1
|
Wang Y, Chen J, Huang X, Wu B, Dai P, Zhang F, Li J, Wang L. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1035-1050. [PMID: 38332217 DOI: 10.1007/s11427-023-2408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 02/10/2024]
Abstract
Cytosine base editing achieves C•G-to-T•A substitutions and can convert four codons (CAA/CAG/CGA/TGG) into STOP-codons (induction of STOP-codons, iSTOP) to knock out genes with reduced mosaicism. iSTOP enables direct phenotyping in founders' somatic cells, but it remains unknown whether this works in founders' germ cells so as to rapidly reveal novel genes for fertility. Here, we initially establish that iSTOP in mouse zygotes enables functional characterization of known genes in founders' germ cells: Cfap43-iSTOP male founders manifest expected sperm features resembling human "multiple morphological abnormalities of the flagella" syndrome (i.e., MMAF-like features), while oocytes of Zp3-iSTOP female founders have no zona pellucida. We further illustrate iSTOP's utility for dissecting the functions of unknown genes with Ccdc183, observing MMAF-like features and male infertility in Ccdc183-iSTOP founders, phenotypes concordant with those of Ccdc183-KO offspring. We ultimately establish that CCDC183 is essential for sperm morphogenesis through regulating the assembly of outer dynein arms and participating in the intra-flagellar transport. Our study demonstrates iSTOP as an efficient tool for direct reproductive disease modeling and phenotyping in germ cells of the founder generation, and rapidly reveals the essentiality of Ccdc183 in fertility, thus providing a time-saving approach for validating genetic defects (like nonsense mutations) for human infertility.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingwen Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bangguo Wu
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingbo Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Wang C, Ye T, Bao J, Dong J, Wang W, Li C, Ding H, Chen H, Wang X, Shi J. 5- methylcytidine effectively improves spermatogenesis recovery in busulfan-induced oligoasthenospermia mice. Eur J Pharmacol 2024; 967:176405. [PMID: 38341078 DOI: 10.1016/j.ejphar.2024.176405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The function and regulatory mechanisms of 5-methylcytidine (m5C) in oligoasthenospermia remain unclear. In this study, we made a mouse model of oligoasthenospermia through the administration of busulfan (BUS). For the first time, we demonstrated that m5C levels decreased in oligoasthenospermia. The m5C levels were upregulated through the treatments of 5-methylcytidine. The testicular morphology and sperm concentrations were improved via upregulating m5C. The cytoskeletal regenerations of testis and sperm were accompanying with m5C treatments. m5C treatments improved T levels and reduced FSH and LH levels. The levels of ROS and MDA were significantly reduced through m5C treatments. RNA sequencing analysis showed m5C treatments increased the expression of genes involved in spermatid differentiation/development and cilium movement. Immunofluorescent staining demonstrated the regeneration of cilium and quantitative PCR (qPCR) confirmed the high expression of genes involved in spermatogenesis. Collectively, our findings suggest that the upregulation of m5C in oligoasthenospermia facilitates testicular morphology recovery and male infertility via multiple pathways, including cytoskeletal regeneration, hormonal levels, attenuating oxidative stress, spermatid differentiation/development and cilium movement. m5C may be a potential therapeutic agent for oligoasthenospermia.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Junze Bao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenran Wang
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, Jiangsu, 226531, China
| | - Chunhong Li
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, Jiangsu, 226531, China
| | - Hongping Ding
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, Jiangsu, 226531, China
| | - Hanqing Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226018, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226018, China; Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, Jiangsu, 226018, China.
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
3
|
Guang X, Lan T, Wan QH, Huang Y, Li H, Zhang M, Li R, Zhang Z, Lei Y, Zhang L, Zhang H, Li D, Li X, Li H, Xu Y, Qiao M, Wu D, Tang K, Zhao P, Lin JQ, Kumar Sahu S, Liang Q, Jiang W, Zhang D, Xu X, Liu X, Lisby M, Yang H, Kristiansen K, Liu H, Fang SG. Chromosome-scale genomes provide new insights into subspecies divergence and evolutionary characteristics of the giant panda. Sci Bull (Beijing) 2021; 66:2002-2013. [PMID: 36654170 DOI: 10.1016/j.scib.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/27/2020] [Accepted: 12/25/2020] [Indexed: 02/03/2023]
Abstract
Extant giant pandas are divided into Sichuan and Qinling subspecies. The giant panda has many species-specific characteristics, including comparatively small organs for body size, small genitalia of male individuals, and low reproduction. Here, we report the most contiguous, high-quality chromosome-level genomes of two extant giant panda subspecies to date, with the first genome assembly of the Qinling subspecies. Compared with the previously assembled giant panda genomes based on short reads, our two assembled genomes increased contiguity over 200-fold at the contig level. Additional sequencing of 25 individuals dated the divergence of the Sichuan and Qinling subspecies into two distinct clusters from 10,000 to 12,000 years ago. Comparative genomic analyses identified the loss of regulatory elements in the dachshund family transcription factor 2 (DACH2) gene and specific changes in the synaptotagmin 6 (SYT6) gene, which may be responsible for the reduced fertility of the giant panda. Positive selection analysis between the two subspecies indicated that the reproduction-associated IQ motif containing D (IQCD) gene may at least partly explain the different reproduction rates of the two subspecies. Furthermore, several genes in the Hippo pathway exhibited signs of rapid evolution with giant panda-specific variants and divergent regulatory elements, which may contribute to the reduced inner organ sizes of the giant panda.
Collapse
Affiliation(s)
- Xuanmin Guang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Hong Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Mingchun Zhang
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Rengui Li
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Zhizhong Zhang
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Yinghu Lei
- Qinling Research Center of Giant Panda Breeding, Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Ling Zhang
- China Wildlife Conservation Association, Beijing 100714, China
| | - Heming Zhang
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Desheng Li
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Xiaoping Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Maiju Qiao
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Keyi Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengpeng Zhao
- Qinling Research Center of Giant Panda Breeding, Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Danhui Zhang
- Qinling Research Center of Giant Panda Breeding, Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Michael Lisby
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Qingdao-Europe Advanced Institute for Life Sciences, Qingdao 266555, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update 2021; 27:1013-1029. [PMID: 34227671 DOI: 10.1093/humupd/dmab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Ding X, Fragoza R, Singh P, Zhang S, Yu H, Schimenti JC. Variants in RABL2A causing male infertility and ciliopathy. Hum Mol Genet 2020; 29:3402-3411. [PMID: 33075816 PMCID: PMC7749704 DOI: 10.1093/hmg/ddaa230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Approximately 7% of men worldwide suffer from infertility, with sperm abnormalities being the most common defect. Though genetic causes are thought to underlie a substantial fraction of idiopathic cases, the actual molecular bases are usually undetermined. Because the consequences of most genetic variants in populations are unknown, this complicates genetic diagnosis even after genome sequencing of patients. Some patients with ciliopathies, including primary ciliary dyskinesia and Bardet-Biedl syndrome, also suffer from infertility because cilia and sperm flagella share several characteristics. Here, we identified two deleterious alleles of RABL2A, a gene essential for normal function of cilia and flagella. Our in silico predictions and in vitro assays suggest that both alleles destabilize the protein. We constructed and analyzed mice homozygous for these two single-nucleotide polymorphisms, Rabl2L119F (rs80006029) and Rabl2V158F (rs200121688), and found that they exhibit ciliopathy-associated disorders including male infertility, early growth retardation, excessive weight gain in adulthood, heterotaxia, pre-axial polydactyly, neural tube defects and hydrocephalus. Our study provides a paradigm for triaging candidate infertility variants in the population for in vivo functional validation, using computational, in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Xinbao Ding
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Robert Fragoza
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Priti Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shu Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Two resveratrol analogs, pinosylvin and 4,4′-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Bioorg Chem 2020; 104:104295. [DOI: 10.1016/j.bioorg.2020.104295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
|
7
|
Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell 2017; 28:1652-1666. [PMID: 28428259 PMCID: PMC5469608 DOI: 10.1091/mbc.e17-01-0017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022] Open
Abstract
RABL2 interacts with the intraflagellar transport-B (IFT-B) complex and CEP19 in a mutually exclusive manner. A point mutation of RABL2 found in sperm motility–defective mice abolishes its binding to IFT-B but not to CEP19. A RABL2-defective Chlamydomonas strain exhibits a nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary assembly. Proteins localized to the basal body and the centrosome play crucial roles in ciliary assembly and function. Although RABL2 and CEP19 are conserved in ciliated organisms and have been implicated in ciliary/flagellar functions, their roles are poorly understood. Here we show that RABL2 interacts with CEP19 and is recruited to the mother centriole and basal body in a CEP19-dependent manner and that CEP19 is recruited to the centriole probably via its binding to the centrosomal protein FGFR1OP. Disruption of the RABL2 gene in Chlamydomonas reinhardtii results in the nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary/flagellar assembly. We also show that RABL2 interacts, in its GTP-bound state, with the intraflagellar transport (IFT)-B complex via the IFT74–IFT81 heterodimer and that the interaction is disrupted by a mutation found in male infertile mice (Mot mice) with a sperm flagella motility defect. Intriguingly, RABL2 binds to CEP19 and the IFT74–IFT81 heterodimer in a mutually exclusive manner. Furthermore, exogenous expression of the GDP-locked or Mot-type RABL2 mutant in human cells results in mild defects in ciliary assembly. These results indicate that RABL2 localized to the basal body plays crucial roles in ciliary/flagellar assembly via its interaction with the IFT-B complex.
Collapse
Affiliation(s)
- Yuya Nishijima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Hagiya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomohiro Kubo
- University of Yamanashi Graduate School of Medical Science, Chuo 409-3898, Japan
| | - Ryota Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects. J Assist Reprod Genet 2017; 34:505-510. [PMID: 28138870 DOI: 10.1007/s10815-016-0863-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/19/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Male infertility is a multifactorial disorder with impressively genetic basis; besides, sperm abnormalities are the cause of numerous cases of male infertility. In this study, we evaluated the genetic variants in exons 4 and 5 and their intron-exon boundaries in RABL2B gene in infertile men with oligoasthenoteratozoospermia (OAT) and immotile short tail sperm (ISTS) defects to define if there is any association between these variants and human male infertility. METHODS To this purpose, DNA was extracted from peripheral blood and after PCR reaction and sequencing, the results of sequenced segments were analyzed. In the present study, 30 infertile men with ISTS defect and 30 oligoasthenoteratozoospermic infertile men were recruited. All men were of Iranian origin and it took 3 years to collect patient's samples with ISTS defect. RESULTS As a result, the 50776482 delC intronic variant (rs144944885) was identified in five patients with oligoasthenoteratozoospermia defect and one patient with ISTS defect in heterozygote form. This variant was not identified in controls. The allelic frequency of the 50776482 delC variant was significantly statistically higher in oligoasthenoteratozoospermic infertile men (p < 0.05). Bioinformatics studies suggested that the 50776482 delC allele would modify the splicing of RABL2B pre-mRNA. In addition, we identified a new genetic variant in RABL2B gene. CONCLUSIONS According to the present study, 50776482 delC allele in the RABL2B gene could be a risk factor in Iranian infertile men with oligoasthenoteratozoospermia defect, but more genetic studies are required to understand the accurate role of this variant in pathogenesis of human male infertility.
Collapse
|
9
|
A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol Direct 2016; 11:5. [PMID: 26832778 PMCID: PMC4736243 DOI: 10.1186/s13062-016-0107-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background The cilium (flagellum) is a complex cellular structure inherited from the last eukaryotic common ancestor (LECA). A large number of ciliary proteins have been characterized in a few model organisms, but their evolutionary history often remains unexplored. One such protein is the small GTPase RABL2, recently implicated in the assembly of the sperm tail in mammals. Results Using the wealth of currently available genome and transcriptome sequences, including data from our on-going sequencing projects, we systematically analyzed the phylogenetic distribution and evolutionary history of RABL2 orthologs. Our dense taxonomic sampling revealed the presence of RABL2 genes in nearly all major eukaryotic lineages, including small “obscure” taxa such as breviates, ancyromonads, malawimonads, jakobids, picozoans, or palpitomonads. The phyletic pattern of RABL2 genes indicates that it was present already in the LECA. However, some organisms lack RABL2 as a result of secondary loss and our present sampling predicts well over 30 such independent events during the eukaryote evolution. The distribution of RABL2 genes correlates with the presence/absence of cilia: not a single well-established cilium-lacking species has retained a RABL2 ortholog. However, several ciliated taxa, most notably nematodes, some arthropods and platyhelminths, diplomonads, and ciliated subgroups of apicomplexans and embryophytes, lack RABL2 as well, suggesting some simplification in their cilium-associated functions. On the other hand, several algae currently unknown to form cilia, e.g., the “prasinophytes” of the genus Prasinoderma or the ochrophytes Pelagococcus subviridis and Pinguiococcus pyrenoidosus, turned out to encode not only RABL2, but also homologs of some hallmark ciliary proteins, suggesting the existence of a cryptic flagellated stage in their life cycles. We additionally obtained insights into the evolution of the RABL2 gene architecture, which seems to have ancestrally consisted of eight exons subsequently modified not only by lineage-specific intron loss and gain, but also by recurrent loss of the terminal exon encoding a poorly conserved C-terminal extension. Conclusions Our comparative analysis supports the notion that RABL2 is an ancestral component of the eukaryotic cilium and underscores the still underappreciated magnitude of recurrent gene loss, or reductive evolution in general, in the history of eukaryotic genomes and cells. Reviewers This article was reviewed by Berend Snel and James O. McInerney. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0107-8) contains supplementary material, which is available to authorized users.
Collapse
|