cycle phases and ovariectomised treated with sex-steroids. Following oestrous phase identification or sex-steroid treatment, in-vivo uterine perfusion was performed with and without the presence of these inhibitors: glibenclamide, DIDS, ACTZ and EIPA. The pH, volume, Cl(-), HCO3 (-) and Na(+) concentrations of the perfusate from different groups were then analyzed. Meanwhile, the expression of CFTR, SLC26A6, NHE-1, CAII and CAXII was visualized by immunohistochemistry (IHC). RESULTS Parallel increase in the pH, volume, Cl(-), HCO3 (-) and Na(+) concentrations was observed at estrus (Es), proestrus (Ps) and following 17β-oestradiol (E) treatment, which was inhibited by glibenclamide, DIDS and ACTZ while parallel reduction in these parameters was observed at diestrus (Ds) and following progesterone (P) treatment which was inhibited by ACTZ and EIPA. CFTR and SLC26A6 expression were up-regulated under E dominance, while NHE-1 expression was up-regulated under P dominance. Meanwhile, CA isoenzymes were expressed under both E and P influence. CONCLUSION CFTR, SLC26A6 and CA were involved in mediating parallel increase in the uterine fluid volume, pH and electrolyte concentration under E while NHE and CA were involved in mediating the reduction of these parameters under P.
Collapse
Affiliation(s)
- Khadijeh Gholami
- Dept of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
14
|
Current World Literature. Curr Opin Obstet Gynecol 2012; 24:265-72. [DOI: 10.1097/gco.0b013e3283564f02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Liu Y, Wang DK, Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 2012; 86:99. [PMID: 22262691 DOI: 10.1095/biolreprod.111.096826] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCO(3)(-) plays critically important roles during virtually the entire process of reproduction in mammals, including spermatogenesis, sperm capacitation, fertilization, and development of early stage embryos. Therefore, the acid-base balance in the male and female reproductive tracts must be finely modulated. The fluid milieu in the epididymis is acidic, containing very low concentration of HCO(3)(-). In this acidic low HCO(3)(-) environment, mature sperm are rendered quiescent in the epididymis. In contrast, the luminal fluid in the female uterus and oviduct is alkaline, with very high concentration of HCO(3)(-) that is essential for sperm to fulfill fertilization. HCO(3)(-) transporter of solute carrier 4 (SLC4) and SLC26 families represent the major carriers for HCO(3)(-) transport across the plasma membrane. These transporters play critical roles in intracellular pH regulation and transepithelial HCO(3)(-) transport. The physiological roles of these transporters in mammalian reproduction are of fundamental interest to investigators. Here we review recent progress in understanding the expression of HCO(3)(-) transporters in reproductive tract tissues as well as the physiological roles of these transporters in mammalian reproduction.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology School of Life Science and Technology, Wuhan, China
| | | | | |
Collapse
|
16
|
Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G, Webster Z, Al-Sabbagh M, Puchchakayala G, Föller M, Landles C, Sharkey AM, Quenby S, Aplin JD, Regan L, Lang F, Brosens JJ. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med 2011; 17:1509-13. [PMID: 22001908 DOI: 10.1038/nm.2498] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/30/2011] [Indexed: 11/09/2022]
Abstract
Infertility and recurrent pregnancy loss (RPL) are prevalent but distinct causes of reproductive failure that often remain unexplained despite extensive investigations. Analysis of midsecretory endometrial samples revealed that SGK1, a kinase involved in epithelial ion transport and cell survival, is upregulated in unexplained infertility, most prominently in the luminal epithelium, but downregulated in the endometrium of women suffering from RPL. To determine the functional importance of these observations, we first expressed a constitutively active SGK1 mutant in the luminal epithelium of the mouse uterus. This prevented expression of certain endometrial receptivity genes, perturbed uterine fluid handling and abolished embryo implantation. By contrast, implantation was unhindered in Sgk1-/- mice, but pregnancy was often complicated by bleeding at the decidual-placental interface and fetal growth retardation and subsequent demise. Compared to wild-type mice, Sgk1-/- mice had gross impairment of pregnancy-dependent induction of genes involved in oxidative stress defenses. Relative SGK1 deficiency was also a hallmark of decidualizing stromal cells from human subjects with RPL and sensitized these cells to oxidative cell death. Thus, depending on the cellular compartment, deregulated SGK1 activity in cycling endometrium interferes with embryo implantation, leading to infertility, or predisposes to pregnancy complications by rendering the feto-maternal interface vulnerable to oxidative damage.
Collapse
Affiliation(s)
- Madhuri S Salker
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|