1
|
Lopes ÉPF, Tetaping GM, Novaes MAS, dos Santos RR, Rodrigues APR. Systematic review and meta-analysis on patented and non-patented vitrification processes to ovarian tissue reported between 2000 and 2021. Anim Reprod 2023; 20:e20230065. [PMID: 38026005 PMCID: PMC10681131 DOI: 10.1590/1984-3143-ar2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Due to the great interest in ovarian cryopreservation and, consequently conservation and restoration of female fertility in the last decades, different vitrification procedures (vitrification devices or solutions) have been developed, patented, and used both for academic research purposes and for clinical use. Therefore, the present study aimed to provide a systematic review and meta-analysis of data obtained from the application of different patented and non-patented vitrification devices and solutions in different countries. For this purpose, relevant observational studies published between the years 2000 to 2021 were selected to verify the efficiency of ovarian vitrification processes on parameters such as morphology, viability, and apoptosis in preantral ovarian follicles after transplantation or in vitro culture. Our research revealed that, although several countries were considered in the study, the United States and Japan were the countries that registered the most processes, and 22 and 16 vitrification devices and solutions out of a total of 51, respectively were patented. Sixty-two non-patented processes were also considered in the study in all countries. We also observed that transplantation and in vitro ovarian culture were the techniques predominantly used to evaluate the efficiency of the devices and vitrification solutions, respectively. In conclusion, this review showed that patented or non-patented protocols available in the literature are able to successfully preserve preantral follicles present in ovarian tissue. Despite the satisfactory results reported so far, adjustments in ovarian vitrification protocols in order to minimize cryoinjuries to the follicles remain one of the goals of cryopreservation and preservation of the female reproductive function. We found that vitrification alters the morphology and viability, and offers risks leading in some cases to follicular apoptosis. However, adjustments to current protocols to develop an optimal procedure can minimize damage by not compromising follicular development after vitrification/warming.
Collapse
Affiliation(s)
- Éverton Pimentel Ferreira Lopes
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-Antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Gildas Mbemya Tetaping
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-Antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Marco Aurélio Schiavo Novaes
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-Antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | | | - Ana Paula Ribeiro Rodrigues
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-Antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Canosa S, Revelli A, Gennarelli G, Cormio G, Loizzi V, Arezzo F, Petracca EA, Carosso AR, Cimadomo D, Rienzi L, Vaiarelli A, Ubaldi FM, Silvestris E. Innovative Strategies for Fertility Preservation in Female Cancer Survivors: New Hope from Artificial Ovary Construction and Stem Cell-Derived Neo-Folliculogenesis. Healthcare (Basel) 2023; 11:2748. [PMID: 37893822 PMCID: PMC10606281 DOI: 10.3390/healthcare11202748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances in anticancer treatment have significantly improved the survival rate of young females; unfortunately, in about one third of cancer survivors the risk of ovarian insufficiency and infertility is still quite relevant. As the possibility of becoming a mother after recovery from a juvenile cancer is an important part of the quality of life, several procedures to preserve fertility have been developed: ovarian surgical transposition, induction of ovarian quiescence by gonadotropin-releasing hormone agonists (GnRH-a) treatment, and oocyte and/or ovarian cortical tissue cryopreservation. Ovarian tissue cryostorage and allografting is a valuable technique that applies even to prepubertal girls; however, some patients cannot benefit from it due to the high risk of reintroducing cancer cells during allograft in cases of ovary-metastasizing neoplasias, such as leukemias or NH lymphomas. Innovative techniques are now under investigation, as in the construction of an artificial ovary made of isolated follicles inserted into an artificial matrix scaffold, and the use of stem cells, including ovarian stem cells (OSCs), to obtain neo-folliculogenesis and the development of fertilizable oocytes from the exhausted ovarian tissue. This review synthesizes and discusses these innovative techniques, which potentially represent interesting strategies in oncofertility programs and a new hope for young female cancer survivors.
Collapse
Affiliation(s)
- Stefano Canosa
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
| | - Alberto Revelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy
| | - Gianluca Gennarelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Francesca Arezzo
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of “Aldo Moro”, 70124 Bari, Italy
| | - Easter Anna Petracca
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| | - Andrea Roberto Carosso
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Danilo Cimadomo
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Laura Rienzi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alberto Vaiarelli
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Filippo Maria Ubaldi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| |
Collapse
|
3
|
Antonouli S, Di Nisio V, Messini C, Daponte A, Rajender S, Anifandis G. A comprehensive review and update on human fertility cryopreservation methods and tools. Front Vet Sci 2023; 10:1151254. [PMID: 37143497 PMCID: PMC10151698 DOI: 10.3389/fvets.2023.1151254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The broad conceptualization of fertility preservation and restoration has become already a major concern in the modern western world since a large number of individuals often face it in the everyday life. Driven by different health conditions and/or social reasons, a variety of patients currently rely on routinely and non-routinely applied assisted reproductive technologies, and mostly on the possibility to cryopreserve gametes and/or gonadal tissues for expanding their reproductive lifespan. This review embraces the data present in human-focused literature regarding the up-to-date methodologies and tools contemporarily applied in IVF laboratories' clinical setting of the oocyte, sperm, and embryo cryopreservation and explores the latest news and issues related to the optimization of methods used in ovarian and testicular tissue cryopreservation.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Valentina Di Nisio
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|
4
|
Wang J, Zhang Y, Wu C, Li P, Zhang Z, Xu X, Zhou P, Cao Y. Effects of AavLEA1 Protein on Mouse Ovarian Tissue Cryopreservation by Vitrification. Biopreserv Biobank 2021; 20:168-175. [PMID: 34788107 DOI: 10.1089/bio.2021.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Conventional ovarian tissue cryopreservation often destroys the structural, functional, and DNA integrity of the ovarian tissue. How to effectively retain the ultrastructure and subsequent function of ovarian tissue during cryopreservation has long been an issue of concern. Late embryogenesis abundant (LEA) proteins are a class of highly hydrophilic proteins and have been reported to protect various cells from water stress. However, whether LEA proteins exert protective effects on ovarian tissue cryopreservation remains unknown. To investigate the benefit of LEA proteins in ovarian tissue cryopreservation, we purified the recombinant AavLEA1 protein, a member of Group 3 LEA proteins, then cryopreserved the mouse ovaries with this protein by vitrification, and obtained the ovarian follicle structure, cellular proliferation, apoptosis, and GAPDH gene expression of postcryopreservation ovaries. We found that recombinant AavLEA1 protein protected the ovarian follicles from cryoinjury, improved the proliferative ability of follicles, decreased the apoptosis, and promoted the GAPDH gene expression. These results indicated that the LEA protein enhanced the antiapoptosis ability of ovarian cells and retained DNA/RNA integrity against cryoinjury during ovarian tissue vitrification. LEA proteins exert beneficial effects on ovarian tissue cryopreservation, and maybe provide a novel cryoprotective agent for ovarian tissue cryopreservation.
Collapse
Affiliation(s)
- Jianye Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yameng Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Caiyun Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Peng Li
- Medical Affair Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| |
Collapse
|
5
|
Embryology outcomes after oocyte vitrification with super-cooled slush nitrogen are similar to outcomes with conventional liquid nitrogen: a randomized controlled trial. Fertil Steril 2021; 117:106-114. [PMID: 34654569 DOI: 10.1016/j.fertnstert.2021.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether the use of slush nitrogen (SN), a super-cooled form of nitrogen with a temperature from -207 to -210 °C, can improve oocyte survival after vitrification and warming compared with conventional liquid nitrogen (LN). DESIGN Randomized controlled trial. SETTING Academic-affiliated private practice. PATIENT(S) A total of 556 metaphase II oocytes from 32 oocyte donor cycles were included. INTERVENTION(S) Donor oocytes were block randomized to undergo vitrification with either SN or LN. Vitrification was followed by warming, fertilization with donor sperm, embryo culture to the blastocyst stage, and preimplantation genetic testing for aneuploidy via trophectoderm biopsy with targeted next-generation sequencing. MAIN OUTCOME MEASURE(S) The primary outcome was oocyte survival after vitrification and warming. Secondary outcomes included rates of fertilization, usable blastocyst formation, and whole chromosome aneuploidy. RESULT(S) Half of the metaphase II oocytes (n = 278) were randomized to undergo vitrification with SN, whereas the other half (n = 278) were randomized to undergo vitrification with LN. There were no statistically significant differences noted in oocyte survival rate (85.3% vs. 86.3%), fertilization rate (84.0% vs. 80.0%), rate of usable blastocyst formation (54.3% vs. 55.7%), or rate of whole chromosome aneuploidy (9.4% vs. 11.7%) between the SN and LN arms, respectively. CONCLUSION(S) The implementation of an SN oocyte vitrification protocol resulted in similar embryology outcomes compared with LN. The use of SN did not lead to any demonstrable improvement in oocyte survival after vitrification and warming. CLINICAL TRIAL REGISTRATION NUMBER NCT04342364.
Collapse
|
6
|
Park JK, Lee JH, Park EA, Lim HJ, Lyu SW, Lee WS, Kim J, Song H. Development of Optimized Vitrification Procedures Using Closed Carrier System to Improve the Survival and Developmental Competence of Vitrified Mouse Oocytes. Cells 2021; 10:cells10071670. [PMID: 34359838 PMCID: PMC8304188 DOI: 10.3390/cells10071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The open carrier system (OC) is used for vitrification due to its high efficiency in preserving female fertility, but concerns remain that it bears possible risks of cross-contamination. Closed carrier systems (CC) could be an alternative to the OC to increase safety. However, the viability and developmental competence of vitrified/warmed (VW) oocytes using the CC were significantly lower than with OC. We aimed to improve the efficiency of the CC. Metaphase II oocytes were collected from mice after superovulation and subjected to in vitro fertilization after vitrification/warming. Increasing the cooling/warming rate and exposure time to cryoprotectants as key parameters for the CC effectively improved the survival rate and developmental competence of VW oocytes. When all the conditions that improved the outcomes were applied to the conventional CC, hereafter named the modified vitrification/warming procedure using CC (mVW-CC), the viability and developmental competence of VW oocytes were significantly improved as compared to those of VW oocytes in the CC. Furthermore, mVW-CC increased the spindle normality of VW oocytes, as well as the cell number of blastocysts developed from VW oocytes. Collectively, our mVW-CC optimized for mouse oocytes can be utilized for humans without concerns regarding possible cross-contamination during vitrification in the future.
Collapse
Affiliation(s)
- Jae Kyun Park
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.K.P.); (J.H.L.)
- CHA Fertility Center Gangnam, CHA University, Seoul 06125, Korea; (S.W.L.); (W.S.L.)
| | - Ju Hee Lee
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.K.P.); (J.H.L.)
| | - Eun A Park
- CHA Fertility Center Seoul Station, CHA University, Seoul 04637, Korea;
| | - Hyunjung J. Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Sang Woo Lyu
- CHA Fertility Center Gangnam, CHA University, Seoul 06125, Korea; (S.W.L.); (W.S.L.)
| | - Woo Sik Lee
- CHA Fertility Center Gangnam, CHA University, Seoul 06125, Korea; (S.W.L.); (W.S.L.)
| | - Jayeon Kim
- CHA Fertility Center Seoul Station, CHA University, Seoul 04637, Korea;
- Correspondence: (J.K.); (H.S.)
| | - Haengseok Song
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.K.P.); (J.H.L.)
- Correspondence: (J.K.); (H.S.)
| |
Collapse
|
7
|
Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants (Basel) 2021; 10:antiox10030337. [PMID: 33668300 PMCID: PMC7996228 DOI: 10.3390/antiox10030337] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes' competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
- Correspondence:
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
| | - Vincenza Barbato
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Maddalena Di Nardo
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
- Centre for Fertility Preservation, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Riccardo Talevi
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| |
Collapse
|
8
|
Jones ASK, Shikanov A. Ovarian tissue cryopreservation and novel bioengineering approaches for fertility preservation. CURRENT BREAST CANCER REPORTS 2020; 12:351-360. [PMID: 33569092 PMCID: PMC7869826 DOI: 10.1007/s12609-020-00390-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Breast cancer patients who cannot delay treatment or for whom hormone stimulation and egg retrieval are contraindicated require alternative methods of fertility preservation prior to gonadotoxic treatment. Ovarian tissue cryopreservation is an alternative approach that may offer patients the opportunity to preserve fertility and carry biologically-related children later in life. Various experimental approaches are being explored to obtain mature gametes from cryopreserved and thawed ovarian tissue for fertilization and implantation using biomimetic tissue culture in vitro. Here we review the most recent developments in ovarian tissue cryopreservation and exciting advances in bioengineering approaches to in vitro tissue and ovarian follicle culture. RECENT FINDINGS Slow freezing is the most widely accepted method for ovarian tissue cryopreservation, but efforts have been made to modify vitrification for this application as well. Numerous approaches to in vitro tissue and follicle culture are in development, most prominently two-step culture systems for ovarian cortical tissue and encapsulation of ovarian follicles in biomimetic matrices for in vitro culture. SUMMARY Refinements to slow freeze and vitrification protocols continue to address challenges associated with cryopreservation, such as ice crystal formation and damage to the stroma. Similarly, improvements to in vitro tissue and follicle culture show promise for utilizing patients' cryopreserved tissues to obtain mature gametes after disease treatment and remission. Development of an effective and reproducible culture system for human ovarian follicles will serve as a broad assisted reproductive technology for cancer survivors who cryopreserved tissue prior to treatment.
Collapse
Affiliation(s)
- Andrea S K Jones
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Human Ovarian Cortex biobanking: A Fascinating Resource for Fertility Preservation in Cancer. Int J Mol Sci 2020; 21:ijms21093245. [PMID: 32375324 PMCID: PMC7246700 DOI: 10.3390/ijms21093245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
Novel anti-cancer treatments have improved the survival rates of female young patients, reopening pregnancy issues for female cancer survivors affected by the tumor treatment-related infertility. This condition occurs in approximately one third of women of fertile age and is mainly dependent on gonadotoxic protocols, including radiation treatments. Besides routine procedures such as the hormonal induction of follicular growth and subsequent cryopreservation of oocytes or embryos, the ovarian protection by gonadotropin-releasing hormone (GnRH) agonists during chemotherapy as well as even gonadal shielding during radiotherapy, other innovative techniques are available today and need to be optimized to support their introduction into the clinical practice. These novel methods are hormone stimulation-free and include the ovarian cortex cryopreservation before anti-cancer treatments and its subsequent autologous reimplantation and a regenerative medicine approach using oocytes derived in vitro from ovarian stem cells (OSCs). For both procedures, the major benefit is related to the prompt recruitment and processing of the ovarian cortex fragments before gonadotoxic treatments. However, while the functional competence of oocytes within the cryopreserved cortex is not assessable, the in vitro maturation of OSCs to oocytes, allows to select the most competent eggs to be cryopreserved for fertility restoration.
Collapse
|
10
|
Rivas Leonel EC, Lucci CM, Amorim CA. Cryopreservation of Human Ovarian Tissue: A Review. Transfus Med Hemother 2019; 46:173-181. [PMID: 31244585 PMCID: PMC6558345 DOI: 10.1159/000499054] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cryopreservation of human ovarian tissue has been increasingly applied worldwide to safeguard fertility in cancer patients, notably in young girls and women who cannot delay the onset of their treatment. Moreover, it has been proposed to patients with benign pathologies with a risk of premature ovarian insufficiency. So far, more than 130 live births have been reported after transplantation of cryopreserved ovarian tissue, and almost all patients recovered their ovarian function after tissue reimplantation. SUMMARY This review aims to summarize the recent results described in the literature regarding human ovarian tissue cryopreservation in terms of methods and main results obtained so far. To cryopreserve human ovarian tissue, most studies describe a slow freezing/rapid thawing protocol, which is usually an adaptation of a protocol developed for sheep ovarian tissue. Since freezing has been shown to have a deleterious effect on ovarian stroma and granulosa cells, various research groups have been vitrifying ovarian tissue. Despite promising results, only 2 babies have been born after transplantation of vitrified/warmed ovarian tissue. Optimization of both cryopreservation strategies as well as thawing/warming protocols is therefore necessary to improve the survival of follicles in cryopreserved ovarian tissue. KEY MESSAGES Human ovarian tissue cryopreservation has been successfully applied worldwide to preserve fertility in patients with malignant or nonmalignant pathologies that have a detrimental effect on fertility. Human ovarian tissue cryopreservation could also be applied as an alternative to postpone pregnancy or menopause in healthy women. Slow freezing and vitrification procedures have been applied to cryopreserve human ovarian tissue, but both alternatives require optimization.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche en Gynécologie, Université Catholique de Louvain, Brussels, Belgium
- Institute of Biosciences, Department of Biology, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| | - Carolina M. Lucci
- Institute of Biological Sciences, Department of Physiology, University of Brasília, Brasília, Brazil
| | - Christiani A. Amorim
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche en Gynécologie, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|