1
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
2
|
Khajedehi N, Fathi R, Akbarinejad V, Gourabi H. Oocyte Vitrification Reduces its Capability to Repair Sperm DNA Fragmentation and Impairs Embryonic Development. Reprod Sci 2024; 31:1256-1267. [PMID: 38151654 DOI: 10.1007/s43032-023-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Oocytes play a crucial role in repairing sperm DNA damage, which can affect the next generation; however, certain factors can impair this ability. This study examined whether oocyte vitrification, a widely used method for fertility preservation, negatively affects repair ability. Male DBA/2 mice (n = 28) were injected with 101.60 µmol/100 g body weight of tert-Butyl hydroperoxide (tBHP) for 14 days to induce sperm DNA damage. Histological changes, sperm functions, and DNA fragmentation were assessed using the TUNEL assay. Cumulus-oocyte-complexes (COCs) of superovulated female DBA/2 mice (n = 28) were vitrified using the Cryotop method. Fresh and vitrified oocytes were then fertilized by tBHP-treated and untreated sperms, and subsequent embryonic development was monitored. Additionally, the expression of Mre11a, Rad51, Brca1, and Xrcc4 was assessed in resulting zygotes and blastocysts using real-time PCR. The sperm tBHP treatment reduced differentiated spermatogenic cells in the testicular tissue, sperm concentration, and motility, while increasing DNA fragmentation (P < 0.05). The fertilization rate was decreased in the tBHP-treated sperm-vitrified oocyte group (P < 0.05), and the two-cell rate diminished in tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05). The four-cell to blastocyst rate decreased in the untreated sperm-vitrified oocyte and the tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05), and the tBHP-treated sperm-vitrified oocyte groups had the lowest blastocyst rate. In zygotes, Brca1 was upregulated in the tBHP-treated sperm-vitrified oocyte group (P < 0.05). Also, in blastocysts, Rad51, Brca1, and Xrcc4 were significantly upregulated in the untreated sperm-vitrified oocytes group (P < 0.05). Damages to the oocyte due to vitrification can disrupt the repair of sperm DNA fragmentation and consequently impair the embryo development.
Collapse
Affiliation(s)
- Niloofar Khajedehi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Kandil OM, Rahman SMAE, Ali RS, Ismail EA, Ibrahim NM. Effect of melatonin on developmental competence, mitochondrial distribution, and intensity of fresh and vitrified/thawed in vitro matured buffalo oocytes. Reprod Biol Endocrinol 2024; 22:39. [PMID: 38580962 PMCID: PMC10996257 DOI: 10.1186/s12958-024-01209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In livestock breeding, oocyte cryopreservation is crucial for preserving and transferring superior genetic traits. This study was conducted to examine the additional effect of melatonin to maturation and vitrification media on the in vitro developmental capacity, mitochondrial distribution, and intensity of buffalo oocytes. The study involved obtaining ovaries from a slaughterhouse and conducting two phases. In the first phase, high-quality oocytes were incubated in a maturation medium with or without 10-9M melatonin for 22 h (at 38.5°C in 5% CO2). Matured oocytes were fertilized in vitro and cultured in SOF media for seven days. In the second phase, vitrified in vitro matured oocytes were stored in vitrified media (basic media (BM) containing a combination of cryoprotectants (20% Ethyl Glycol and 20% Dimethyl sulfoxide), with or without melatonin, and then stored in liquid nitrogen. Normal vitrified/thawed oocytes were fertilized in vitro and cultured as described. Finally, the matured oocytes from the fresh and vitrified/thawed groups, both with and without melatonin, were stained using DAPI and Mitotracker red to detect their viability (nuclear maturation), mitochondrial intensity, and distribution using a confocal microscope. The study found that adding 10-9M melatonin to the maturation media significantly increased maturation (85.47%), fertilization rate (84.21%)cleavage (89.58%), and transferable embryo (48.83%) rates compared to the group without melatonin (69.85%,79.88%, 75.55%, and 37.25% respectively). Besides that, the addition of melatonin to the vitrification media improved the recovery rate of normal oocytes (83.75%), as well as the cleavage (61.80%) and transferable embryo (27.00%) rates when compared to the vitrified TCM group (67.46%, 51.40%, and 17.00%, respectively). The diffuse mitochondrial distribution was higher in fresh with melatonin (TCM + Mel) (80%) and vitrified with melatonin (VS2 + Mel groups) (76.70%), Furthermore, within the same group, while the mitochondrial intensity was higher in the TCM + Mel group (1698.60) than other group. In conclusion, Melatonin supplementation improves the developmental competence and mitochondrial distribution in buffalo oocytes in both cases(in vitro maturation and vitrification).
Collapse
Affiliation(s)
- Omaima Mohamed Kandil
- Department of Animal Reproduction & Artificial Insemination, Veterinary Research Institute, National Research Centre, Cairo, Egypt.
- Accredited (ISO 17025) Embryo and Genetic Resources Conservation Bank in National Research Centre (NRC), Cairo, Egypt.
| | | | - Rania S Ali
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Esraa Aly Ismail
- Department of Animal Reproduction & Artificial Insemination, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Nehad M Ibrahim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Nguyen HT, Nguyen NT, Nguyen LV, Bui XN, Nguyen VH, Nguyen VK, Vu HTT, Nguyen ST, Nguyen HT. The effects of pretreatment with Cyclosporin A and Docetaxel before vitrification of porcine immature oocytes on subsequent embryo development. Reprod Biol 2023; 23:100798. [PMID: 37717489 DOI: 10.1016/j.repbio.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
In the present study, we attempted to improve the developmental competence of vitrified immature porcine oocytes by the preservation of mitochondrial properties using Cyclosporin A (CsA, inhibitor of mitochondrial membrane permeability transition) and Docetaxel (stabilizer of microtubules, hence mitochondrial distribution). In Experiment 1, Mitotracker red staining revealed reduced mitochondrial activity (MA) in vitrified/warmed oocytes at 0 and 22 h of in vitro maturation (IVM) compared with fresh ones. However, by at 46 h of IVM, MA levels in vitrified oocytes were similar to those in fresh control. Treatment of oocytes with CsA or Docetaxel improved MA at 0 h and 22 h of IVM compared with non-treated vitrified oocytes. However, there were no significant differences among groups in percentages of survival, maturation and embryo development after subsequent IVM and parthenogenetic activation. Nevertheless, a pretreatment with a combination of 10 µg/mL CsA and 0.05 µM Docetaxel improved the blastocyst formation of vitrified oocytes compared with non-treatment counterparts (11.2 ± 1.6% vs 5.9 ± 1.6%, P < 0.05). In conclusion, vitrification reduced mitochondrial activity in GV-stage oocytes during 0-22 h of IVM; however, it was normalized by 46 h IVM. Docetaxel or CsA pretreatment alone did not improve development competence of vitrified oocytes. However, pretreatment with a combination of CsA and Docetaxel could improve blastocyst formation rates.
Collapse
Affiliation(s)
- Hong Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nhung Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Linh Viet Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Xuan Nguyen Bui
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Van Hanh Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Van Khanh Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science (NIAS), Hanoi, Vietnam
| | - Huong Thu Thi Vu
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science (NIAS), Hanoi, Vietnam
| | - Sam Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hiep Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
| |
Collapse
|
5
|
Gutierrez-Castillo E, Diaz FA, Talbot SA, Bondioli KR. Effect of bovine oocyte vitrification with EGTA and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence. Theriogenology 2023; 196:59-67. [PMID: 36399880 DOI: 10.1016/j.theriogenology.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The present study aimed to determine the effects of the addition of EGTA to vitrification solutions and a post-warming recovery period supplemented with 1 μM resveratrol on meiotic spindle integrity, mitochondrial activity, ATP content, reactive oxygen species (ROS) levels, and developmental potential of partially denuded, vitrified-warmed bovine oocytes. Results of microtubule distribution and chromosomal arrangement indicated that resveratrol supplementation, irrespective to EGTA addition, reduced the incidence of abnormal meiotic spindles to similar levels of the control group. Mitochondrial membrane potential was similar in all groups, but ATP content was negatively affected by the vitrification-warming procedure and failed to recover after 4 h of post-warming culture. Resveratrol caused the reduction of ROS to lower levels of the control group, and showed the lowest ROS levels when combined with EGTA treatment. Oocytes in all vitrification groups presented lower developmental potential when compared to fresh oocytes. However, oocytes that underwent vitrification supplemented with EGTA and post-warming culture along with resveratrol showed higher developmental competence compared with vitrified-warmed oocytes not supplemented with resveratrol. The results of our study indicate that submitting vitrified-warmed, partially denuded bovine oocytes to a post-warming recovery period supplemented with 1 μM resveratrol improves vitrification outcomes. However, the benefits of EGTA on vitrification and warming of bovine oocytes need to be further investigated.
Collapse
Affiliation(s)
| | - Fabian A Diaz
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Sydney A Talbot
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Kenneth R Bondioli
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Olexiková L, Dujíčková L, Makarevich AV, Bezdíček J, Sekaninová J, Nesvadbová A, Chrenek P. Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes. Antioxidants (Basel) 2022; 12:antiox12010035. [PMID: 36670897 PMCID: PMC9854658 DOI: 10.3390/antiox12010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vitrification of bovine oocytes can impair subsequent embryo development mostly due to elevated oxidative stress. This study was aimed at examining whether glutathione, a known antioxidant, can improve further embryo development when added to devitrified oocytes for a short recovery period. Bovine in vitro matured oocytes were vitrified using an ultra-rapid cooling technique on electron microscopy grids. Following warming, the oocytes were incubated in the recovery medium containing glutathione (0, 1.5, or 5 mmol L-1) for 3 h (post-warm recovery). Afterwards, the oocytes were lysed for measuring the total antioxidant capacity (TAC), activity of peroxidase, catalase and glutathione reductase, and ROS formation. The impact of vitrification on mitochondrial and lysosomal activities was also examined. Since glutathione, added at 5 mmol L-1, significantly increased the TAC of warmed oocytes, in the next set of experiments this dose was applied for post-warm recovery of oocytes used for IVF. Glutathione in the recovery culture did not change the total blastocyst rate, while increased the proportion of faster developing blastocysts (Day 6-7), reduced the apoptotic cell ratio and reversed the harmful impact of vitrification on the actin cytoskeleton. These results suggest that even a short recovery culture with antioxidant(s) can improve the development of bovine devitrified oocytes.
Collapse
Affiliation(s)
- Lucia Olexiková
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
- Correspondence: ; Tel.: +421-37-654-6258
| | - Linda Dujíčková
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
- Department of Botany and Genetics, Constantine the Philosopher University Nitra, Tr. A. Hlinku 1, 94974 Nitra, Slovakia
| | - Alexander V. Makarevich
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
| | - Jiří Bezdíček
- Department of Zoology, Faculty of Science, Palacký University Olomouc, 17. Listopadu 50, 77900 Olomouc, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Andrea Nesvadbová
- Department of Zoology, Faculty of Science, Palacký University Olomouc, 17. Listopadu 50, 77900 Olomouc, Czech Republic
| | - Peter Chrenek
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
7
|
Zhu Q, Ding D, Yang H, Zou W, Yang D, Wang K, Zhang C, Chen B, Ji D, Hao Y, Xue R, Xu Y, Wang Q, Wang J, Yan B, Cao Y, Zou H, Zhang Z. Melatonin Protects Mitochondrial Function and Inhibits Oxidative Damage against the Decline of Human Oocytes Development Caused by Prolonged Cryopreservation. Cells 2022; 11:cells11244018. [PMID: 36552782 PMCID: PMC9776420 DOI: 10.3390/cells11244018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MT) can improve the effect of cryopreservation on oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. In this study, MT was firstly applied to human oocytes' cryopreservation to explore the effect of prolonged cryopreservation on developmental competence and its role. Collected in vitro-matured human oocytes were cryopreserved in MT-containing or MT-free medium for 0 and 6 months; after warming, viable oocytes were assessed for developmental viability, intracellular protein expression, mitochondrial function, and oxidation-antioxidant system. Meanwhile, fresh oocytes were set as the control. The results showed that with the extension of cryopreservation time, the developmental competence of oocytes gradually declined, accompanied by the down-regulation of most mitochondrial function-related proteins, the reduction in ATP and GSH production, the increase in ROS accumulation, and the aggravation of the imbalance of ROS/GSH in oocytes. However, the participation of MT seemed to effectively mitigate these negative effects. Therefore, we speculate that melatonin may maintain normal ATP production and ROS/GSH balance in cryopreserved oocytes by protecting mitochondrial function and inhibiting oxidative damage, thereby effectively maintaining the developmental competence of human oocytes in prolonged cryopreservation.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Ding Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Han Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Kaijuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Chao Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Rufeng Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Qiushuang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Bo Yan
- The Second Clinical Medical School, Anhui Medical University, Hefei 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Zhiguo Zhang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
8
|
Recovery of spindle morphology and mitochondrial function through extended culture after vitrification-warming of bovine oocytes. Theriogenology 2022; 189:192-198. [DOI: 10.1016/j.theriogenology.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022]
|
9
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
10
|
Zare Z, Rezaei N, Mohammadi M. Treatment of mouse cumulus-oocyte complexes with L-carnitine during vitrification and in vitro maturation affects maturation and embryonic developmental rate after parthenogenetic activation. Anat Histol Embryol 2021; 51:44-50. [PMID: 34687237 DOI: 10.1111/ahe.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
The technique of oocyte vitrification remains a challenge in most animal species. The present study aimed to evaluate the effects of cumulus cell presence and L-carnitine (LC) treatment during vitrification of selected immature oocytes by brilliant cresyl blue (BCB) staining on maturation and embryonic developmental rate after parthenogenetic activation. Immature oocytes were obtained from C57BL/6 female mice ovaries and stained with BCB. The BCB+ cumulus-oocyte complexes (COCs) were then selected and random parts of COCs were denuded from cumulus cells (denuded oocytes: DOs). COCs and DOs were treated with/out LC (0.6 mg/ml) during vitrification and in vitro maturation (IVM) procedures. A number of non-vitrified COCs were also treated with LC during the IVM process (fresh group). Maturation rate, intracellular glutathione (GSH) contents, and developmental competence of oocytes were also examined. The GSH levels in vitrified DOs+LC and vitrified COCs+LC groups were significantly higher (p < 0.01) than untreated vitrified-warmed COCs and DOs. Maturation rate and blastocyst developmental rate were reduced after the vitrification-warming procedure compared with the fresh group. The vitrified COCs+LC group showed a higher percentage of mature oocytes and the ability to develop to blastocyst stage than the vitrified-warmed DOs group (p < 0.01). These data indicated that the presence of cumulus cells around the competent oocyte and LC treatment during vitrification and IVM procedure could improve parthenogenetic developmental competence of vitrified-warmed oocytes by increasing GSH levels and accelerating oocyte maturation.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Noorollah Rezaei
- Department of Anatomical Sciences, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Xingzhu D, Qingrui Z, Keren C, Yuxi L, Yunpeng H, Shien Z, Xiangwei F. Cryopreservation of Porcine Embryos: Recent Updates and Progress. Biopreserv Biobank 2021; 19:210-218. [PMID: 33625892 DOI: 10.1089/bio.2020.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cryopreservation of embryos is important for long-distance embryo transfer and conservation of genetic resources. Porcine research is important for animal husbandry and biomedical research. However, porcine embryos are difficult to cryopreserve because of their high cytoplasmic lipid content and sensitivity to chilling stress. Vitrification is more efficient than slow freezing, and vitrification is mostly used in embryo cryopreservation. So far, the vitrification process of porcine embryos has been continuously improved, resulting in improved survival rates of warmed embryos and farrowing rates after the transplant procedure. It is worth noting that automatic vitrification has made great progress, which is expected to promote the standardization and application of vitrification. In this article, the vitrification process of porcine embryos at the blastula stage and early development stages is reviewed in detail. In addition, the efficiency of different vitrification systems was compared. In addition, we summarize technology that can improve the survival rate of cryopreserved porcine embryos, such as delipidation methods (including physical delipidation and chemical delipidation) and medium improvements (including chemically defined media and adding antioxidants). Meanwhile, gene expression changes during cryopreservation are also elaborated.
Collapse
Affiliation(s)
- Du Xingzhu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuan Qingrui
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Keren
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Luo Yuxi
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hou Yunpeng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Shien
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fu Xiangwei
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants (Basel) 2021; 10:antiox10030337. [PMID: 33668300 PMCID: PMC7996228 DOI: 10.3390/antiox10030337] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes' competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
- Correspondence:
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
| | - Vincenza Barbato
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Maddalena Di Nardo
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
- Centre for Fertility Preservation, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Riccardo Talevi
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| |
Collapse
|
13
|
Hao T, Zhang P, Hao H, Du W, Pang Y, Zhao S, Zou H, Zhu H, Yu W, Li S, Zhao X. The combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO. Reprod Domest Anim 2021; 56:519-530. [PMID: 33405303 DOI: 10.1111/rda.13890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Many experiments show that vitrification significantly reduces the fertilization capacity of mammalian oocytes, restricting the application of vitrified oocytes. It has been proven that the JUNO protein plays a vital role in mammalian oocytes fertilization. However, little information is available about the effects of vitrification on the JUNO protein and the procedure to protect it in bovine oocytes. Here, the present study was designed to investigate the effect of vitrification on the JUNO protein level in bovine oocytes. In this study, MII oocytes were treated with cholesterol-loaded methyl-β-cyclodextrin (CLC; 0, 10, 15, 20 mM) for 45 min before vitrification and methyl-β-cyclodextrin (MβCD; 0, 2.25, 4.25, 6.25 mM) for 45 min after thawing (38-39°C). Then, the expression level and function of JUNO protein, cholesterol level in the membrane, the externalization of phosphatidylserine, sperm binding capacity and the developmental ability of vitrified bovine oocytes were examined. Our results showed that vitrification significantly decreased the JUNO protein level, cholesterol level, sperm binding capacity, development ability, and increased the promoter methylation level of the JUNO gene and apoptosis level of bovine oocytes. Furthermore, 15 mM CLC + 4.25 mM MβCD treatment significantly improved the cholesterol level and increased sperm binding and development ability of vitrified bovine oocytes. In conclusion, the combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Peipei Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weili Yu
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
14
|
Xu H, Jia C, Cheng W, Zhang T, Tao R, Ma Y, Si L, Xu Y, Li J. The Effect of L-Carnitine Additive During In Vitro Maturation on the Vitrification of Pig Oocytes. Cell Reprogram 2020; 22:198-207. [PMID: 32673085 DOI: 10.1089/cell.2020.0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cryopreservation of oocytes/embryos is an important technique for genetic resources; however, the success of vitrification in pig oocytes remained at a relatively lower level due to the high content of lipid droplets (LDs). Considering the positive effect of L-carnitine on the function of LDs, the present study was designed to investigate the effect of the addition of L-carnitine on the vitrification of porcine cumulus cells of complexes (cumulus/oocyte complexes [COCs]). First, COCs were randomly divided into two groups: one group of COCs were commonly in vitro maturation (IVM) for 42-46 hours (nonvitrification [NV]), while another group of COCs were IVM with 10 mM L-carnitine (NVL [nonvitrification with L-carnitine addition in IVM]). In addition, random parts of COCs with L-carnitine addition were vitrified (VL [vitrification with L-carnitine addition in IVM]), while vitrification was performed on COCs without L-carnitine used as control group (V). Results showed that the maturation rate of pig oocytes reduced significantly when the vitrification was performed at 16 hours during IVM (VL vs. NVL, 40.09 ± 2.85 vs. 90.76 ± 1.16; V vs. NV, 34.41 ± 2.55 vs. 89.71 ± 1.33, p < 0.01). With the addition of L-carnitine, intracellular LDs were decreased significantly (p < 0.01). However, no difference was observed on the efficiency of vitrification in pig oocytes (VL vs. V, 40.09 ± 2.85 vs. 34.41 ± 2.55, p > 0.05). In addition, not only the reactive oxygen species (ROS) level in pig oocytes with the L-carnitine addition group reduced significantly (p < 0.01), but also the expression of SOD1 gene was improved (p < 0.05). In conclusion, results demonstrated that although no difference could be observed on pig COC vitrification, the LDs and ROS level in pig oocytes could be modified by the addition of L-carnitine, which might be helpful for further development.
Collapse
Affiliation(s)
- Hongxia Xu
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Wenxiu Cheng
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Tongtong Zhang
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Ruixin Tao
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Yuehua Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Linan Si
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Yinxue Xu
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, and Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Al-Zubaidi U, Liu J, Cinar O, Robker RL, Adhikari D, Carroll J. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Mol Hum Reprod 2020; 25:695-705. [PMID: 31579926 PMCID: PMC6884418 DOI: 10.1093/molehr/gaz055] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are highly dynamic organelles and their distribution, structure and activity affect a wide range of cellular functions. Mitochondrial membrane potential (∆Ψm) is an indicator of mitochondrial activity and plays a major role in ATP production, redox balance, signaling and metabolism. Despite the absolute reliance of oocyte and early embryo development on mitochondrial function, there is little known about the spatial and temporal aspects of ΔΨm during oocyte maturation. The one exception is that previous findings using a ΔΨm indicator, JC-1, report that mitochondria in the cortex show a preferentially increased ΔΨm, relative to the rest of the cytoplasm. Using live-cell imaging and a new ratiometric approach for measuring ΔΨm in mouse oocytes, we find that ΔΨm increases through the time course of oocyte maturation and that mitochondria in the vicinity of the first meiotic spindle show an increase in ΔΨm, compared to other regions of the cytoplasm. We find no evidence for an elevated ΔΨm in the oocyte cortex. These findings suggest that mitochondrial activity is adaptive and responsive to the events of oocyte maturation at both a global and local level. In conclusion, we have provided a new approach to reliably measure ΔΨm that has shed new light onto the spatio-temporal regulation of mitochondrial function in oocytes and early embryos.
Collapse
Affiliation(s)
- Usama Al-Zubaidi
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Applied Embryology Department, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, AL-Nahrain University, Baghdad, Iraq
| | - Jun Liu
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ozgur Cinar
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Rebecca L Robker
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,School of Pediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Gao Z, Yao G, Zhang H, Liu H, Yang Z, Liu C, Li W, Zhao X, Wei Q, Ma B. Resveratrol protects the mitochondria from vitrification injury in mouse 2-cell embryos. Cryobiology 2020; 95:123-129. [PMID: 32464144 DOI: 10.1016/j.cryobiol.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
Mitochondria play a key role in embryo development by providing energy. However, vitrification often causes mitochondrion damage of embryo, which further impairs embryo development. Therefore, the efficiency of embryo development after vitrification could be improved by protecting mitochondrial function from vitrification injury. The purpose of this study was to investigate the effects of resveratrol on mitochondrial damage after vitrification. The results showed that vitrification induced the abnormal mitochondrial distribution and damage mitochondrial function of mouse 2-cell embryos. However, co-culturing with resveratrol for 2 h could repair the abnormal mitochondrial distribution and mitochondrial dysfunction of embryos after vitrification. More than anything, the subsequent development ability of vitrified-thawed 2-cell embryos was significantly higher than that with no resveratrol treatment. In conclusion, resveratrol could protect the mitochondrial from injury caused by vitrification.
Collapse
Affiliation(s)
- Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ge Yao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Haokun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhenshan Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wei Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation. Int J Mol Sci 2019; 20:ijms20061365. [PMID: 30889926 PMCID: PMC6472277 DOI: 10.3390/ijms20061365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
Collapse
|
18
|
Sanaei B, Movaghar B, Valojerdi MR, Ebrahimi B, Bazrgar M, Jafarpour F, Nasr-Esfahani MH. An improved method for vitrification of in vitro matured ovine oocytes; beneficial effects of Ethylene Glycol Tetraacetic acid, an intracellular calcium chelator. Cryobiology 2018; 84:82-90. [PMID: 30244698 DOI: 10.1016/j.cryobiol.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/03/2018] [Accepted: 07/02/2018] [Indexed: 01/17/2023]
Abstract
Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.
Collapse
Affiliation(s)
- Batool Sanaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | | | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
19
|
Wang Y, Zhang M, Chen ZJ, Du Y. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In Vitro Cell Dev Biol Anim 2018; 54:430-438. [DOI: 10.1007/s11626-018-0262-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
|
20
|
Zhao XM, Wang N, Hao HS, Li CY, Zhao YH, Yan CL, Wang HY, Du WH, Wang D, Liu Y, Pang YW, Zhu HB. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J Pineal Res 2018; 64. [PMID: 28833478 DOI: 10.1111/jpi.12445] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/18/2017] [Indexed: 01/21/2023]
Abstract
Melatonin is a well-characterized antioxidant that has been successfully used to protect oocytes from reactive oxygen species during in vitro maturation (IVM), resulting in improved fertilization capacity and development ability. However, the mechanism via which melatonin improves oocyte fertilization capacity and development ability remains to be determined. Here, we studied the effects of melatonin on cytoplasmic maturation of bovine oocytes. In the present study, bovine oocytes were cultured in IVM medium supplemented with 0, 10-7 , 10-9 , and 10-11 mol/L melatonin, and the cytoplasmic maturation parameters of MII oocytes after IVM were investigated, including redistribution of organelles (mitochondria, cortical granules [CGs], and endoplasmic reticulum [ER]), intracellular glutathione (GSH) and ATP levels, expression of endogenous antioxidant genes (Cat, Sod1, and GPx), and fertilization-related events (IP3R1 distribution and expression of CD9 and Juno). Our results showed that melatonin significantly improved the cytoplasmic maturation of bovine oocytes by improving the normal distribution of organelles, increasing intracellular GSH and ATP levels, enhancing antioxidant gene expression levels, and modulating fertilization-related events, all of which resulted in increased fertilization capacity and developmental ability. Meanwhile, melatonin also increased the mRNA and protein expression levels of the Tet1 gene and decreased the Dnmt1 gene mRNA and protein levels in bovine oocytes, indicating that melatonin regulates the expression of the detected genes via demethylation. These findings shed insights into the potential mechanisms by which melatonin improves oocyte quality during IVM.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Na Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chong-Yang Li
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chang-Liang Yan
- Livestock and Poultry Import & Export Department, China Animal Husbandry Group (CAHG), Beijing, China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dong Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yan Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
21
|
Quan G, Wu G, Hong Q. Oocyte Cryopreservation Based in Sheep: The Current Status and Future Perspective. Biopreserv Biobank 2017; 15:535-547. [DOI: 10.1089/bio.2017.0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Guobo Quan
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Guoquan Wu
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qionghua Hong
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
22
|
Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci Rep 2017; 7:10652. [PMID: 28878377 PMCID: PMC5587528 DOI: 10.1038/s41598-017-10907-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/16/2017] [Indexed: 01/25/2023] Open
Abstract
Vitrification reduces the fertilisation capacity and developmental ability of mammalian oocytes; this effect is closely associated with an abnormal increase of cytoplasmic free calcium ions ([Ca2+]i). However, little information about the mechanism by which vitrification increases [Ca2+]i levels or a procedure to regulate [Ca2+]i levels in these oocytes is available. Vitrified bovine oocytes were used to analyse the effect of vitrification on [Ca2+]i, endoplasmic reticulum Ca2+ (ER Ca2+), and mitochondrial Ca2+ (mCa2+) levels. Our results showed that vitrification, especially with dimethyl sulfoxide (DMSO), can induce ER Ca2+ release into the cytoplasm, consequently increasing the [Ca2+]i and mCa2+ levels. Supplementing the cells with 10 μM 1,2-bis (o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM or BAPTA) significantly decreased the [Ca2+]i level and maintained the normal distribution of cortical granules in the vitrified bovine oocytes, increasing their fertilisation ability and cleavage rate after in vitro fertilisation (IVF). Treating vitrified bovine oocytes with 1 μM ruthenium red (RR) significantly inhibited the Ca2+ flux from the cytoplasm into mitochondria; maintained normal mCa2+ levels, mitochondrial membrane potential, and ATP content; and inhibited apoptosis. Treating vitrified oocytes with a combination of BAPTA and RR significantly improved embryo development and quality after IVF.
Collapse
|
23
|
Wang N, Li CY, Zhu HB, Hao HS, Wang HY, Yan CL, Zhao SJ, Du WH, Wang D, Liu Y, Pang YW, Zhao XM. Effect of vitrification on the mRNA transcriptome of bovine oocytes. Reprod Domest Anim 2017; 52:531-541. [PMID: 28295644 DOI: 10.1111/rda.12942] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Vitrification has been shown to decrease the developmental capacity of mammalian oocytes, and this is closely associated with the abnormal mRNA expressions of vitrified oocytes. However, the effect of vitrification on transcriptional machinery of oocytes examined by RNA sequencing (RNA-seq) has yet to be defined. In the present study, the mRNA transcriptomes of fresh and vitrified bovine oocytes were analysed by Smart-seq2 with the differently expressed genes determined by DEseq2 (an adjusted p-value of .05 and a minimum fold change of 2). The differentially expressed mRNAs were then searched against the Gene Ontology (GO) and Genomes (KEGG) database. Finally, the mRNA expressions of 10 candidate genes were validated using quantitative real-time PCR (qRT-PCR). Approximately 12,000 genes were detected in each sample of fresh or vitrified oocytes. Of these, the expression levels of 102 genes differed significantly in vitrified groups: 12 genes mainly involved in cell cycle, fertilization and glucose metabolism were upregulated, and 90 genes mainly involved in mitochondria, ribosomal protein, cytoskeleton, transmembrane protein, cell cycle and calcium ions were downregulated. GO analysis showed that these genes were mainly enriched in terms of membrane-bounded organelles, macromolecular complex, and intracellular part. The mRNA expression levels of 10 candidate genes selected randomly were in agreement with the results of the RNA-seq. In conclusion, our results showed that vitrification affected the mRNA transcriptome of bovine oocytes by downregulating genes, which contributed to the decreased developmental capacity of vitrified oocytes. Our findings will be useful in determining approaches to improve the efficiency of vitrified oocytes.
Collapse
Affiliation(s)
- N Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - C-Y Li
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-B Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-S Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-Y Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - C-L Yan
- Livestock and Poultry Import & Export Dept, China Animal Husbandry Group (CAHG), Beijing, China
| | - S-J Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - W-H Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - D Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Y Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Y-W Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - X-M Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
24
|
Liang S, Guo J, Choi JW, Kim NH, Cui XS. Effect and possible mechanisms of melatonin treatment on the quality and developmental potential of aged bovine oocytes. Reprod Fertil Dev 2017; 29:1821-1831. [DOI: 10.1071/rd16223] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
After reaching the metaphase II (MII) stage, unfertilised oocytes undergo a time-dependent process of quality deterioration referred to as oocyte aging. The associated morphological and cellular changes lead to decreased oocyte developmental potential. This study investigated the effect of exogenous melatonin supplementation on in vitro aged bovine oocytes and explored its underlying mechanisms. The levels of cytoplasmic reactive oxygen species and DNA damage response in bovine oocytes increased during in vitro aging. Meanwhile, maturation promoting factor activity significantly decreased and the proportion of morphologically abnormal oocytes significantly increased. Melatonin supplementation significantly decreased quality deterioration in aged bovine MII oocytes (P < 0.05). Additionally, it decreased the frequency of aberrant spindle organisation and cortical granule release during oocyte aging (P < 0.05). In the melatonin-supplemented group, mitochondrial membrane potential and ATP production were significantly increased compared with control. Furthermore, melatonin treatment significantly increased the speed of development of bovine oocytes to the blastocyst stage after in vitro fertilisation and significantly decreased the apoptotic rate in the blastocysts (P < 0.05). The expression of Bax and Casp3 in the blastocysts was significantly reduced after treatment with melatonin, whereas expression of Bcl2 significantly increased (P < 0.05). In conclusion, these findings suggest that supplementation of aged bovine oocytes with exogenous melatonin improves oocyte quality, thereby enhancing the developmental capacity of early embryos.
Collapse
|
25
|
Suttirojpattana T, Somfai T, Matoba S, Parnpai R, Nagai T, Geshi M. Effect of medium additives during liquid storage on developmental competence of in vitro matured bovine oocytes. Anim Sci J 2016; 88:231-240. [PMID: 27169667 PMCID: PMC5298027 DOI: 10.1111/asj.12623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
Our aim was to improve the developmental competence of bovine oocytes during their liquid storage by using additives. In vitro matured oocytes were stored for 20 h at 25°C in HEPES buffered TCM 199 medium (base medium). After storage, in vitro embryo development after in vitro fertilization was compared to those of non-stored (control) ones. Addition of 10% (v/v) newborn calf serum or 10.27 mmol/L pyruvate alone to the base medium did not improve blastocyst formation rates in stored oocytes; however, their simultaneous addition significantly improved the rate compared with those stored in base medium (P < 0.05). Supplementation of the holding medium with dithiothreitol (DTT) at any concentrations did not improve embryo development from stored oocytes. Although supplementation with cyclosporine A (CsA) significantly reduced apoptosis and membrane damage rates during storage, it did not improve the developmental competence of oocytes. 1,2-bis(2-aminophenoxy) ethane N,N,N',N'-tetraacetic acid tetrakis-acetoxymethyl ester and ruthenium red had no effect on oocyte apoptotic rates. Blastocyst formation rates in all stored groups remained significantly lower than that of the control. In conclusion, pyruvate and serum had a synergic effect to moderate the reduction of oocyte quality during storage, whereas mitochondrial membrane pore inhibitor CsA and the antioxidant DTT did not affect their developmental competence.
Collapse
Affiliation(s)
- Tayita Suttirojpattana
- Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Tamas Somfai
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Satoko Matoba
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Takashi Nagai
- Food and Fertilizer Technology Center, Taipei, Taiwan
| | - Masaya Geshi
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| |
Collapse
|
26
|
Zhao XM, Hao HS, Du WH, Zhao SJ, Wang HY, Wang N, Wang D, Liu Y, Qin T, Zhu HB. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J Pineal Res 2016; 60:132-41. [PMID: 26485053 DOI: 10.1111/jpi.12290] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Na Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dong Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yan Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tong Qin
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
27
|
Liang S, Yuan B, Kwon JW, Ahn M, Cui XS, Bang JK, Kim NH. Effect of antifreeze glycoprotein 8 supplementation during vitrification on the developmental competence of bovine oocytes. Theriogenology 2016; 86:485-494.e1. [PMID: 26948296 DOI: 10.1016/j.theriogenology.2016.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/26/2016] [Accepted: 01/30/2016] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate the effect of antifreeze glycoprotein 8 (AFGP8) supplementation during vitrification on the survival, fertilization, and embryonic development of bovine oocytes and the underlying molecular mechanism(s). Survival, fertilization, early embryonic development, apoptosis, DNA double-strand breaks, reactive oxygen species levels, meiotic cytoskeleton assembly, chromosome alignment, and energy status of mitochondria were measured in the present experiments. Compared with that in the nonsupplemented group; survival, monospermy, blastocyst formation rates, and blastomere counts were significantly higher in the AFGP8-supplemented animals. Oocytes of the latter group also presented fewer double-strand breaks and lower cathepsin B and caspase activities. Rates of normal spindle organization and chromosome alignment, actin filament impairment, and mitochondrial distribution were significantly higher in the AFGP8-supplemented group. In addition, intracellular reactive oxygen species levels significantly decreased in the AFGP8-supplemented groups, maintaining a higher ΔΨm than that in the nonsupplemented group. Taken together, these results indicated that supplementation with AFGP8 during vitrification has a protective effect on bovine oocytes against chilling injury.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Bao Yuan
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Department of Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, China
| | - Jeong-Woo Kwon
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Department of Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
28
|
Dai J, Wu C, Muneri CW, Niu Y, Zhang S, Rui R, Zhang D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 2015; 71:291-8. [PMID: 26247316 DOI: 10.1016/j.cryobiol.2015.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/02/2015] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to investigate the changes in mitochondria in porcine MII-stage oocytes after open pulled straw (OPS) vitrification and to determine their roles in apoptosis and in vitro developmental ability. The mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) level, adenosine-5'-triphosphate (ATP) concentration, mitochondrial distribution, mitochondrial ultrastructure, early-stage apoptosis with Annexin V-FITC staining, survival rate, parthenogenetic developmental ability and related gene expression were measured in the present experiments. The results showed that: (1) the mitochondrial ΔΨm of vitrified-thawed oocytes (1.05) was lower than that of fresh oocytes 1.24 (P<0.05). (2) ROS level in the OPS vitrification group was much higher than that of the fresh group, while the ATP concentration was much lower than that of fresh group (P<0.05). (3) Early-stage apoptosis rate from the OPS vitrification group (57.6%) was much higher than that of fresh group (8.53%) (P<0.05), and the survival rate and parthenogenetic cleavage rate of OPS vitrified oocytes were much lower than those from fresh ones (P<0.05). (4) Vitrification not only disrupted the mitochondrial distribution of porcine MII-stage oocytes, but also damaged the mitochondrial ultrastructure. (5) After vitrification, the gene expression level of Dnm1 was up-regulated, and other four genes (SOD1, Mfn2, BAX and Bcl2) were down-regulated. The present study suggested that not only the morphology and function of mitochondria were damaged greatly during the vitrification process, but also early-stage apoptosis was observed after vitrification. Intrinsic mitochondrial pathway could be in involved in the occurrence of apoptosis in vitrified-thawed porcine oocytes.
Collapse
Affiliation(s)
- Jianjun Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, China; Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Caifeng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Caroline W Muneri
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, China
| | - Yingfang Niu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, China.
| | - Defu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China.
| |
Collapse
|
29
|
Zhao X, Hao H, Du W, Zhu H. Effect of vitrification on the microRNA transcriptome in mouse blastocysts. PLoS One 2015; 10:e0123451. [PMID: 25853900 PMCID: PMC4390370 DOI: 10.1371/journal.pone.0123451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Vitrification is commonly used in the cryopreservation of mammalian blastocysts to overcome the temporal and spatial limitations of embryo transfer. Previous studies have shown that the implantation ability of vitrified blastocysts is impaired and that microRNAs (miRNAs) regulate the critical genes for embryo implantation. However, little information is available about the effect of vitrification on the miRNA transcriptome in blastocysts. In the present study, the miRNA transcriptomes in fresh and vitrified mouse blastocysts were analyzed by miRNA Taqman assay based method, and the results were validated using quantitative real-time PCR (qRT-PCR). Then, the differentially expressed miRNAs were assessed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Overall, 760 known mouse miRNAs were detected in the vitrified and fresh mouse blastocysts. Of these, the expression levels of five miRNAs differed significantly: in the vitrified blastocysts, four miRNAs (mmu-miR-199a-5p, mmu-miR-329-3p, mmu-miR-136-5p and mmu-miR-16-1-3p) were upregulated, and one (mmu-miR-212-3p) was downregulated. The expression levels of all miRNAs measured by the miRNA Taqman assay based method and qRT-PCR were consistent. The four upregulated miRNAs were predicted to regulate 877 candidate target genes, and the downregulated miRNA was predicted to regulate 231 genes. The biological analysis further showed that the differentially expressed miRNAs mainly regulated the implantation of embryos. In conclusion, the results of our study showed that vitrification significantly altered the miRNA transcriptome in mouse blastocysts, which may decrease the implantation potential of vitrified blastocysts.
Collapse
Affiliation(s)
- Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
- * E-mail:
| |
Collapse
|
30
|
Yashiro I, Tagiri M, Ogawa H, Tashima K, Takashima S, Hara H, Hirabayashi M, Hochi S. High revivability of vitrified-warmed bovine mature oocytes after recovery culture with α-tocopherol. Reproduction 2015; 149:347-55. [PMID: 25628440 DOI: 10.1530/rep-14-0594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate whether developmental competence of vitrified-warmed bovine oocytes can be improved by antioxidant treatment during recovery culture. In experiment 1, one of the two antioxidants (either l-ascorbic acid or α-tocopherol) was added as a supplement to the recovery culture medium to which postwarming oocytes were exposed for 2 h before IVF. The exposure to α-tocopherol had a positive effect on rescuing the oocytes as assessed by the blastocyst yield 8 days after the IVF (35.1-36.3% vs 19.2-25.8% in untreated postwarming oocytes). Quality of expanding blastocysts harvested on Day 8 was comparable between α-tocopherol-treated vitrification group and fresh control group in terms of total cell number and chromosomal ploidy. In experiment 2, level of reactive oxygen species, mitochondrial activity, and distribution of cortical granules in α-tocopherol-treated postwarming oocytes were assessed. No obvious differences from the control data were found in these parameters. However, the treatment with α-tocopherol increased the percentage of zygotes exhibiting normal single aster formation (90.3% vs 48.0% in untreated postwarming oocytes; 10 h post-IVF). It was concluded that α-tocopherol treatment of vitrified-warmed bovine mature oocytes during recovery culture can improve their revivability, as shown by the high blastocyst yield and the higher mean total cell number in the blastocysts.
Collapse
Affiliation(s)
- Ikuko Yashiro
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Miho Tagiri
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Hayato Ogawa
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Kazuya Tashima
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Seiji Takashima
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Hiromasa Hara
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan Graduate School of Science and Technology Faculty of Textile Science and Technology Shinshu University, Nagano 386-8567, Japan National Institute for Physiological Sciences Aichi 444-8787, Japan
| |
Collapse
|
31
|
Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. SCIENCE CHINA-LIFE SCIENCES 2014; 57:903-14. [DOI: 10.1007/s11427-014-4689-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/03/2014] [Indexed: 01/19/2023]
|
32
|
Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. ZYGOTE 2014; 23:525-36. [PMID: 24869483 DOI: 10.1017/s0967199414000161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study was designed to determine the effect of melatonin on the in vitro maturation (IVM) and developmental potential of bovine oocytes denuded of the cumulus oophorus (DOs). DOs were cultured alone (DOs) or with 10-9 M melatonin (DOs + MT), cumulus-oocyte complexes (COCs) were cultured without melatonin as the control. After IVM, meiosis II (MII) rates of DOs, and reactive oxygen species (ROS) levels, apoptotic rates and parthenogenetic blastocyst rates of MII oocytes were determined. The relative expression of ATP synthase F0 Subunit 6 and 8 (ATP6 and ATP8), bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9) mRNA in MII oocytes and IFN-tau (IFN-τ), Na+/K+-ATPase, catenin-beta like 1 (CTNNBL1) and AQP3 mRNA in parthenogenetic blastocysts were quantified using real-time polymerase chain reaction (PCR). The results showed that: (1) melatonin significantly increased the MII rate of DOs (65.67 ± 3.59 % vs. 82.29 ± 3.92%; P < 0.05), decreased the ROS level (4.83 ± 0.42 counts per second (c.p.s) vs. 3.78 ± 0.29 c.p.s; P < 0.05) and apoptotic rate (36.99 ± 3.62 % vs. 21.88 ± 2.08 %; P < 0.05) and moderated the reduction of relative mRNA levels of ATP6, ATP8, BMP-15 and GDF-9 caused by oocyte denudation; (2) melatonin significantly increased the developmental rate (24.17 ± 3.54 % vs. 35.26 ± 4.87%; P < 0.05), and expression levels of IFN-τ, Na+/K+-ATPase, CTNNBL1 and AQP3 mRNA of blastocyst. These results indicated that melatonin significantly improved the IVM quality of DOs, leading to an increased parthenogenetic blastocyst formation rate and quality.
Collapse
|
33
|
Recent progress in cryopreservation of bovine oocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:570647. [PMID: 24738063 PMCID: PMC3971499 DOI: 10.1155/2014/570647] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK) inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.
Collapse
|
34
|
Hwang IS, Hara H, Chung HJ, Hirabayashi M, Hochi S. Rescue of Vitrified-Warmed Bovine Oocytes with Rho-Associated Coiled-Coil Kinase Inhibitor1. Biol Reprod 2013; 89:26. [DOI: 10.1095/biolreprod.113.109769] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
35
|
Does cryopreservation of ovarian tissue affect the distribution and function of germinal vesicle oocytes mitochondria? BIOMED RESEARCH INTERNATIONAL 2013; 2013:489032. [PMID: 23956986 PMCID: PMC3730362 DOI: 10.1155/2013/489032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate mitochondrial alteration and ATP content of germinal vesicle (GV) oocytes isolated from fresh and vitrified ovaries. After superovulation, the ovaries from adult mice were collected and divided into control and vitrified groups. GV oocytes were isolated mechanically from each group. Half were cultured for 24 hours and their maturation was assessed. Metaphase II oocytes were collected and submitted to in vitro fertilization and their fertilization rates and development to the blastocyst stage were evaluated. In the remaining GV oocytes, ATP levels were quantified, and mitochondrial distribution, mitochondrial membrane potential, and intracellular free calcium were detected with rhodamine 123, JC-1 and Flou-4 AM staining, using laser-scanning confocal microscopy. Maturation and fertilization rates of GV oocytes and the developmental rates of subsequent embryos were significantly lower in vitrified samples (P < 0.05). The ATP content and Ca(2+) levels differed significantly in fresh and vitrified GV oocytes (P < 0.05). Most mitochondria were seen as large and homogenous aggregates (66.6%) in fresh GV oocytes compared to vitrified oocytes (50%). No significant differences in mitochondrial membrane potential were found between the groups. The lower maturation and fertilization rates of GV oocytes from vitrified ovaries may be due to changes in their mitochondrial function and distribution.
Collapse
|
36
|
Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Qin T, Liu Y, Zhu HB. Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril 2013; 100:256-61. [DOI: 10.1016/j.fertnstert.2013.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022]
|
37
|
Zhou GB, Li N. Bovine Oocytes Cryoinjury and How to Improve Their Development Following Cryopreservation. Anim Biotechnol 2013; 24:94-106. [DOI: 10.1080/10495398.2012.755466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Chankitisakul V, Somfai T, Inaba Y, Techakumphu M, Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology 2012; 79:590-8. [PMID: 23261307 DOI: 10.1016/j.theriogenology.2012.11.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 11/30/2022]
Abstract
The objective was to determine the effects of adding L-carnitine (an enhancer of lipid metabolism) during IVM, on cryotolerance and developmental competence of bovine oocytes. Oocytes matured in the absence (control) or presence (0.6 mg/mL) of L-carnitine were subjected to IVF and embryo culture after Cryotop vitrification or nonvitrification at the metaphase stage of the second meiotic cell division. Cleavage and blastocyst formation rates, and inner cell mass and trophectoderm cell numbers were determined. Also, ATP content in IVM oocytes was measured and intracellular lipid droplets were observed (Nile red staining and confocal microscopy). L-carnitine had no significant effect on the rate of matured oocytes. Vitrification reduced (P < 0.05) mean (±SEM) rates of live oocytes both in control (80.6 ± 1.9%) and L-carnitine groups (82.7 ± 5.1%) compared with nonvitrified oocytes (100%). After IVF, cleavage rates of vitrified control and L-carnitine groups (56.5 ± 3.9% and 62.8 ± 5.1%, respectively) were significantly lower than those in nonvitrified control and L-carnitine groups (83.9 ± 4.2% and 84.3 ± 1.3%). After vitrification, blastocyst formation rate in the L-carnitine group (54.4 ± 5.2%) was significantly higher compared with the control (34.9 ± 4.4%), and did not significantly differ from those in nonvitrified control and L-carnitine groups (52.1 ± 4.2% and 52.8 ± 3.0%). The numbers and ratio of inner cell mass and trophectoderm cells in blastocysts did not differ significantly among groups. The ATP content in L-carnitine-treated oocytes tended to be higher compared with the control. Vitrification did not reduce ATP content in oocytes, irrespective of L-carnitine treatment. Treatment with L-carnitine dislocated lipid droplets from the peripheral area to the inner cytoplasm. In conclusion, L-carnitine supplementation during IVM redistributed lipid droplets in oocytes; if they survived vitrification, their developmental competence was similar to that of nonvitrified oocytes.
Collapse
|
39
|
Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Liu Y, Qin T, Zhu HB. Effect of 5-aza-2′-deoxycytidine on methylation of the putative imprinted control region of H19 during the in vitro development of vitrified bovine two-cell embryos. Fertil Steril 2012; 98:222-7. [DOI: 10.1016/j.fertnstert.2012.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/21/2012] [Accepted: 04/06/2012] [Indexed: 12/12/2022]
|
40
|
Nabenishi H, Takagi S, Kamata H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A. Mol Reprod Dev 2011; 79:31-40. [DOI: 10.1002/mrd.21401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/30/2011] [Indexed: 12/18/2022]
|
41
|
Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, Zhu HB. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev 2011; 78:942-50. [PMID: 21919110 DOI: 10.1002/mrd.21389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/18/2011] [Indexed: 11/08/2022]
Abstract
This study was designed to examine the recovery of mitochondrial function and endogenous antioxidant systems in vitrified oocytes during extended incubations. After 16 hr of in vitro maturation, bovine meiosis-II oocytes were vitrified, and then surviving oocytes were cultured an additional 8 hr. ATP content, ATP synthase activity, expression of ATP synthase F0 subunit 6 (ATP6) and 8 (ATP8) genes, and reactive oxygen species (ROS) levels were investigated in the vitrified oocytes during this additional period (4 or 8 hr). The results showed that: (1) the ATP content and ATP synthase activities in vitrified oocytes at 8 hr post-warming (754.6 fmol, 25.9 nmol NADH/min/mg) were significantly higher than in oocytes immediately warmed (568.3 fmol, 8.7 nmol NADH/min/mg), but still lower than in control oocytes (901.5 fmol, 30.7 nmol NADH/min/mg); (2) the relative expression of ATP6 and ATP8 was initially down-regulated in oocytes when they were first warmed, increased by 4 hr post-warming, and were again down-regulated by 8 hr post-warming; (3) ROS levels in oocytes at 0, 4, and 8 hr post-warming were significantly higher than in control oocytes; and (4) after parthenogenetic activation, the blastocyst rate of oocytes at 8 hr post-warming (26.7%) was significantly higher than that of oocytes immediately warmed (16.9%). These results indicated that mitochondrial function and endogenous antioxidant systems recovered significantly better in vitrified-thawed bovine oocytes with 8 hr of additional incubation, but they did not achieve the activity levels found in fresh oocytes.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|