1
|
Ward MA, Roberts RM, Ward WS. Ryuzo Yanagimachi: Pioneer in fertilization and assisted reproductive biology technology. Proc Natl Acad Sci U S A 2024; 121:e2320501121. [PMID: 38190518 PMCID: PMC10801875 DOI: 10.1073/pnas.2320501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Affiliation(s)
- Monika A. Ward
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI96822
| | - R. Michael Roberts
- University of Missouri-Columbia - Animal Sciences, 240B Bond Life Sciences Center, Columbia, MO65211
| | - W. Steven Ward
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI96822
- Department of Obstetrics and Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI96822
| |
Collapse
|
2
|
Asada Y. Evolution of intracytoplasmic sperm injection: From initial challenges to wider applications. Reprod Med Biol 2024; 23:e12582. [PMID: 38803410 PMCID: PMC11129627 DOI: 10.1002/rmb2.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background In vitro fertilization (IVF) has revolutionized infertility treatment. Nevertheless, male infertility requires more effective solutions. In 1992, the first-ever case of human birth via intracytoplasmic sperm injection (ICSI) was reported. ICSI involves microscopically injecting a sperm into an ovum. Successful ICSI has become a reliable therapy for couples facing infertility, a significant milestone. However, it has also introduced various challenges. This study also delves into ethical dilemmas arising from widespread ICSI use. Methods This review traces the history of ICSI, presenting pioneering attempts, first successful attempts, and critical reports on account of the initial skepticism toward the technology. The review also focuses on chronological progress until ICSI was recognized as effective and became widely applied. Main findings The review reveals that ICSI, although transformative, presents challenges. Successes include addressing male infertility and aiding fertilization. However, concerns arise regarding optimal sperm and embryo selection, genetic mutations, and long-term health implications. Ethical considerations surrounding ICSI's broad applications also surface. Conclusions Despite its success and effectiveness, ICSI is still evolving as a therapeutic method. By comprehensively evaluating the historical progress and the current status of ICSI and exploring its future prospects, this study highlights the importance of ICSI in infertility treatment.
Collapse
|
3
|
Takeshima T, Karibe J, Saito T, Kuroda S, Komeya M, Uemura H, Yumura Y. Clinical management of nonobstructive azoospermia: An update. Int J Urol 2024; 31:17-24. [PMID: 37737473 DOI: 10.1111/iju.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Approximately 1% of the general male population has azoospermia, and nonobstructive azoospermia accounts for the majority of cases. The causes vary widely, including chromosomal and genetic abnormalities, varicocele, drug-induced causes, and gonadotropin deficiency; however, the cause is often unknown. In azoospermia caused by hypogonadotropic hypogonadism, gonadotropin replacement therapy can be expected to produce sperm in the ejaculate. In some cases, upfront varicocelectomy for nonobstructive azoospermia with varicocele may result in the appearance of ejaculated spermatozoa; however, the appropriate indication should be selected. Each guideline recommends microdissection testicular sperm extraction for nonobstructive azoospermia in terms of successful sperm retrieval and avoidance of complications. Sperm retrieval rates generally ranged from 20% to 70% but vary depending on the causative disease. Various attempts have been made to predict sperm retrieval and improve sperm retrieval rates; however, the evidence is insufficient. Further evidence accumulation is needed for salvage treatment in cases of failed sperm retrieval. In Japan, there is inadequate provision on the right to know the origin of children born from artificial insemination of donated sperm and the rights of sperm donors, as well as information on unrelated family members, and the development of these systems is challenging. In the future, it is hoped that the pathogenesis of nonobstructive azoospermia with an unknown cause will be elucidated and that technology for omics technologies, human spermatogenesis using pluripotent cells, and organ culture methods will be developed.
Collapse
Affiliation(s)
- Teppei Takeshima
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Jurii Karibe
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Tomoki Saito
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Shinnosuke Kuroda
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
- Glickman Kidney & Urological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mitsuru Komeya
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Yasushi Yumura
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| |
Collapse
|
4
|
Hingu J, Galdon G, Deebel NA, Sadri-Ardekani H. Isolation and In Vitro Propagation of Human Spermatogonial Stem Cells (SSCs). Methods Mol Biol 2024; 2770:27-36. [PMID: 38351444 DOI: 10.1007/978-1-0716-3698-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Preservation of human spermatogonial stem cells (SSCs) may be suitable for young male patients at risk of male infertility due to various causes, such as gonadotoxic treatment or genetic diseases. With optimal cryopreservation, cell viability can be retained to reestablish spermatogenesis in the future through autologous transplantation or in vitro differentiation of SSCs. This protocol outlines techniques to optimize the SSCs isolation and in vitro culture. With particular emphasis on the microscopic characteristics encountered, this protocol outlines a broader approach to processing tissues with varying morphologies among patients.
Collapse
Affiliation(s)
- Janmejay Hingu
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Wakayama T, Ogura A. In memory of Dr. Ryuzo Yanagimachi (Yana) (1928-2023). J Reprod Dev 2024; 70:i-iv. [PMID: 38569840 PMCID: PMC11017095 DOI: 10.1262/jrd.2024-e01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
- RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Ooga M, Kikuchi Y, Ito D, Kazama K, Inoue R, Sakamoto M, Wakayama S, Wakayama T. Aberrant histone methylation in mouse early preimplantation embryos derived from round spermatid injection. Biochem Biophys Res Commun 2023; 680:119-126. [PMID: 37738901 DOI: 10.1016/j.bbrc.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Round spermatid injection (ROSI) is the last resort and recourse for men with nonobstructive azoospermia to become biological fathers of their children. However, the ROSI-derived offspring rate is lower than intracytoplasmic sperm injection (ICSI) in mice (20% vs. 60%). This low success rate has hindered the spread of ROSI in ART (Assisted Reproductive Technology). However, the cause of the ROSI-zygote-derived low offspring rate is currently unknown. In the previous studies, we reported that H3K9me3 and H3K27me3 exhibited ectopic localizations in male pronuclei (mPN) of ROSI-zygotes, suggesting that the carried over histone to zygotes conveys epigenetic information. In this study, we analyzed other histone modifications to explore unknown abnormalities. H3K36me3 showed an increased methylation state compared to ICSI-derived embryos but not for H3K4me3. Abnormal H3K36me3 was corrected until 2-cell stage embryos, suggesting a long window of reprogramming ability in ROSI-embryos. Treatment with TSA of ROSI-zygotes, which was reported to be capable of correcting ectopic DNA methylation in ROSI-zygotes, caused abnormalities of H3K36me3 in male and female PN (fPN) of the zygotes. In contrast, round spermatid TSA treatment before ROSI, which was reported to improve the preimplantation development of ROSI-zygotes, showed beneficial effects without toxicity in fPN. Therefore, the results suggest that TSA has some negative effects, but overall, it is effective in the correction of epigenetic abnormalities in ROSI-zygotes. When attempting to correct epigenetic abnormalities, attention should be paid to epigenomes not only in male but also in female pronuclei.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan.
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Rei Inoue
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
7
|
Bolton VN, Perez MJ, Hughes G, Moodley T, Dean M, Fernandez-Ponce A, Southall-Brown G, Kasraie J. The use of ICSI in ART: evidence for practice. HUM FERTIL 2023; 26:414-432. [PMID: 37609991 DOI: 10.1080/14647273.2023.2243071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This article reviews the evidence regarding the safety and efficacy of intra-cytoplasmic sperm injection (ICSI). It provides evidence-based clinical and laboratory guidelines and recommendations for use of ICSI within an assisted reproductive technology (ART) service. The guidelines address the evidence for the use of ICSI rather than conventional IVF (cIVF); the use of ART techniques supplementary to ICSI; and risks associated with ICSI. This article is not intended to be the only approved standard of practice or to dictate an exclusive course of treatment. Other plans of management may be appropriate, taking into account the needs and medical history of the patient, available resources, and institutional or clinical practice limitations.
Collapse
Affiliation(s)
| | | | - George Hughes
- Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | - Therishnee Moodley
- The Centre for Reproductive Medicine, St. Bartholomew's Hospital, London, UK
| | - Morven Dean
- Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | | | | | - Jason Kasraie
- University of Chester and University Centre Shrewsbury, Chester, UK
| |
Collapse
|
8
|
Shi B, Shah W, Liu L, Gong C, Zhou J, Abbas T, Ma H, Zhang H, Yang M, Zhang Y, Ullah N, Mahammad Z, Khan M, Murtaza G, Ali A, Khan R, Sha J, Yuan Y, Shi Q. Biallelic mutations in RNA-binding protein ADAD2 cause spermiogenic failure and non-obstructive azoospermia in humans. Hum Reprod Open 2023; 2023:hoad022. [PMID: 37325547 PMCID: PMC10266965 DOI: 10.1093/hropen/hoad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
STUDY QUESTION What are some pathogenic mutations for non-obstructive azoospermia (NOA) and their effects on spermatogenesis? SUMMARY ANSWER Biallelic missense and frameshift mutations in ADAD2 disrupt the differentiation of round spermatids to spermatozoa causing azoospermia in humans and mice. WHAT IS KNOWN ALREADY NOA is the most severe cause of male infertility characterized by an absence of sperm in the ejaculate due to impairment of spermatogenesis. In mice, the lack of the RNA-binding protein ADAD2 leads to a complete absence of sperm in epididymides due to failure of spemiogenesis, but the spermatogenic effects of ADAD2 mutations in human NOA-associated infertility require functional verification. STUDY DESIGN SIZE DURATION Six infertile male patients from three unrelated families were diagnosed with NOA at local hospitals in Pakistan based on infertility history, sex hormone levels, two semen analyses and scrotal ultrasound. Testicular biopsies were performed in two of the six patients. Adad2 mutant mice (Adad2Mut/Mut) carrying mutations similar to those found in NOA patients were generated using the CRISPR/Cas9 genome editing tool. Reproductive phenotypes of Adad2Mut/Mut mice were verified at 2 months of age. Round spermatids from the littermates of wild-type (WT) and Adad2Mut/Mut mice were randomly selected and injected into stimulated WT oocytes. This round spermatid injection (ROSI) procedure was conducted with three biological replicates and >400 ROSI-derived zygotes were evaluated. The fertility of the ROSI-derived progeny was evaluated for three months in four Adad2WT/Mut male mice and six Adad2WT/Mut female mice. A total of 120 Adad2Mut/Mut, Adad2WT/Mut, and WT mice were used in this study. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS SETTING METHODS Whole-exome sequencing was performed to detect potentially pathogenic mutations in the six NOA-affected patients. The pathogenicity of the identified ADAD2 mutations was assessed and validated in human testicular tissues and in mouse models recapitulating the mutations in the NOA patients using quantitative PCR, western blotting, hematoxylin-eosin staining, Periodic acid-Schiff staining, and immunofluorescence. Round spermatids of WT and Adad2Mut/Mut mice were collected by fluorescence-activated cell sorting and injected into stimulated WT oocytes. The development of ROSI-derived offspring was evaluated in the embryonic and postnatal stages. MAIN RESULTS AND THE ROLE OF CHANCE Three recessive mutations were identified in ADAD2 (MT1: c.G829T, p.G277C; MT2: c.G1192A, p.D398N; MT3: c.917_918del, p.Q306Rfs*43) in patients from three unrelated Pakistani families. MT1 and MT2 dramatically reduced the testicular expression of ADAD2, likely causing spermiogenesis failure in the NOA patients. Immunofluorescence analysis of the Adad2Mut/Mut male mice with the corresponding MT3 mutation showed instability and premature degradation of the ADAD2 protein, resulting in the spermiogenesis deficiency phenotype. Through ROSI, the Adad2Mut/Mut mice could produce pups with comparable embryonic development (46.7% in Adad2Mut/Mut versus 50% in WT) and birth rates (21.45 ± 10.43% in Adad2Mut/Mut versus 27.5 ± 3.536% in WT, P = 0.5044) to WT mice. The Adad2WT/Mut progeny from ROSI (17 pups in total via three ROSI replicates) did not show overt developmental defects and had normal fertility. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This is a preliminary report suggesting that ROSI can be an effective treatment for infertile Adad2Mut/Mut mice. Further assisted reproductive attempts need to be carefully examined in humans during clinical trials. WIDER IMPLICATIONS OF THE FINDINGS Our work provides functional evidence that mutations in the ADAD2 gene are deleterious and cause consistent spermiogenic defects in both humans and mice. In addition, preliminary results show that ROSI can help Adad2Mut/Mut to produce biological progeny. These findings provide valuable clues for genetic counselling on the ADAD2 mutants-associated infertility in human males. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (32000587, U21A20204, and 32061143006), and the National Key Research and Developmental Program of China (2019YFA0802600 and 2021YFC2700202). This work was also supported by Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China. The authors declare no competing interests.
Collapse
Affiliation(s)
- Baolu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Li Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenjia Gong
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Menglei Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Nadeem Ullah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zubair Mahammad
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Mazhar Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Asim Ali
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Ranjha Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
9
|
Bashawat M, Braun B, Müller K, Hermann B. Molecular phenotyping of domestic cat ( Felis catus) testicular cells across postnatal development - A model for wild felids. THERIOGENOLOGY WILD 2023; 2:100031. [PMID: 37461433 PMCID: PMC10350788 DOI: 10.1016/j.therwi.2023.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Molecular characterisation of testicular cells is a pivotal step towards a profound understanding of spermatogenesis and developing assisted reproductive techniques (ARTs) based on germline preservation. To enable the identification of testicular somatic and spermatogenic cell types in felids, we investigated the expression of five molecular markers at the protein level in testes from domestic cats (Felis catus) at different developmental phases (prepubertal, pubertal I and II, postpubertal I and II) classified by single-cell ploidy analysis. Our findings indicate a prominent co-labelling for two spermatogonial markers, UCHL1 and FOXO1, throughout postnatal testis development. Smaller subsets of UCHL1 or FOXO1 single-positive spermatogonia were also evident, with the FOXO1 single-positive spermatogonia predominantly observed in prepubertal testes. As expected, DDX4+ germ cells increased in numbers beginning in puberty, reaching a maximum at adulthood (post-pubertal phase), corresponding to the sequential appearance of labelled spermatogonia, spermatocytes and spermatids. Furthermore, we identified SOX9+ Sertoli cells and CYP17A1+ Leydig cells in all of the developmental groups. Importantly, testes of African lion (Panthera leo), Sumatran tiger (Panthera tigris sumatrae), Chinese leopard (Panthera pardus japonesis) and Sudan cheetah (Acinonyx jubatus soemmeringii) exhibited conserved labelling for UCHL1, FOXO1, DDX4, SOX9 and CYP17A1. The present study provides fundamental information about the identity of spermatogenic and somatic testicular cell types across felid development that will be useful for developing ART approaches to support endangered felid conservation.
Collapse
Affiliation(s)
- M. Bashawat
- Department of Biology, Humboldt University of Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - B.C. Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - K. Müller
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - B.P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
10
|
Zhu H, Chen Y, Wei J, Zhang S, Wang L, Li Z, Liu R, Dai X. Evaluation of the post-implantation development of mouse embryos derived from round spermatid injection. Theriogenology 2023; 206:106-113. [DOI: 10.1016/j.theriogenology.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
|
11
|
Deebel NA, Sadri-Ardekani H. Fertility Preservation in Adolescents with Klinefelter Syndrome is Experimental but May Increase Therapeutic Options for Biological Paternity. Eur Urol Focus 2023; 9:3-5. [PMID: 36396560 DOI: 10.1016/j.euf.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
While approximately half of adult Klinefelter syndrome (KS) patients have retrievable sperm on micro testicular sperm extraction, success is limited by testicular hyalinization beginning at puberty. Recent surgical and laboratory advances lend themselves to experimental fertility preservation in appropriately selected adolescent KS patients.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Tanaka A, Watanabe S. How to improve the clinical outcome of round spermatid injection (ROSI) into the oocyte: Correction of epigenetic abnormalities. Reprod Med Biol 2023; 22:e12503. [PMID: 36789269 PMCID: PMC9909386 DOI: 10.1002/rmb2.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Background First successful human round spermatid injection (ROSI) was conducted by Tesarik et al. in 1996 for the sole treatment of nonobstructive azoospermic men whose most advanced spermatogenic cells were elongating round spermatids. Nine offsprings from ROSI were reported between 1996 and 2000. No successful deliveries were reported for 15 years after that. Tanaka et al. reported 90 babies born after ROSI and their follow-up studies in 2015 and 2018 showed no significant differences in comparison with those born after natural conception in terms of physical and cognitive abilities. However, clinical outcomes remain low. Method Clinical and laboratory data of successful cases in the precursor ROSI groups and those of Tanaka et al. were reviewed. Results Differences were found between the two groups in terms of identification of characteristics of round spermatid and oocyte activation. Additionally, epigenetic abnormalities were identified as underlying causes for poor ROSI results, besides correct identification of round spermatid and adequate oocyte activation. Correction of epigenetic errors could lead to optimal embryonic development. Conclusion Correction of epigenetic abnormalities has a probability to improve the clinical outcome of ROSI.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Obstetrics and GynecologySaint Mother ClinicKitakyushuJapan
- Department of Obstetrics and GynecologyJuntendo University School of MedicineBunkyo‐kuJapan
| | - Seiji Watanabe
- Department of Anatomical ScienceHirosaki University Graduate School of MedicineAomoriJapan
| |
Collapse
|
13
|
Deebel NA, Soltanghoraee H, Bradshaw AW, Abdelaal O, Reynolds K, Howards S, Kogan S, Sadeghi MR, Atala A, Stogner-Underwood K, Sadri-Ardekani H. Morphometric and immunohistochemical analysis as a method to identify undifferentiated spermatogonial cells in adult subjects with Klinefelter syndrome: a cohort study. Fertil Steril 2022; 118:864-873. [PMID: 36116982 DOI: 10.1016/j.fertnstert.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To study the prevalence of spermatogonia in adult subjects with Klinefelter syndrome (KS) using MAGE-A4 and UCHL1 (PGP9.5) immunohistochemistry as markers for undifferentiated spermatogonial cells. We aimed to compare this method to the gold standard of hematoxylin and eosin (H & E) staining with histologic analysis in the largest reported cohort of adult subjects with KS. DESIGN A retrospective cohort study. SETTING Infertility Clinic and Institute for Regenerative Medicine. PATIENT(S) This study consisted of 79 adult subjects with KS and 12 adult control subjects. INTERVENTION(S) The subjects with KS (n = 79) underwent bilateral testicular biopsy in an initial effort to recover spermatozoa for in vitro fertilization and intracytoplasmic sperm injection. The institutional review board approved the use of a portion of the archived diagnostic pathology paraffin blocks for the study. The samples were superimposed onto microscopic slides and labeled with the PGP9.5 and MAGE-A4 antibodies. Subjects (n = 12) who had previously consented to be organ donors via the National Disease Research Interchange were selected as controls. Dedicated genitourinary pathologists examined the H & E-, PGP9.5-, and MAGE-A4-stained tissue for presence of undifferentiated spermatogonia and spermatozoa with the use of a virtual microscopy software. MAIN OUTCOME MEASURE(S) The primary outcome was the presence of MAGE-A4-positive or UCHL1-positive tubules that indicate undifferentiated spermatogonia. Supportive outcomes include assessing the biopsy specimen for the following: total surface area; total seminiferous tubule surface area; total interstitium surface area; the total number of seminiferous tubules; and MAGE-A4- negative or UCHL1-negative tubules. Additionally, clinical information, such as age, karyotype, height, weight, mean testicle size, and hormonal panel (luteinizing hormone, follicle-stimulating hormone, and testosterone), was obtained and used in a single and multivariable analysis with linear regression to determine predictive factors for the number of UCHL1-positive tubules. RESULT(S) The mean age of the subjects in the KS group was 32.9 ± 0.7 years (range, 16-48). UCHL1 (PGP9.5) and MAGE-A4 staining showed that 74.7% (n = 59) and 40.5% (n = 32) of the subjects with KS, respectively, were positive for undifferentiated spermatogonia compared with 100% (n = 12) of the control subjects who were positive for both the markers. Hematoxylin and eosin with microscopic analysis showed that only 10.1% (n = 8) of the subjects were positive for spermatogonia. The mean number of positive tubules per subject with KS was 11.8 ± 1.8 for UCHL1 and 3.7 ± 1.0 for MAGE-A4. Secondary analysis showed 7 (8.9%) adult subjects with KS as positive for spermatozoa on biopsy. The population having negative testicular sperm extraction results (n = 72) showed a spermatogonia-positive rate of 1.4%, (n = 1), 72.2% (n = 52), and 34.7% (n = 25) using H & E, UCHL1, and MAGE-A4, respectively. Further analysis showed that 54 (75.0%) subjects were either positive for UCHL1 or MAGE-A4. Twenty (27.8%) subjects were positive for both UCHL1 and MAGE-A4. Multivariate analysis with linear regression showed no significant correlation between clinical variables and the number of UCHL1-positive tubules found on biopsy specimens. CONCLUSION(S) We report a cohort of adult subjects with KS undergoing analysis for the presence of undifferentiated spermatogonia. UCHL1 and MAGE-A4 immunostaining appear to be an effective way of identifying undifferentiated spermatogonia in testicular biopsy specimens of subjects with KS. Despite observing deterioration in the testicular architecture, many patients remain positive for undifferentiated spermatogonia, which could be harvested and potentially used for infertility therapy in a patient with KS who is azoospermic and has negative testicular sperm extraction results.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran; Avicenna Infertility Clinic, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Aaron William Bradshaw
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Omar Abdelaal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Urology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Karl Reynolds
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Stuart Howards
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Stanley Kogan
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran; Avicenna Infertility Clinic, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Anthony Atala
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kimberly Stogner-Underwood
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Urology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
14
|
Sakamoto M, Ito D, Inoue R, Wakayama S, Kikuchi Y, Yang L, Hayashi E, Emura R, Shiura H, Kohda T, Namekawa SH, Ishiuchi T, Wakayama T, Ooga M. Paternally inherited H3K27me3 affects chromatin accessibility in mouse embryos produced by round spermatid injection. Development 2022; 149:276384. [DOI: 10.1242/dev.200696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Daiyu Ito
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rei Inoue
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Yasuyuki Kikuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Li Yang
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Erika Hayashi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rina Emura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Hirosuke Shiura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Takashi Kohda
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Satoshi H. Namekawa
- University of California Davis 3 Department of Microbiology and Molecular Genetics , , Davis, CA 95616 , USA
| | - Takashi Ishiuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Masatoshi Ooga
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| |
Collapse
|
15
|
Ogonuki N, Kyogoku H, Hino T, Osawa Y, Fujiwara Y, Inoue K, Kunieda T, Mizuno S, Tateno H, Sugiyama F, Kitajima TS, Ogura A. Birth of mice from meiotically arrested spermatocytes following biparental meiosis in halved oocytes. EMBO Rep 2022; 23:e54992. [DOI: 10.15252/embr.202254992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Narumi Ogonuki
- Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation RIKEN Center for Biosystems Dynamics Research Kobe Japan
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Toshiaki Hino
- Department of Biological Sciences Asahikawa Medical University Asahikawa Japan
| | - Yuki Osawa
- Graduate School of Comprehensive Human Sciences University of Tsukuba Tsukuba Japan
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development Institute for Quantitative Biosciences The University of Tokyo Tokyo Japan
| | - Kimiko Inoue
- Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medicine Okayama University of Science Imabari Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans‐border Medical Research Center Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Hiroyuki Tateno
- Department of Biological Sciences Asahikawa Medical University Asahikawa Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans‐border Medical Research Center Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Atsuo Ogura
- Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
- RIKEN Cluster for Pioneering Research Wako Japan
| |
Collapse
|
16
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
17
|
Sanou I, van Maaren J, Eliveld J, Lei Q, Meißner A, de Melker AA, Hamer G, van Pelt AMM, Mulder CL. Spermatogonial Stem Cell-Based Therapies: Taking Preclinical Research to the Next Level. Front Endocrinol (Lausanne) 2022; 13:850219. [PMID: 35444616 PMCID: PMC9013905 DOI: 10.3389/fendo.2022.850219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
Fertility preservation via biobanking of testicular tissue retrieved from testicular biopsies is now generally recommended for boys who need to undergo gonadotoxic treatment prior to the onset of puberty, as a source of spermatogonial stem cells (SSCs). SSCs have the potential of forming spermatids and may be used for therapeutic fertility approaches later in life. Although in the past 30 years many milestones have been reached to work towards SSC-based fertility restoration therapies, including transplantation of SSCs, grafting of testicular tissue and various in vitro and ex vivo spermatogenesis approaches, unfortunately, all these fertility therapies are still in a preclinical phase and not yet available for patients who have become infertile because of their treatment during childhood. Therefore, it is now time to take the preclinical research towards SSC-based therapy to the next level to resolve major issues that impede clinical implementation. This review gives an outline of the state of the art of the effectiveness and safety of fertility preservation and SSC-based therapies and addresses the hurdles that need to be taken for optimal progression towards actual clinical implementation of safe and effective SSC-based fertility treatments in the near future.
Collapse
Affiliation(s)
- Iris Sanou
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jillis van Maaren
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jitske Eliveld
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Andreas Meißner
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
- Department of Urology, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Annemieke A de Melker
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Tao Y. Oocyte Activation during Round Spermatid Injection: State of the Art. Reprod Biomed Online 2022; 45:211-218. [DOI: 10.1016/j.rbmo.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
|
19
|
Barratt CLR, Wang C, Baldi E, Toskin I, Kiarie J, Lamb DJ. What advances may the future bring to the diagnosis, treatment, and care of male sexual and reproductive health? Fertil Steril 2022; 117:258-267. [PMID: 35125173 PMCID: PMC8877074 DOI: 10.1016/j.fertnstert.2021.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Over the past 40 years, since the publication of the original WHO Laboratory Manual for the Examination and Processing of Human Semen, the laboratory methods used to evaluate semen markedly changed and benefited from improved precision and accuracy, as well as the development of new tests and improved, standardized methodologies. Herein, we present the impact of the changes put forth in the sixth edition together with our views of evolving technologies that may change the methods used for the routine semen analysis, up-and-coming areas for the development of new procedures, and diagnostic approaches that will help to extend the often-descriptive interpretations of several commonly performed semen tests that promise to provide etiologies for the abnormal semen parameters observed. As we look toward the publication of the seventh edition of the manual in approximately 10 years, we describe potential advances that could markedly impact the field of andrology in the future.
Collapse
Affiliation(s)
- Christopher L R Barratt
- Division of Systems Medicine, University of Dundee Medical School, Ninewells Hospital, Dundee, Scotland.
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Igor Toskin
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - James Kiarie
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Dolores J Lamb
- The James Buchanan Brady Foundation Department of Urology, Center for Reproductive Genomics and Englander Institute for Personalized Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Patra T, Gupta MK. Solid surface vitrification of goat testicular cell suspension enriched for spermatogonial stem cells. Cryobiology 2021; 104:8-14. [PMID: 34822805 DOI: 10.1016/j.cryobiol.2021.11.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 01/13/2023]
Abstract
This study reports solid surface vitrification (SSV) of goat testicular cell suspensions (TCS) enriched for spermatogonial stem cells (SSCs). The TCS was isolated from pre-pubertal goat testis by enzymatic digestion, enriched for SSCs by filtration and differential plating, and were vitrified-warmed by SSV. The study showed that SSV could successfully vitrify goat TCS although the percentage of live cells in the vitrified-warmed group was lower (74.8 ± 4.1%) than in non-vitrified control (80.6 ± 6.27%). The vitrified-warmed TCS formed putative SSC colonies upon their in vitro culture, but the colony size of vitrified-warmed cells (24.3 ± 1.8 μm) was smaller than those of non-vitrified warmed cells (58.4 ± 2.5 μm). Mitochondrial activity (0.40 vs. 0.38 A U.), population doubling time (33.45 ± 1.25 h vs. 31.86 ± 1.90 h), and the cell proliferation rate (0.72 ± 0.10 vs. 0.75 ± 0.11 per day) of total cells (including putative SSCs and other somatic cells) did not differ (p > 0.05) between control and SSV vitrified-warmed groups. However, during in vitro culture for 96 h, vitrified-warmed cells showed significantly lower (0.75 vs. 1.33 A U.; p < 0.05) mitochondrial activity than non-vitrified controls. The DCFDA assay showed that ROS activity was significantly (p < 0.05) higher in vitrified-warmed cells (52.8 ± 4.1 A U) than non-vitrified control cells (32.8 ± 2.1 AU). In conclusion, our results suggest that SSC-enriched goat TCS could be successfully cryopreserved by SSV. However, ROS-induced damages to cell cytoplasmic components reduce their cellular proliferation and require further improvement in the protocol. To the best of our knowledge, this study is the first report on the SSV of SSC-enriched goat TCS.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
21
|
Khampang S, Cho IK, Punyawai K, Gill B, Langmo JN, Nath S, Greeson KW, Symosko KM, Fowler KL, Tian S, Statz JP, Steves AN, Parnpai R, White MA, Hennebold JD, Orwig KE, Simerly CR, Schatten G, Easley CA. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F&S SCIENCE 2021; 2:365-375. [PMID: 34970648 PMCID: PMC8716017 DOI: 10.1016/j.xfss.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells. DESIGN Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection. SETTING Multiple academic laboratory settings. PATIENTS Not applicable. INTERVENTIONS Intracytoplasmic sperm(atid) injection of in vitro-derived spermatids from nhpESCs into rhesus macaque oocytes. MAIN OUTCOME MEASURES Differentiation into spermatogenic cell lineages was measured through multiple assessments including ribonucleic acid sequencing and immunocytochemistry for various spermatogenic markers. In vitro spermatids were assessed for their ability to fertilize oocytes by intracytoplasmic sperm(atid) injection by assessing early fertilization events such as spermatid deoxyribonucleic acid decondensation and pronucleus formation/apposition. Preimplantation embryo development from the one-cell zygote stage to the blastocyst stage was also assessed. RESULTS Nonhuman primate embryonic stem cells can be differentiated into advanced germ cell lineages, including haploid rSLCs. These rSLCs undergo deoxyribonucleic acid decondensation and pronucleus formation/apposition when microinjected into rhesus macaque mature oocytes, which, after artificial activation and coinjection of ten-eleven translocation 3 protein, undergo embryonic divisions with approximately 12% developing successfully into expanded blastocysts. CONCLUSIONS This work demonstrates that rSLCs, generated in vitro from primate pluripotent stem cells, mimic many of the capabilities of in vivo round spermatids and perform events essential for preimplantation development. To our knowledge, this work represents, for the first time, that functional spermatid-like cells can be derived in vitro from primate pluripotent stem cells.
Collapse
Affiliation(s)
- Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - In Ki Cho
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Kanchana Punyawai
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia
| | - Brittany Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Jacqueline N Langmo
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Shivangi Nath
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Krista M Symosko
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Siran Tian
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia
| | - John P Statz
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Alyse N Steves
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kyle E Orwig
- Magee-Womens Research Institute and Departments of Obstetrics, Gynecology, and Reproductive Sciences, Cell Biology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Calvin R Simerly
- Magee-Womens Research Institute and Departments of Obstetrics, Gynecology, and Reproductive Sciences, Cell Biology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Gerald Schatten
- Magee-Womens Research Institute and Departments of Obstetrics, Gynecology, and Reproductive Sciences, Cell Biology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| |
Collapse
|
22
|
Bradshaw AW, Nikmehr B, Halicigil C, Stogner-Underwood K, Sadri-Ardekani H. Optimum identification of round spermatid in men with non-obstructive azoospermia: A commentary. Andrology 2021; 9:1817-1818. [PMID: 34618410 DOI: 10.1111/andr.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 09/26/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Aaron William Bradshaw
- Department of Urology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Banafsheh Nikmehr
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Carolinas Fertility Institute, Winston-Salem, North Carolina, USA
| | - Cihan Halicigil
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Kimberly Stogner-Underwood
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Department of Pathology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Department of Pathology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice. Sci Rep 2021; 11:15438. [PMID: 34326397 PMCID: PMC8322354 DOI: 10.1038/s41598-021-94851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Male germ cells undergo complex developmental processes eventually producing spermatozoa through spermatogenesis, although the molecular mechanisms remain largely elusive. We have previously identified somatic cell nuclear transfer-reprogramming resistant genes (SRRGs) that are highly enriched for genes essential for spermatogenesis, although many of them remain uncharacterized in knockout (KO) mice. Here, we performed a CRISPR-based genetic screen using C57BL/6N mice for five uncharacterized SRRGs (Cox8c, Cox7b2, Tuba3a/3b, Faiml, and Gm773), together with meiosis essential gene Majin as a control. RT-qPCR analysis of mouse adult tissues revealed that the five selected SRRGs were exclusively expressed in testis. Analysis of single-cell RNA-seq datasets of adult testis revealed stage-specific expression (pre-, mid-, or post-meiotic expression) in testicular germ cells. Examination of testis morphology, histology, and sperm functions in CRISPR-injected KO adult males revealed that Cox7b2, Gm773, and Tuba3a/3b are required for the production of normal spermatozoa. Specifically, Cox7b2 KO mice produced poorly motile infertile spermatozoa, Gm773 KO mice produced motile spermatozoa with limited zona penetration abilities, and Tuba3a/3b KO mice completely lost germ cells at the early postnatal stages. Our genetic screen focusing on SRRGs efficiently identified critical genes for male germ cell development in mice, which also provides insights into human reproductive medicine.
Collapse
|
24
|
Tekayev M, Vuruskan AK. Clinical values and advances in round spermatid injection (ROSI). Reprod Biol 2021; 21:100530. [PMID: 34171715 DOI: 10.1016/j.repbio.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Azoospermia is defined as the complete absence of sperm cells in the ejaculate. Approximately 10-15 % of infertile men display azoospermia. Azoospermia can be subdivided into two types, obstructive azoospermia (OA) and non-obstructive azoospermia (NOA). NOA azoospermia might be the result due to primary testicular damage, secondary testicular damage, or incomplete testicular development. NOA azoospermia accounts for a considerable proportion of male infertility. A significant percentage of men with NOA azoospermia have foci of active spermatogenesis up to the stage of round spermatid. Round spermatid injection (ROSI) is a technique of assisted in-vitro fertilization (IVF) in assisted reproductive technology (ART). ROSI technique involves the injection of haploid germ cells derived from testicular biopsies into the recipient oocytes. The present study demonstrates that more participants and long-term follow-up studies are required to assess the reliability of the ROSI technique. In order to increase the success rate of the ROSI technique, round spermatids should be correctly evaluated and selected. Our study refers to the clinical values, challenges, and innovations in round spermatid injection (ROSI).
Collapse
Affiliation(s)
- Muhammetnur Tekayev
- Department of Histology and Embryology, Faculty of Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey
| | - Ayse Kose Vuruskan
- Department of Histology and Embryology, Faculty of Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey; IVF Unit, Additional Service Building of Suleymaniye Obstetrics and Pediatrics Hospital, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul 34116, Turkey.
| |
Collapse
|
25
|
Aydos K, Aydos OS. Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. J Clin Med 2021; 10:jcm10122687. [PMID: 34207121 PMCID: PMC8234729 DOI: 10.3390/jcm10122687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Retrieving spermatozoa from the testicles has been a great hope for patients with non-obstructive azoospermia (NOA), but relevant methods have not yet been developed to the level necessary to provide resolutions for all cases of NOA. Although performing testicular sperm extraction under microscopic magnification has increased sperm retrieval rates, in vitro selection and processing of quality sperm plays an essential role in the success of in vitro fertilization. Moreover, sperm cryopreservation is widely used in assisted reproductive technologies, whether for therapeutic purposes or for future fertility preservation. In recent years, there have been new developments using advanced technologies to freeze and preserve even very small numbers of sperm for which conventional techniques are inadequate. The present review provides an up-to-date summary of current strategies for maximizing sperm recovery from surgically obtained testicular samples and, as an extension, optimization of in vitro sperm processing techniques in the management of NOA.
Collapse
Affiliation(s)
- Kaan Aydos
- Department of Urology, Reproductive Health Research Center, School of Medicine, University of Ankara, 06230 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-748-8995
| | - Oya Sena Aydos
- Department of Medical Biology, School of Medicine, University of Ankara, 06230 Ankara, Turkey;
| |
Collapse
|
26
|
Barda S, Mano R, Lehavi O, Kleiman SE, Yossepowitch O, Azem F, Hauser R, Dekalo S. Questioning the utility of round spermatid injections in men with non-obstructive azoospermia. Andrology 2021; 9:1145-1150. [PMID: 33774922 DOI: 10.1111/andr.13008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Data on who among the infertile male population may benefit from round spermatid injections (ROSI) are lacking. OBJECTIVE To determine the probability of finding round spermatids suitable for ROSI in men with non-obstructive azoospermia (NOA) in whom no spermatozoa were retrieved at testicular sperm extraction. MATERIALS AND METHODS Four-hundred fifty-seven consecutive men with azoospermia underwent testicular sperm extraction. Clinical examination included age, secondary sexual characteristics, testicular size, reproductive hormone estimation, karyotyping, and Y chromosome microdeletion analyses. Histologic examination was performed, and histologic classification was determined by the most advanced spermatogenetic cell identified in the combined histologic and cytologic examination. RESULTS Of the 457 azoospermic men, 342 were diagnosed with NOA, and 148 (148/342, 43%) had mixed atrophy on histopathology and retrievable spermatozoa. No spermatozoa were found in 194/342 men with NOA (57%). Histopathology diagnosed 145/194 (75%) of them with Sertoli cell only, 45/194 (23%) with spermatocyte maturation arrest, and 4/194 (2%) with spermatid maturation arrest. CONCLUSIONS Histopathologically identified round spermatids without spermatozoa were rare in men with NOA. Only very few of them are likely to reap the benefits of ROSI, thus presenting the need to reconsider its actual clinical value.
Collapse
Affiliation(s)
- Shimi Barda
- Institute for the Study of Fertility, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Israel Academic College, Ramat Gan, Israel
| | - Roy Mano
- Department of Urology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Institute for the Study of Fertility, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sandra E Kleiman
- Institute for the Study of Fertility, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Yossepowitch
- Department of Urology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Foad Azem
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Hauser
- Institute for the Study of Fertility, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Snir Dekalo
- Institute for the Study of Fertility, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Urology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Strategies for cryopreservation of testicular cells and tissues in cancer and genetic diseases. Cell Tissue Res 2021; 385:1-19. [PMID: 33791878 DOI: 10.1007/s00441-021-03437-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Cryopreservation of testicular cells and tissues is useful for the preservation and restoration of fertility in pre-pubertal males expecting gonadotoxic treatment for cancer and genetic diseases causing impaired spermatogenesis. A number of freezing and vitrification protocols have thus been tried and variable results have been reported in terms of cell viability spermatogenesis progression and the production of fertile spermatozoa. A few studies have also reported the production of live offspring from cryopreserved testicular stem cells and tissues in rodents but their replication in large animals and human have been lacking. Advancement in in vitro spermatogenesis system has improved the possibility of producing fertile spermatozoa from the cryopreserved testis and has reduced the dependency on transplantation. This review provides an update on various cryopreservation strategies for fertility preservation in males expecting gonadotoxic treatment. It also discusses various methods of assessing and ameliorating cryoinjuries. Newer developments on in vitro spermatogenesis and testicular tissue engineering for in vitro sperm production from cryopreserved SSCs and testicular tissue are also discussed.
Collapse
|
28
|
Zhu H, Sun H, Yu D, Li T, Hai T, Liu C, Zhang Y, Chen Y, Dai X, Li Z, Li W, Liu R, Feng G, Zhou Q. Transcriptome and DNA Methylation Profiles of Mouse Fetus and Placenta Generated by Round Spermatid Injection. Front Cell Dev Biol 2021; 9:632183. [PMID: 33796527 PMCID: PMC8009284 DOI: 10.3389/fcell.2021.632183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Low birth efficiency and developmental abnormalities in embryos derived using round spermatid injection (ROSI) limit the clinical application of this method. Further, the underlying molecular mechanisms remain elusive and warrant further in-depth study. In this study, the embryonic day (E) 11.5 mouse fetuses and corresponding placentas derived upon using ROSI, intracytoplasmic sperm injection (ICSI), and natural in vivo fertilized (control) embryos were collected. Transcriptome and DNA methylation profiles were analyzed and compared using RNA-sequencing (RNA-seq) and whole-genome bisulfite sequencing, respectively. RNA-seq results revealed similar gene expression profiles in the ROSI, ICSI, and control fetuses and placentas. Compared with the other two groups, seven differentially expressed genes (DEGs) were identified in ROSI fetuses, and ten DEGs were identified in the corresponding placentas. However, no differences in CpG methylation were observed in fetuses and placentas from the three groups. Imprinting control region methylation and imprinted gene expression were the same between the three fetus and placenta groups. Although 49 repetitive DNA sequences (RS) were abnormally activated in ROSI fetuses, RS DNA methylation did not differ between the three groups. Interestingly, abnormal hypermethylation in promoter regions and low expression of Fggy and Rec8 were correlated with a crown-rump length less than 6 mm in one ROSI fetus. Our study demonstrates that the transcriptome and DNA methylation in ROSI-derived E11.5 mouse fetuses and placentas were comparable with those in the other two groups. However, some abnormally expressed genes in the ROSI fetus and placenta warrant further investigation to elucidate their effect on the development of ROSI-derived embryos.
Collapse
Affiliation(s)
- Haibo Zhu
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruizhi Liu
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Abstract
A complete hydatidiform mole (CHM) is a conceptus with only sperm-derived chromosomes. Here, we report on a CHM with genomic DNA identical to that of the paternal somatic cells. The CHM developed in a woman who had undergone intrauterine implantation of a blastocyst obtained through in vitro injection of a presumed round spermatid into one of her oocytes. The CHM was genetically identical to peripheral white cells of her husband and contained no maternally derived nuclear DNA. We hypothesize that a spermatogonium, rather than a round spermatid, was inadvertently selected for the procedure. The CHM developed into a gestational trophoblastic neoplasia, which resolved after chemotherapy. (Funded by the Japan Society for the Promotion of Science.).
Collapse
Affiliation(s)
- Hirokazu Usui
- From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makio Shozu
- From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
30
|
Comparison of two culture methods during in vitro spermatogenesis of vitrified-warmed testis tissue: Organ culture vs. hanging drop culture. Cryobiology 2021; 100:142-150. [PMID: 33639111 DOI: 10.1016/j.cryobiol.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022]
Abstract
Solid surface vitrification (SSV) is a cost effective and simple method for testis tissue preservation. Vitrified-warmed testis tissue was successfully cultured using various organ culture methods. In this study, we compared two culture methods viz. hanging drop (HD) and organ culture (OC) methods for in vitro spermatogenesis of goat testis tissue vitrified-warmed by SSV. It was observed that OC method was superior (p < 0.05) to HD method in terms of post-warming metabolic activity of testicular tissue, as measured by MTT assay on Day 7 and Day 14 of culture, respectively. The size of the tissue also played an important role in post-warming metabolic activity and viability (4 mm3: 72.7 ± 1.2% vs. 9 mm3: 62.7 ± 1.3% vs. 16 mm3: 40.5 ± 1.7%) of vitrified tissues with smaller tissue resulting in better result. The vitrification-induced ROS activity significantly decreased during their in vitro culture. Histology and scanning electron microscopy (SEM) showed the rupture of basal membrane, surface morphology and, cell loss due to vitrification. However, histology and immunohistochemistry showed the progression of in vitro spermatogenesis and formation of elongated spermatozoa in both fresh and vitrified-warmed testis tissue cultured by OC method. Taken together, our results suggest that OC method is superior to HD method for culturing goat testis tissue vitrified-warmed by SSV.
Collapse
|
31
|
Abdelaal O, Deebel NA, Zarandi NP, Kogan S, Marini FC, Pranikoff T, Stogner-Underwood K, McLean TW, Atala A, Sadri-Ardekani H. Fertility preservation for pediatric male cancer patients: illustrating contemporary and future options; a case report. Transl Androl Urol 2021; 10:520-526. [PMID: 33532340 PMCID: PMC7844490 DOI: 10.21037/tau-20-908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The main aim of current pediatric male fertility preservation programs is storing spermatogonia stem cell (SSC) prior to starting cancer treatment. From July 1st, 2014 to May 1st, 2020; 170 patients have been recruited in Wake Forest Testicular Tissue Banking Program. The existence of multiple testis biopsies in different time points and detailed histological analyses of a unique cancer patient, provided an educational opportunity to investigate testis condition in different phases of cancer management. A pediatric male cancer patient with B-cell acute lymphoblastic leukemia (ALL) had multiple testicular leukemia recurrences and went through several testicular biopsies, to identify leukemic infiltration as well as considering fertility preservation. Infiltration of leukemia cells into both testes was identified. Neither elongated spermatid nor sperm were detected, but germ cells including SSC, spermatocyte and round spermatid could be identified in the stored tissue even after initial cancer treatment. Different germ cells were identified by hematoxylin and eosin (H&E) staining and specific immunohistochemical (IHC) markers including PGP9.5/UCHL1 or MAGE-A4 (spermatogonia), SYCP3 (spermatocyte) and PRM1 (round spermatid). This emphasizes the importance of offering testicular biopsy to pediatric cancer patients at risk of infertility regardless to the stage of cancer treatment, although earlier biopsy is preferred. Promising research on in vitro spermatogenesis and auto-transplantation support the practice of SSC preservation. In addition, finding and storing round spermatids isolated from testicular biopsy provides a currently available option of round spermatid injection (ROSI). Given the complexity of managing cancer while considering fertility preservation, a multidisciplinary collaboration is important to achieve optimal overall outcomes.
Collapse
Affiliation(s)
- Omar Abdelaal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nicholas A Deebel
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Stanley Kogan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Frank C Marini
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thomas Pranikoff
- Section of Pediatric Surgery, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Thomas W McLean
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Section of Pediatric Hematology/Oncology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Hanson BM, Kohn TP, Pastuszak AW, Scott RT, Cheng PJ, Hotaling JM. Round spermatid injection into human oocytes: a systematic review and meta-analysis. Asian J Androl 2021; 23:363-369. [PMID: 33565426 PMCID: PMC8269823 DOI: 10.4103/aja.aja_85_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Many azoospermic men do not possess mature spermatozoa at the time of surgical sperm extraction. This study is a systematic review and meta-analysis evaluating outcomes following round spermatid injection (ROSI), a technique which utilizes immature precursors of spermatozoa for fertilization. An electronic search was performed to identify relevant articles published through October 2018. Human cohort studies in English involving male patients who had round spermatids identified and used for fertilization with human oocytes were included. Fertilization rate, pregnancy rate, and resultant delivery rate were assessed following ROSI. Meta-analysis outcomes were analyzed using a random-effects model. Data were extracted from 22 studies involving 1099 couples and 4218 embryo transfers. The fertilization rate after ROSI was 38.7% (95% confidence interval [CI]: 31.5%-46.3%), while the pregnancy rate was 3.7% (95% CI: 3.2%-4.4%). The resultant delivery rate was low, with 4.3% of embryo transfers resulting in a delivery (95% CI: 2.3%-7.7%). The pregnancy rate per couple was 13.4% (95% CI: 6.8%-19.1%) and the resultant delivery rate per couple was 8.1% (95% CI: 6.1%-14.4%). ROSI has resulted in clinical pregnancies and live births, but success rates are considerably lower than those achieved with mature spermatozoa. While this technique may be a feasible alternative for men with azoospermia who decline other options, couples should be aware that the odds of a successful delivery are greatly diminished and the prognosis is relatively poor.
Collapse
Affiliation(s)
- Brent M Hanson
- Department of Reproductive Endocrinology and Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07920, USA
| | - Taylor P Kohn
- Department of Urology, The Brady Urological Institute at Johns Hopkins University, Baltimore, MD 21287, USA
| | - Alexander W Pastuszak
- Department of Surgery, University of Utah Center for Reconstructive Urology and Men's Health, Salt Lake City, UT 84108, USA
| | - Richard T Scott
- Department of Reproductive Endocrinology and Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07920, USA
| | - Philip J Cheng
- Department of Reproductive Endocrinology and Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07920, USA.,Department of Surgery, University of Utah Center for Reconstructive Urology and Men's Health, Salt Lake City, UT 84108, USA
| | - James M Hotaling
- Department of Reproductive Endocrinology and Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07920, USA.,Department of Surgery, University of Utah Center for Reconstructive Urology and Men's Health, Salt Lake City, UT 84108, USA
| |
Collapse
|
33
|
Deebel NA, Bradshaw AW, Sadri-Ardekani H. Infertility considerations in klinefelter syndrome: From origin to management. Best Pract Res Clin Endocrinol Metab 2020; 34:101480. [PMID: 33358481 DOI: 10.1016/j.beem.2020.101480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Klinefelter syndrome (KS) is defined as the presence of one or more extra "X" chromosome in a male patient. It affects approximately 1 in 600 newborn males and the most common chromosomal abnormality, leading to male hypogonadism and infertility. There is a lack of data supporting best practices for KS patients' care. In this paper we review controversial issues in KS research ranging from mechanisms of variation in KS phenotype to abnormalities resulting in reduced sperm production to successful sperm retrieval disparities after testicular sperm extraction (TESE). Translation to live birth and offspring health is also examined. Finally, medical therapies used to optimize the hormonal status and chances of fertility in KS patients are reviewed. We will also discuss the experimental spermatogonial stem cell (SSC) treatments, which are considered the future for TESE negative patients.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aaron W Bradshaw
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
34
|
Özgök Kangal K, Özgök Y. Assisted reproductive treatments with hyperbaric oxygen therapy in male infertility. Turk J Urol 2020; 47:98-105. [PMID: 33201797 DOI: 10.5152/tud.2020.20328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to analyze the results of hyperbaric oxygen therapy (HBOT) in addition to assisted reproductive technologies in male infertility cases. MATERIAL AND METHODS Medical records of male infertility patients who had HBOT sessions for any reason between January 1, 2015-December 31, 2019, were analyzed retrospectively. RESULTS A total of 15 male patients were included. Patients were classified as group 1 [DNA fragmentation (n=5)], group 2 [globozoospermia (n=5)], and group 3 [azoospermia (n=5)]. Round spermatid injection (ROSI), intrauterine insemination (IUI), or intracytoplasmic sperm injection (ICSI) procedures were performed in 10 of the 15 patients. A total of 31 embryos were obtained out of which 19 (61%) were transferred. While a total of 15 embryos were obtained in the globozoospermic group, which was the highest number, 10 were obtained from the azoospermic patients, and 6 from the DNA fragmentation patients (p=0.515). A total of 3 (30%) healthy pregnancies were obtained, overall. The mean sperm count of the patients (n=9) before HBOT was 8.4±11.1 mil/mL, while it was found to be 15.7±15.0 mil/mL after HBOT (azoospermic patients were not included). The TESE results were analyzed for azoospermic patients; positive changes were observed in 4 patients (80%). On the other hand, there was an improvement in 50% of group 1 according to sperm DNA fragmentation after HBOT (p=0.500). CONCLUSION While a total of 15 embryos were obtained in the globozoospermic group, which was the highest number, 10 were obtained from the azoospermic patients.. Further studies should be conducted on HBOT and male infertility.
Collapse
Affiliation(s)
- Kübra Özgök Kangal
- Department of Undersea and Hyperbaric Medicine, University of Health Sciences, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Yaşar Özgök
- Department of Urology, Yüksek İhtisas University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
35
|
Çayan S, Orhan İ, Altay B, Aşcı R, Akbay E, Ayas B, Yaman Ö. Fertility outcomes and predictors for successful sperm retrieval and pregnancy in 327 azoospermic men with a history of cryptorchidism who underwent microdissection testicular sperm extraction. Andrology 2020; 9:253-259. [PMID: 32960506 DOI: 10.1111/andr.12910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 09/13/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although few studies have reported fertility outcomes, no study has reported risk factors that might predict sperm retrieval and pregnancy in azoospermic men with a history of cryptorchidism in a large series. OBJECTIVES To investigate fertility outcomes and predictors for successful sperm retrieval and pregnancy in azoospermic men with a history of cryptorchidism who underwent microdissection testicular sperm extraction (mTESE). MATERIALS AND METHODS This retrospective observational study included 327 azoospermic men with a history of cryptorchidism who underwent mTESE. Fertility outcomes including sperm retrieval, fertilization rate, number of transferred embryos, pregnancy, miscarriage, and live birth rates were recorded. RESULTS Sperm retrieval was observed in 172 (52.6%) of the patients. The mean fertilization, pregnancy, and live birth rates were 55.2%±20.5, 53.5%, and 44.8%, respectively. The sperm retrieval rate was significantly higher at the orchidopexy age of ≤ 9.5 years (70.8%) than the orchidopexy age of > 9.5 years (42.1%) (P = .000). Patients with total testicular volume of ≥ 13.75 mL had significantly higher sperm retrieval rate (65.2%) than the patients with total testicular volume of < 13.75 mL (45.5%) (P = .001). Patients with total testosterone level of ≥ 300.5 ng/dL had significantly higher sperm retrieval rate (65.6%) than the patients with total testosterone level of < 300.5 ng/dL (40.3%) (P = .000). Patients with follicle-stimulating hormone (FSH) level of ≤ 17.25 mIU/ml had significantly higher sperm retrieval rate (72.3%) than the patients with FSH level of > 17.25 mIU/mL (44.4%) (P = .000). Younger male and female ages, and higher fertilization rates were the parameters that might predict pregnancy. CONCLUSIONS Infertile azoospermic men with a history of cryptorchidism have high sperm retrieval rate with mTESE. Patients who had orchidopexy at the age of ≤ 9.5 years, and having total testicular volumes of ≥ 13.75 mL with total testosterone level of > 300.5 ng/dL and FSH level of ≤ 17.25 mIU/mL have higher success rate for sperm retrieval.
Collapse
Affiliation(s)
- Selahittin Çayan
- Department of Urology, University of Mersin School of Medicine, Mersin, Turkey
| | - İrfan Orhan
- Fırat University School of Medicine, Elazığ, Turkey
| | - Barış Altay
- Ege University School of Medicine, İzmir, Turkey
| | - Ramazan Aşcı
- Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Erdem Akbay
- Department of Urology, University of Mersin School of Medicine, Mersin, Turkey
| | - Bülent Ayas
- Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Önder Yaman
- Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
36
|
Nätt D, Öst A. Male reproductive health and intergenerational metabolic responses from a small RNA perspective. J Intern Med 2020; 288:305-320. [PMID: 32415866 DOI: 10.1111/joim.13096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The world has recently experienced a decline in male reproductive (e.g. sperm counts and motility) and metabolic (e.g. obesity and diabetes) health. Accumulated evidence from animal models also shows that the metabolic health of the father may influence the metabolic health in his offspring. Vectors for such paternal intergenerational metabolic responses (IGMRs) involve small noncoding RNAs (sncRNAs) that often increase in spermatozoa during the last days of maturation in the epididymis. We and others have shown that the metabolic state - depending on factors such as diet, obesity and physical exercise - may affect sperm quality and sperm sncRNA. Together, this suggests that there are overlapping aetiologies between the male metabolic syndrome, male factor infertility and intergenerational responses. In this review, we present a theoretical framework for an overlap of these aetiologies by exploring the advances in our understanding of the roles of sncRNA in spermatogenesis and offspring development. A special focus will lie on novel findings about tRNA-derived small RNA (tsRNA), rRNA-derived small RNA (rsRNA) and small mitochondrial RNA (mitoRNA), and their emerging roles in intergenerational metabolic and reproductive health.
Collapse
Affiliation(s)
- D Nätt
- From the, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| | - A Öst
- From the, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| |
Collapse
|
37
|
Deebel NA, Galdon G, Zarandi NP, Stogner-Underwood K, Howards S, Lovato J, Kogan S, Atala A, Lue Y, Sadri-Ardekani H. Age-related presence of spermatogonia in patients with Klinefelter syndrome: a systematic review and meta-analysis. Hum Reprod Update 2020; 26:58-72. [PMID: 31822886 DOI: 10.1093/humupd/dmz038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Klinefelter syndrome (KS) has been defined by sex chromosome aneuploidies (classically 47, XXY) in the male patient. The peripubertal timeframe in KS patients has been associated with the initiation of progressive testicular fibrosis, loss of spermatogonial stem cells (SSC), hypogonadism and impaired fertility. Less than half of KS patients are positive for spermatozoa in the ejaculate or testis via semen analysis or testicular sperm extraction, respectively. However, the chance of finding spermatogonia including a sub-population of SSCs in KS testes has not been well defined. Given the recent demonstration of successful cell culture for mouse and human SSCs, it could be feasible to isolate and propagate SSCs and transplant the cells back to the patient or to differentiate them in vitro to haploid cells. OBJECTIVE AND RATIONALE The main objective of this study was to meta-analyse the currently available data from KS patients to identify the prevalence of KS patients with spermatogonia on testicular biopsy across four age groups (year): fetal/infantile (age ≤ 1), prepubertal (age 1 ≤ x ≤ 10), peripubertal/adolescent (age 10 < x < 18) and adult (age ≥ 18) ages. Additionally, the association of endocrine parameters with presence or absence of spermatogonia was tested to obtain a more powered analysis of whether FSH, LH, testosterone and inhibin B can serve as predictive markers for successful spermatogonia retrieval. SEARCH METHODS A thorough Medline/PubMed search was conducted using the following search terms: 'Klinefelter, germ cells, spermatogenesis and spermatogonia', yielding results from 1 October 1965 to 3 February 2019. Relevant articles were added from the bibliographies of selected articles. Exclusion criteria included non-English language, abstracts only, non-human data and review papers. OUTCOMES A total of 751 papers were identified with independent review returning 36 papers with relevant information for meta-analysis on 386 patients. For the most part, articles were case reports, case-controlled series and cohort studies (level IV-VI evidence). Spermatogonial cells were present in all of the fetal/infantile and 83% of the prepubertal patients' testes, and in 42.7% and 48.5% of the peripubertal and adult groups, respectively were positive for spermatogonia. Additionally, 26 of the 56 (46.4%) peripubertal/adolescent and 37 of the 152 (24.3%) adult patients negative for spermatozoa were positive for spermatogonia (P < 0.05). In peripubertal/adolescent patients, the mean ± SEM level for FSH was 12.88 ± 3.13 IU/L for spermatogonia positive patients and 30.42 ± 4.05 IU/L for spermatogonia negative patients (P = 0.001); the mean ± SEM level LH levels were 4.36 ± 1.31 and 11.43 ± 1.68 IU/L for spermatogonia positive and negative, respectively (P < 0.01); the mean ± SEM level for testosterone levels were 5.04 ± 1.37 and 9.05 ± 0.94 nmol/L (equal to 145 ± 40 and 261 ± 27 and ng/dl) for the spermatogonia positive and negative groups, respectively (P < 0.05), while the difference in means for inhibin B was not statistically significant (P > 0.05). A similar analysis in the adult group showed the FSH levels in spermatogonia positive and negative patients to be 25.77 ± 2.78 and 36.12 ± 2.90 IU/L, respectively (mean ± SEM level, P < 0.05). All other hormone measurements were not statistically significantly different between groups. WIDER IMPLICATIONS While azoospermia is a common finding in the KS patient population, many patients are positive for spermatogonia. Recent advances in SSC in vitro propagation, transplantation and differentiation open new avenues for these patients for fertility preservation. This would offer a new subset of KS patients a chance of biological paternity. Data surrounding the hormonal profiles of KS patients and their relation to fertility should be interpreted with caution as a paucity of adequately powered data exists. Future work is needed to clarify the utility of FSH, LH, testosterone and inhibin B as biomarkers for successful retrieval of spermatogonia.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Stuart Howards
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James Lovato
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Stanley Kogan
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yanhe Lue
- Division of Endocrinology, Department of Medicine, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
38
|
Yu K, Zhang Y, Zhang BL, Wu HY, Jiang WQ, Wang ST, Han DP, Liu YX, Lian ZX, Deng SL. In-vitro differentiation of early pig spermatogenic cells to haploid germ cells. Mol Hum Reprod 2020; 25:507-518. [PMID: 31328782 DOI: 10.1093/molehr/gaz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) self-renew and contribute genetic information to the next generation. Pig is wildly used as a model animal for understanding reproduction mechanisms of human being. Inducing directional differentiation of porcine SSCs may be an important strategy in exploring the mechanisms of spermatogenesis and developing better treatment methods for male infertility. Here, we established an in-vitro culture model for porcine small seminiferous tubule segments, to induce SSCs to differentiate into single-tail haploid spermatozoa. The culture model subsequently enabled spermatozoa to express the sperm-specific protein acrosin and oocytes to develop to blastocyst stage after round spermatid injection. The addition of retinoic acid (RA) to the differentiation media promoted the efficiency of haploid differentiation. RT-PCR analysis indicated that RA stimulated the expression of Stra8 but reduced the expression of NANOS2 in spermatogonia. Genes involved in post-meiotic development, transition protein 1 (Tnp1) and protamine 1 (Prm1) were upregulated in the presence of RA. The addition of an RA receptor (RAR) inhibitor, BMS439, showed that RA enhanced the expression of cAMP responsive-element binding protein through RAR and promoted the formation of round spermatids. We established an efficient culture system for in-vitro differentiation of pig SSCs. Our study represents a model for human testis disease and toxicology screening. Molecular regulators of SSC differentiation revealed in this study might provide a therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,Department of Medicine, Panzhihua University, Sichuan, Sichuan, People's Republic of China
| | - Bao-Lu Zhang
- Marine Consulting Center of MNR, Oceanic Counseling Center, Ministry of Natural Resources of the People's Republic of China, Feng-tai District, Beijing, People's Republic of China
| | - Han-Yu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Wu-Qi Jiang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Su-Tian Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Xiangfang District, People's Republic of China
| | - De-Ping Han
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
39
|
Germ cell depletion in recipient testis has adverse effects on spermatogenesis in orthotopically transplanted testis pieces via retinoic acid insufficiency. Sci Rep 2020; 10:10796. [PMID: 32612133 PMCID: PMC7330030 DOI: 10.1038/s41598-020-67595-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Germ cell depletion in recipient testes is indispensable for successful transplantation of spermatogonial stem cells. However, we found that such treatment had an adverse effect on spermatogenesis of orthotopically transplanted donor testis tissues. In the donor tissue, the frequency of stimulated by retinoic acid (RA) 8 (STRA8) expression was reduced in germ cells, suggesting that RA signalling indispensable for spermatogenesis was attenuated in germ cell-depleted recipient testes. In this context, germ cell depletion diminished expression of testicular Aldh1a2, which is responsible for testicular RA synthesis, while Cyp26b1, which is responsible for testicular RA metabolism, was still expressed even after germ cell depletion, suggesting an alteration of the RA synthesis/metabolism ratio. These observations suggested that RA insufficiency was one of the causes of the defective donor spermatogenesis. Indeed, repetitive RA administrations significantly improved donor spermatogenesis to produce fertile offspring without any side effects. These findings may contribute to improving fertility preservation techniques for males, especially to prevent iatrogenic infertility induced by chemotherapy in prepubertal cancer patients.
Collapse
|
40
|
Chen W, Bai MZ, Yang Y, Sun D, Wu S, Sun J, Wu Y, Feng Y, Wei Y, Chen Z, Zhang Z. ART strategies in Klinefelter syndrome. J Assist Reprod Genet 2020; 37:2053-2079. [PMID: 32562095 DOI: 10.1007/s10815-020-01818-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/10/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Patients with Klinefelter syndrome (KS) who receive assisted reproductive technology (ART) treatment often experience poor pregnancy rates due to decreased fertilization, cleavage, and implantation rates and even an increased miscarriage rate. Mounting evidence from recent studies has shown that various technological advances and approaches could facilitate the success of ART treatment for KS patients. In this review, we summarize the methods for guiding KS patients during ART and for developing optimal strategies for preserving fertility, improving pregnancy rate and live birth rate, and avoiding the birth of KS infants. METHODS We searched PubMed and Google Scholar publications related to KS patients on topics of controlled ovarian stimulation protocols, sperm extraction, fertility preservation, gamete artificial activation, round spermatid injection (ROSI), and non-invasive prenatal screening (PGD) methods. RESULTS This review outlines the different ovulation-inducing treatments for female partners according to the individual sperm status in the KS patient. We further summarize the methods of retrieving sperm, storing, and freezing rare sperm. We reviewed different methods of gamete artificial activation and discussed the feasibility of ROSI for sterile KS patients who absolutely lack sperm. The activation of eggs in the process of intracytoplasmic sperm injection and non-invasive PGD are urgently needed to prevent the birth of KS infants. CONCLUSION The integrated strategies will pave the way for the establishment of ART treatment approaches and improve the clinical outcome for KS patients.
Collapse
Affiliation(s)
- Wei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ming Zhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yixia Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Di Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Sufang Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jian Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yu Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Youheng Wei
- Institute of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zijiang Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
41
|
Abstract
From a fertility perspective, men with azoospermia represent a challenging patient population. When no mature spermatozoa are obtained during a testicular sperm extraction, patients are often left with limited options, such as adoption or the use of donor sperm. However, it has been reported that round spermatids can be successfully injected into human oocytes and used as an alternative to mature spermatozoa. This technique is known as round spermatid injection (ROSI). Despite the limitations of ROSI and diminished clinical success rates, the use of round spermatids for fertilization may have potential as a treatment modality for men with azoospermia.
Collapse
|
42
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
43
|
Bashawat M, Braun BC, Müller K. Cell survival after cryopreservation of dissociated testicular cells from feline species. Cryobiology 2020; 97:191-197. [PMID: 32194031 DOI: 10.1016/j.cryobiol.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
Testicular cell suspension (TCS) can be cryopreserved for male germ-line preservation and fertility restoration. We aimed to validate a cryopreservation protocol for TCS of domestic cat to be applied in endangered felids species. Testis tissue from adult domestic cats was enzymatically dissociated and spermatogenic cells were enriched. The resulting TCS was diluted in 7.5% or 15% Me2SO based medium. Slow and fast freezing methods were tested. We examined the effects of freezing approaches using two combinations of fluorescent dyes: Calcein-AM with Propidium iodide (C/PI) and SYBR14 with Propidium iodide (S/PI). Ploidy analysis of domestic cat fresh TCS revealed that the majority of testicular cells were haploid cells. Based on microscopic observation, two size populations (12.3 ± 2.3 μm and 20.5 ± 4 μm in diameter) were identified and presumed to be mainly spermatids and spermatocytes, respectively. Both evaluation methods proved higher viability of aggregated cells before and after cryopreservation compared with single cells, and superiority of low concentration of Me2SO (7.5%) in association with slow freezing to preserve viability of testicular cells. However, S/PI resulted in a more precise evaluation compared with the C/PI method. The combination of 7.5% Me2SO-based medium with slow freezing yielded post thaw viability of S/PI labeled aggregated (49.8 ± 20%) and single cells (31.5 ± 8.1%). Comparable results were achieved using testes of a Cheetah and an Asiatic golden cat. In conclusion, TCS from domestic cat can be successfully cryopreserved and has the potential to support fertility restoration of endangered felids species.
Collapse
Affiliation(s)
- M Bashawat
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany.
| | - B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| |
Collapse
|
44
|
Meiotic arrest occurs most frequently at metaphase and is often incomplete in azoospermic men. Fertil Steril 2019; 112:1059-1070.e3. [PMID: 31767154 DOI: 10.1016/j.fertnstert.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To establish which meiotic checkpoints are activated in males with severe spermatogenic impairment to improve phenotypic characterization of meiotic defects. DESIGN Retrospective observational study. SETTING University medical center research laboratory and andrology clinic. PATIENT(S) Forty-eight patients with confirmed spermatogenic impairment (Johnsen scores 3-6) and 15 controls (Johnsen score 10). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Quantitative assessment of immunofluorescent analyses of specific markers to determine meiotic entry, chromosome pairing, progression of DNA double-strand break repair, crossover formation, formation of meiotic metaphases, metaphase arrest, and spermatid formation, resulting in a novel classification of human meiotic arrest types. RESULT(S) Complete metaphase arrest was observed most frequently (27%), and the patients with the highest frequency of apoptotic metaphases also displayed a reduction in crossover number. Incomplete metaphase arrest was observed in 17% of the patients. Only four patients (8%) displayed a failure to complete meiotic chromosome pairing leading to pachytene arrest. Two new types of meiotic arrest were defined: premetaphase and postmetaphase arrest (15% and 13%, respectively). CONCLUSION(S) Meiotic arrest in men occurs most frequently at meiotic metaphase. This arrest can be incomplete, resulting in low numbers of spermatids, and often occurs in association with reduced crossover frequency. The phenotyping approach described here provides mechanistic insights to help identify candidate infertility genes and to assess genotype-phenotype correlations in individual cases.
Collapse
|
45
|
Ward MA, Ward WS. Contributions of Ryuzo Yanagimachi to the field of reproductive biology. Biol Reprod 2019; 100:1-7. [PMID: 30657895 PMCID: PMC11484509 DOI: 10.1093/biolre/ioy191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monika A Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - W Steven Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|