1
|
Inandiklioglu N, Onat T, Raheem KY, Kaya S. The Potential of JWH-133 to Inhibit the TLR4/NF-κB Signaling Pathway in Uterine Ischemia-Reperfusion Injury. Life (Basel) 2024; 14:1214. [PMID: 39459513 PMCID: PMC11508640 DOI: 10.3390/life14101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, significant progress has been made in understanding the biological and molecular pathways that regulate the effects of ischemia-reperfusion (I/R) injuries. However, despite these developments, various pharmacological agents are still being tested to either protect against or mitigate the damage caused by the IR's harmful consequences. JWH133 is a CB2R-selective agonist and belongs to the class of Δ8-tetrahydrocannabinol. The present study aimed to determine the in vivo effect of JWH-133 on uterine IR injury via the TLR4/NF-κB, pathway. Female Wistar albino rats (n = 40) were randomly divided into five groups. Three different doses of JWH-133 (0.2, 1, and 5 mg/kg) were administered to the rats. RNA was isolated from uterine tissue samples, and gene expression was measured by RT-PCR using specific primers. The interaction energies and binding affinities of JWH-133 with IL-1β, IL-6, NF-κB, TLR-4, and TNF-α were calculated through molecular docking analysis. The expression analysis revealed that JWH-133 administration significantly reduced the expression levels of IL-1β, IL-6, NF-κB, TLR-4, and TNF-α (p < 0.05). Notably, in the 1 mg/kg JWH-133 group, all of the gene expression levels decreased significantly (p < 0.05). The molecular docking results showed that JWH-133 formed hydrogen bonds with GLU64 of IL-1β, SER226 of IL-6, and SER62 of TNF-α. This study highlights the molecular binding affinity of JWH-133 and its potential effects on inflammation in IR injury. These results pave the way for future research on its potential as a therapeutic target.
Collapse
Affiliation(s)
- Nihal Inandiklioglu
- Faculty of Medicine, Department of Medical Biology, Yozgat Bozok University, 66200 Yozgat, Türkiye
| | - Taylan Onat
- Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat Bozok University, 66200 Yozgat, Türkiye;
| | - Kayode Yomi Raheem
- Faculty of Science, Department of Biochemistry, Adekunle Ajasin University, Akungba 342111, Ondo State, Nigeria;
| | - Savas Kaya
- Faculty of Science, Department of Chemistry, Cumhuriyet University, 58140 Sivas, Türkiye;
| |
Collapse
|
2
|
Kabakchieva P, Gateva A, Hristova J, Georgiev T, Kamenov Z. Analysis of 2-Arachidonoylglycerol Levels in Polycystic Ovary Syndrome in the Context of Hormonal and Metabolic Alterations and Across the Classical Phenotypes. Cannabis Cannabinoid Res 2023; 8:634-641. [PMID: 35235418 DOI: 10.1089/can.2021.0183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Ovarian folliculogenesis requires a fine balance between extra- and intra-ovarian factors. Endocannabinoids are found in the female reproductive system and are essential for a normal follicular growing process and ovulation. First, our study aimed to analyze levels of the endocannabinoid-2-arachidonoylglycerol (2-AG)-in patients with polycystic ovary syndrome (PCOS) and to compare with healthy controls. In addition, the study aimed to explore the association of 2-AG with hormonal and metabolic alterations, ovulatory dysfunction, and the presence of polycystic ovarian morphology (PCOM) across the classical PCOS phenotypes. Methods: Fifty-four women with PCOS were compared with 26 healthy controls. PCOS patients were diagnosed and phenotyped according to the Rotterdam criteria. Further analyses were performed with the classical PCOS phenotypes A and B comprising hyperandrogenism with oligo-anovulation with or without PCOM, respectively. Full medical history, clinical investigations, anthropometric measurements, laboratory tests, and ultrasound investigations were carried out in the follicular phase. Serum levels of 2-AG were measured by enzyme-linked immunosorbent assay. Results: PCOS patients (n=54) and healthy controls (n=26) showed similar metabolic parameters and anthropometric characteristics. PCOS patients were more hirsute than healthy women (p=0.001). Luteinizing hormone/follicle-stimulating hormone ratio and serum levels of androgens were significantly higher in the patient than in the control group (p=0.035, p<0.001, respectively). Free androgen index was also higher in the patient group (p=0.002). Serum levels of 2-AG did not significantly differ when comparing all PCOS patients versus healthy controls; however, further analysis of individual phenotype groups revealed that 2-AG levels in PCOS patients with phenotyope A (n=30) were significantly lower when compared with PCOS patients with phenotype B (n=20) and healthy controls (n=26). Conclusion: Serum levels of 2-AG were similar between PCOS patients and healthy controls. Nevertheless, phenotype A PCOS patients had significantly lower levels of the endocannabinoid compared with phenotype B patients and healthy controls. Collectively, these results suggest that overall serum levels of 2-AG are not a diagnostic marker for PCOS; however, their altered secretion or activity may influence normal follicular processes.
Collapse
Affiliation(s)
- Plamena Kabakchieva
- Clinic of Endocrinology, University Hospital "Alexandrovska", Department of Internal Medicine, Medical Faculty, Medical University-Sofia, Sofia, Bulgaria
- Clinic of Internal Diseases, Naval Hospital-Varna, Military Medical Academy, Bulgaria
| | - Antoaneta Gateva
- Clinic of Endocrinology, University Hospital "Alexandrovska", Department of Internal Medicine, Medical Faculty, Medical University-Sofia, Sofia, Bulgaria
| | - Julieta Hristova
- Clinical Laboratory and Clinical Pharmacology, University Hospital "Alexandrovska", Department of Clinical Laboratory, Medical University-Sofia, Sofia, Bulgaria
| | - Tsvetoslav Georgiev
- Clinic of Rheumatology, University Hospital "St. Marina", First Department of Internal Medicine, Medical Faculty, Medical University-Varna, Varna, Bulgaria
| | - Zdravko Kamenov
- Clinic of Endocrinology, University Hospital "Alexandrovska", Department of Internal Medicine, Medical Faculty, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
3
|
Dufour J, Sabry R, Khokhar JY, Favetta LA. Delta-9 tetrahydrocannabinol (THC) effects on the cortisol stress response in bovine granulosa cells. Toxicol In Vitro 2023; 88:105549. [PMID: 36596389 DOI: 10.1016/j.tiv.2022.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Maternal stress can result in changes in the hypothalamic-pituitary-adrenal (HPA) axis and lead to stress-related behaviours in offspring. Under physiological conditions, delta-9 tetrahydrocannabinol (THC) appears to be detrimental for fertility. However, cannabis is also commonly used for stress-relief. THC acts on the endocannabinoid receptors in granulosa cells (GCs), which affect oocyte competency. The objective of this study was to evaluate the effects of THC on in vitro bovine granulosa cell viability, apoptosis, and stress response pathway. GCs were cultured in vitro in the presence of clinically relevant therapeutic and recreational plasma doses of THC. Cortisol doses reflecting normal and elevated plasma levels were used to evaluate the effects of THC under induced stress in vitro. No effect of THC was observed on cell viability or apoptosis. High and low cortisol concentrations caused significant increases in 11β-HSD1 mRNA expression (n = 6, p < 0.0001). Interestingly, when combined with high [THC], there was a significant decrease in 11β-HSD1 expression compared to high and low cortisol treatments alone (p < 0.001, p < 0.05). GR expression was unaffected by cortisol treatments, and low [THC] treatment maintained increased expression in the presence of high and low cortisol treatments (n = 6, p < 0.01, p < 0.0001). Our findings represent a foundation to obtain useful data for evaluating THC potential therapeutic benefit.
Collapse
Affiliation(s)
- Jaustin Dufour
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Costa L, Moreia-Pinto B, Felgueira E, Ribeiro A, Rebelo I, Fonseca BM. The major endocannabinoid anandamide (AEA) induces apoptosis of human granulosa cells. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102311. [PMID: 34126378 DOI: 10.1016/j.plefa.2021.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
The endocannabinoid system (ECS) plays a crucial role in human reproduction. Changes in anandamide (AEA) levels affect reproductive events and has already been suggested as biomarker of reproductive potential of male and female gametes. Although cannabinoid-receptor 1 (CB1) was already identified in human granulosa cells (hGCs) the ECS was not characterized on granulosa cells line COV434 nor the effects of AEA on GCs viability and function depicted. Therefore, the aim of this study was to characterize the ECS elements and explore the effects of AEA on both COV434 and hGCs. Our results revealed that hGCs express the full enzymatic machinery responsible for AEA metabolism as well as cannabinoid receptors. In addition, AEA induced a reduction in both COV434 and hGCs viability in a concentration and time-dependent manner. Nevertheless, the effects of AEA in cell viability was independent of either CB1 or CB2 receptors. There was no ROS release in both cell models; however, AEA induced morphological changes, presenting chromatin condensation at 72 h, and variation on mitochondrial membrane potential. Moreover, AEA induced an increase in caspase -3/-7 activities in both cell models, but in hGCs there was also an increase in caspase 8 activity. This study supports the idea that ECS balance is crucial for folliculogenesis and oocyte quality as dysregulated AEA levels may compromise female fertility.
Collapse
Affiliation(s)
- L Costa
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal; Unidade de Medicina da Reprodução Dra. Ingeborg Chaves, Centro Hospitalar de Vila Nova de Gaia/Espinho, Portugal
| | - B Moreia-Pinto
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - E Felgueira
- Unidade de Medicina da Reprodução Dra. Ingeborg Chaves, Centro Hospitalar de Vila Nova de Gaia/Espinho, Portugal
| | - A Ribeiro
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - I Rebelo
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal.
| | - B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| |
Collapse
|
5
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
The Impact of Controlled Ovarian Stimulation Hormones on the Metabolic State and Endocannabinoid System of Human Cumulus Cells. Int J Mol Sci 2020; 21:ijms21197124. [PMID: 32992491 PMCID: PMC7583999 DOI: 10.3390/ijms21197124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Different Follicle Stimulating Hormone (FSH) formulation and Luteinizing Hormone (LH) are used in Assisted Reproductive Technology (ART) to induce follicles development and oocytes maturation, but it is still under debate which protocol is to be preferred. In the present study, the different effects on cumulus cells (CCs) of three controlled ovarian stimulation (COS) protocols, based on urinary FSH, recombinant FSH, or human Menopausal Gonadotropin (hMG) administration, were assessed. CCs were obtained from 42 normal-responders women undergoing COS, randomly divided into three groups according to the used gonadotropin formulation. Differences were found in the expression of genes belonging to the endocannabinoid system (the receptors CNR1, CNR2 and TRPV1, and the enzymes involved in the metabolisms of anandamide, NAPE-PLD and FAAH, and 2-acylglycerol, DAGL and MAGL); consistently, changes in lipid (PPARα, and FASN) and carbohydrate (GLUT1 and GLUT9) metabolisms, in CCs’ macromolecules composition (highlighted by Fourier Transform Infrared Microspectroscopy, FTIRM), and in the number of retrieved oocytes were found. For the first time, statistically significant evidence on the differences related to each COS protocol on the endocannabinoid system, metabolism and macromolecular composition of CCs was found, representing a proof of concept to be further confirmed in a larger cohort of patients.
Collapse
|
7
|
Forner-Piquer I, Beato S, Piscitelli F, Santangeli S, Di Marzo V, Habibi HR, Maradonna F, Carnevali O. Effects of BPA on zebrafish gonads: Focus on the endocannabinoid system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114710. [PMID: 32417572 DOI: 10.1016/j.envpol.2020.114710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders. The ECS is a lipid-based signaling system (cannabinoid receptors, endocannabinoids and enzymatic machinery) involved in several physiological functions. The main goal of the present study was to assess the effects of two environmental concentrations of BPA (10 and 20 μg/L) on the ECS in 1-year old zebrafish gonads. In males, BPA increased the gonadosomatic index (GSI) and altered testicular levels of endocannabinoids as well as reduced the testicular area occupied by spermatogonia. In male liver, exposure to 20 μg/L BPA significantly increased vitellogenin (vtg) transcript levels. In female zebrafish, BPA altered ovarian endocannabinoid levels, elevated hepatic vtg mRNA levels as well as increased the percentage of vitellogenic oocytes in the ovaries. In conclusion, exposure to two environmentally relevant concentrations of BPA altered the ECS and consequently, gonadal function in both male and female zebrafish.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Beato
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
8
|
Totorikaguena L, Olabarrieta E, Lolicato F, Romero‐Aguirregomezcorta J, Smitz J, Agirregoitia N, Agirregoitia E. The endocannabinoid system modulates the ovarian physiology and its activation can improve in vitro oocyte maturation. J Cell Physiol 2020; 235:7580-7591. [DOI: 10.1002/jcp.29663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| | - Estibaliz Olabarrieta
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| | | | | | - Johan Smitz
- Laboratory of Follicular Biology (FOBI), UZ Brussel Brussels Belgium
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| |
Collapse
|
9
|
Cecconi S, Rapino C, Di Nisio V, Rossi G, Maccarrone M. The (endo)cannabinoid signaling in female reproduction: What are the latest advances? Prog Lipid Res 2019; 77:101019. [PMID: 31862482 DOI: 10.1016/j.plipres.2019.101019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64 - 00143 Rome, Italy.
| |
Collapse
|
10
|
Role of Major Endocannabinoid-Binding Receptors during Mouse Oocyte Maturation. Int J Mol Sci 2019; 20:ijms20122866. [PMID: 31212770 PMCID: PMC6627642 DOI: 10.3390/ijms20122866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/02/2023] Open
Abstract
Endocannabinoids are key-players of female fertility and potential biomarkers of reproductive dysfunctions. Here, we investigated localization and expression of cannabinoid receptor type-1 and -2 (CB1R and CB2R), G-protein coupled receptor 55 (GPR55), and transient receptor potential vanilloid type 1 channel (TRPV1) in mouse oocytes collected at different stages of in vivo meiotic maturation (germinal vesicle, GV; metaphase I, MI; metaphase II, MII) through qPCR, confocal imaging, and western blot. Despite the significant decrease in CB1R, CB2R, and GPR55 mRNAs occurring from GV to MII, CB2R and GPR55 protein contents increased during the same period. At GV, only CB1R was localized in oolemma, but it completely disappeared at MI. TRPV1 was always undetectable. When oocytes were in vitro matured with CB1R and CB2R but not GPR55 antagonists, a significant delay of GV breakdown occurred, sustained by elevated intraoocyte cAMP concentration. Although CBRs antagonists did not affect polar body I emission or chromosome alignment, GPR55 antagonist impaired in ~75% of oocytes the formation of normal-sized MI and MII spindles. These findings open a new avenue to interrogate oocyte pathophysiology and offer potentially new targets for the therapy of reproductive alterations.
Collapse
|
11
|
Abstract
Potential reproductive effects are considered as the major aspect of biomolecules functionality in an organism. The recent identification of differential patterns of fatty acids across ovarian follicles and their association with levels of sexual maturity highlights the importance of these biomolecules. It is well known that fatty acids are highly diverse in terms of their functional properties. Oleic acid is chemically classified as an unsaturated omega-9 fatty acid. Besides serving as an important energy source, oleic acid is involved in metabolic and structural roles. Free and esterified oleic acids are compartmentalized into discrete extracellular fluids, cell organelles and found within the cytosol. This review summarizes the current knowledge on the contribution of oleic acid in regulating female fertility, particularly its involvement in female germ cell growth and development. Oleic acid has been identified as a blastomeric and post-cryopreservation survival biomarker in bovine. Several related studies have shown the critical role of oleic acid in counteracting the detrimental effects of saturated fatty acids and in paracrine support of oocyte development. Although available data are not ideally detailed, most data suggest that oleic acid can contribute to normal oocyte and preimplantation embryo development via mechanisms involving metabolic partitioning of fatty acids, change in the membrane structural organization, attenuation of oxidative stress and regulation of intracellular signalling. Thus, oleic acid may play a significant role in oocyte and early embryo development, suggesting that future studies should explore in more detail its potential effects on the physiopathology of female reproduction.
Collapse
|
12
|
Spatial distribution of cannabinoid receptor 1 and fatty acid amide hydrolase in the cat ovary and oviduct. Acta Histochem 2017; 119:417-422. [PMID: 28478955 DOI: 10.1016/j.acthis.2017.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022]
Abstract
Involvement of the endocannabinoid system in female reproduction has been extensively described in humans with the cognate receptors and ligands being found in the ovaries and genital tract. In human, an imbalance of the endocannabinoid system is linked with both ectopic pregnancy and infertility. In bovine species anandamide levels regulate aspects of sperm-oviduct interaction. Here we report the immunohistochemical distribution of cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) in cat ovary and oviduct, using paraffin-embedded tissue samples and commercially available antibodies. We found a differential expression of both CB1R and FAAH during different stages of ovarian function and in the oviduct. CB1R was detected only in tertiary follicle granulosa cells while more immature follicles were negative. FAAH was instead found in ovarian pre-antral follicles, the oocyte cytoplasm, and in granulosa cells of primary, secondary and tertiary follicles. Secondary and tertiary follicles were also FAAH immunoreactive. Luteal cells were immunopositive for both CB1R and FAAH. Because CBR1 in oviduct was found only in ciliated cells, it might represent a specific marker at least in cats. In contrast, FAAH immunoreactivity was observed in both ciliated and non-ciliated cells. The present study may thus serve as the starting point for further investigations on the role of the endocannabinoid system in cat reproduction. Additional work will be needed to assess whether the morphological distribution of CB1R and FAAH changes in different conditions such as pre-pubertal age, follicular phase of the sexual cycle and pregnancy.
Collapse
|
13
|
López-Cardona AP, Pérez-Cerezales S, Fernández-González R, Laguna-Barraza R, Pericuesta E, Agirregoitia N, Gutiérrez-Adán A, Agirregoitia E. CB 1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways. FASEB J 2017; 31:3372-3382. [PMID: 28428264 DOI: 10.1096/fj.201601382rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Abstract
Endocannabinoids have been recognized as mediators of practically all reproductive events in mammals. However, little is known about the role of this system in oocyte maturation. In a mouse model, we observed that activation of cannabinoid receptor 1 (CB1) during in vitro oocyte maturation modulated the phosphorylation status of Akt and ERK1/2 and enhanced the subsequent embryo production. In the absence of CB1, in vivo oocyte maturation was impaired and embryo development delayed. Cannabinoid receptor 2 (CB2) was unable to rescue these effects. Finally, we confirmed abnormal oocyte maturation rather than impaired embryonic transport through the oviduct in CB1 knockouts. Our data suggest that cannabinoid agonists may be useful in vitro maturation supplements. For in vitro fertilization patients intolerant to gonadotropins, this could be a promising and only option.-López-Cardona, A. P., Pérez-Cerezales, S., Fernández-González, R., Laguna-Barraza, R., Pericuesta, E., Agirregoitia, N., Gutiérrez-Adán, A., Agirregoitia, E. CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Angela Patricia López-Cardona
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Groupo de Investigación (G.I.)-Biogénesis, Universidad de Antioquia, Medellín, Colombia
| | - Serafín Pérez-Cerezales
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Raúl Fernández-González
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Eva Pericuesta
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU), Leioa, Bizkaia
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU), Leioa, Bizkaia
| |
Collapse
|
14
|
López-Cardona AP, Sánchez-Calabuig MJ, Beltran-Breña P, Agirregoitia N, Rizos D, Agirregoitia E, Gutierrez-Adán A. Exocannabinoids effect on in vitro bovine oocyte maturation via activation of AKT and ERK1/2. Reproduction 2016; 152:603-612. [DOI: 10.1530/rep-16-0199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Abstract
Endocannabinoids are known to mediate practically all reproductive events in mammals; however, little is known about their role in oocyte maturation. Through RT-PCR and immunocytochemistry, this study confirms the presence of CB1 and CB2 cannabinoid receptors in bovine oocytes and shows how exposure to the exogenous cannabinoids HU-210 and THC during their in vitro maturation (IVM) activates the phosphorylation of AKT and ERK1/2 proteins associated with the resumption of meiosis. Although supplementation with HU-210 or THC during IVM did not increase blastocyst yields, the expression of interferon tau (IFNτ) and gap junction alpha-1 protein (GJA1) was enhanced at the blastocyst stage. Our data suggest that cannabinoid agonists may be useful IVM supplements as their presence during oocyte maturation upregulates the expression in blastocysts of key genes for embryo quality.
Collapse
|
15
|
Agirregoitia E, Totorikaguena L, Expósito A, Mendoza R, Matorras R, Agirregoitia N. Dynamic of expression and localization of cannabinoid-degrading enzymes FAAH and MGLL in relation to CB1 during meiotic maturation of human oocytes. Cell Tissue Res 2016; 365:393-401. [PMID: 26948343 DOI: 10.1007/s00441-016-2381-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
The endogenous cannabinoid system has been characterized in some female reproductive organs but little is known about the expression and localization pattern of cannabinoid-degrading enzymes in relation to the CB1 cannabinoid receptor in human oocytes. In this study, we focus on the investigation of the presence and differential distribution of fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in relation to CB1 during the maturation of human oocytes. We used a total of 290 human oocytes not suitable for in vitro fertilization/intracytoplasmic sperm injection (ICSI): germinal-vesicle (GV) and metaphase-I (MI) stages and metaphase-II (MII) oocytes that had not developed into an embryo after ICSI. Cannabinoid-degrading enzymes and the cannabinoid CB1 receptor were present in human oocytes. Specifically, FAAH was detected in the periphery of the oocyte from the GV to MI stage and co-localized with CB1. Later, by the MII stage, FAAH was spread within the oocyte, whereas MGLL immunostaining was homogeneous across the oocyte at all stages of maturation and only overlapped with CB1 at the GV stage. This coordinated redistribution of cannabinoid system proteins suggests a role for this system in the maturation of the female gamete.
Collapse
Affiliation(s)
- Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain.
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Antonia Expósito
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Rosario Mendoza
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| |
Collapse
|
16
|
Ernst J, Grabiec U, Greither T, Fischer B, Dehghani F. The endocannabinoid system in the human granulosa cell line KGN. Mol Cell Endocrinol 2016; 423:67-76. [PMID: 26773729 DOI: 10.1016/j.mce.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 10/25/2022]
Abstract
Ovarian steroidogenesis is embedded in a sensitive network of regulatory mechanisms crucial for human fertility. The endocannabinoid system (ECS) represents an intrinsic modulating system involved in the regulation of endocrine functions. In the present study we characterized the ECS in the human granulosa cell line KGN and its impact on gonadotropin sensitivity and steroid hormone synthesis under basal and FSH-stimulated conditions. Expression studies were performed and estradiol was measured. CB1, CB2, DAGL, FAAH, GPR55, MAGL, NAPE-PLD and TRPV1 were expressed without FSH-dependent effects. Treatment with selective cannabinoid receptor agonists reduced basal but not FSH-stimulated estradiol and CYP19. Progesterone was not altered by ECS manipulation. CB1 agonist changed the expression of miRNAs associated with granulosa cell function, e.g. miR-23a, miR-24, miR-181a and miR-320a. Present data indicate a modulating role of the intrinsic ovarian ECS in the regulation of estradiol synthesis.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany.
| | - Urszula Grabiec
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| |
Collapse
|