1
|
Zhu Q, Du J, Li Y, Qin X, He R, Ma H, Liang X. Downregulation of glucose-energy metabolism via AMPK signaling pathway in granulosa cells of diminished ovarian reserve patients. Gene 2025; 933:148979. [PMID: 39366473 DOI: 10.1016/j.gene.2024.148979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Glucose metabolism plays a crucial role in the function of granulosa cells (GCs) and the development of follicles. In cases of diminished ovarian reserve (DOR), alterations in these processes can impact female fertility. This study aims to investigate changes in glucose-energy metabolism in GCs of young DOR patients aged 20 to 35 years and their correlation with the onset and progression of DOR. 72 DOR cases and 75 women with normal ovarian reserve (NOR) as controls were included based on the POSEIDON and Bologna criteria. Samples of GCs and follicular fluid (FF) were collected for a comprehensive analysis involving transcriptomics, metabolomics, RT-qPCR, JC-1 staining, and flow cytometry. The study identified differentially expressed genes and metabolites in GCs of DOR and NOR groups, revealing 7 common pathways related to glucose-energy metabolism, along with 11 downregulated genes and 14 metabolites. Key substances in the glucose-energy metabolism pathway, such as succinate, lactate, NADP, ATP, and ADP, showed decreased levels, with the DOR group exhibiting a reduced ADP/ATP ratio. Downregulation of genes involved in glycolysis (HK, PGK, LDH1), the TCA cycle (CS), and gluconeogenesis (PCK) was observed, along with reduced glucose content and expression of glucose transporter genes (GLUT1 and GLUT3) in DOR GCs. Additionally, decreased AMPK pathway activity and impaired mitochondrial function in DOR suggest a connection between mitochondrial dysfunction and disrupted energy metabolism. Above all, the decline in glucose-energy metabolism in DOR is closely associated with its onset and progression. Reduced glucose uptake and impaired mitochondrial function in DOR GCs lead to internal energy imbalances, hindering the AMPK signaling pathway, limiting energy production and supply, and ultimately impacting follicle development and maturation.
Collapse
Affiliation(s)
- Qinying Zhu
- Department of Obstetrics and Gynecology, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Beijing, China; The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, China.
| |
Collapse
|
2
|
Bertoldo A, Pizzol D, Yon DK, Callegari M, Gobbo V, Cuccurese P, Butler L, Caminada S, Stebbing J, Richardson F, Gawronska J, Smith L. Resveratrol and Female Fertility: A Systematic Review. Int J Mol Sci 2024; 25:12792. [PMID: 39684501 DOI: 10.3390/ijms252312792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Resveratrol is a natural polyphenolic compound that may have multiple influences on human health, including antiaging, anti-inflammatory, anti-neoplastic, antioxidant, insulin-sensitizing, cardioprotective and vasodilating activities. Growing evidence also suggests a potential positive effect of resveratrol on female fertility. The aim of the present study was to collate and appraise the scientific literature on the relationship between resveratrol and female fertility. We systematically searched Medline, PubMed, Web of Science and Embase from the databases' inception (1951, 1951, 1947 and 1900, respectively) until 9th May 2024. All in vivo or in vitro retrospective or prospective studies reporting the effects of resveratrol interventions on women's fertility were included. We ultimately incorporated twenty-four studies into a systematic review with a narrative summary of the results; of those studies, nine were performed on women seeking natural or assisted fertility, and fifteen were in vitro studies performed on human cells and tissues in different stages of the reproductive cascade. The current literature, though limited, suggests that resveratrol may play a role in female infertility. Specifically, it may significantly and positively impact reproductive outcomes, owing to its potential therapeutic effects improving ovarian function. Further studies are now needed to better understand resveratrol's effects and define the optimal dosage and periods of intake to maximize beneficial effects, as well as to prevent adverse outcomes on implantation, subsequent pregnancy and the fetus.
Collapse
Affiliation(s)
- Alessandro Bertoldo
- U.O.S.D. of Assisted Reproductive Technologies "G. Beltrame", Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | | | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Maura Callegari
- U.O.S.D. of Assisted Reproductive Technologies "G. Beltrame", Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | - Valentina Gobbo
- U.O.S.D. of Assisted Reproductive Technologies "G. Beltrame", Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | - Pierluigi Cuccurese
- Department of Obstetrics and Gynecology, Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | - Laurie Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | | | - Justin Stebbing
- Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Fiona Richardson
- The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn PE30 4ET, UK
| | - Julia Gawronska
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
3
|
Yildirim RM, Seli E. Mitochondria as therapeutic targets in assisted reproduction. Hum Reprod 2024; 39:2147-2159. [PMID: 39066614 DOI: 10.1093/humrep/deae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are essential organelles with specialized functions, which play crucial roles in energy production, calcium homeostasis, and programmed cell death. In oocytes, mitochondrial populations are inherited maternally and are vital for developmental competence. Dysfunction in mitochondrial quality control mechanisms can lead to reproductive failure. Due to their central role in oocyte and embryo development, mitochondria have been investigated as potential diagnostic and therapeutic targets in assisted reproduction. Pharmacological agents that target mitochondrial function and show promise in improving assisted reproduction outcomes include antioxidant coenzyme Q10 and mitoquinone, mammalian target of rapamycin signaling pathway inhibitor rapamycin, and nicotinamide mononucleotide. Mitochondrial replacement therapies (MRTs) offer solutions for infertility and mitochondrial disorders. Autologous germline mitochondrial energy transfer initially showed promise but failed to demonstrate significant benefits in clinical trials. Maternal spindle transfer (MST) and pronuclear transfer hold potential for preventing mitochondrial disease transmission and improving oocyte quality. Clinical trials of MST have shown promising outcomes, but larger studies are needed to confirm safety and efficacy. However, ethical and legislative challenges complicate the widespread implementation of MRTs.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Ardehjani NA, Agha-Hosseini M, Nashtaei MS, Khodarahmian M, Shabani M, Jabarpour M, Fereidouni F, Rastegar T, Amidi F. Resveratrol ameliorates mitochondrial biogenesis and reproductive outcomes in women with polycystic ovary syndrome undergoing assisted reproduction: a randomized, triple-blind, placebo-controlled clinical trial. J Ovarian Res 2024; 17:143. [PMID: 38987824 PMCID: PMC11234766 DOI: 10.1186/s13048-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.
Collapse
Affiliation(s)
- Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Agha-Hosseini
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoome Jabarpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Monarca L, Ragonese F, Biagini A, Sabbatini P, Pacini M, Zucchi A, Spaccapelo R, Ferrari P, Nicolini A, Fioretti B. Electrophysiological Impact of SARS-CoV-2 Envelope Protein in U251 Human Glioblastoma Cells: Possible Implications in Gliomagenesis? Int J Mol Sci 2024; 25:6669. [PMID: 38928376 PMCID: PMC11203726 DOI: 10.3390/ijms25126669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of pre-Omicron variants. SARS-CoV-2 infection can also promote the onset of glioblastoma in patients without prior malignancies. In this study, we focused on the Envelope protein codified by the virus genome, which acts as viroporin and that is reported to be central for virus propagation. In particular, we characterized the electrophysiological profile of E-protein transfected U251 and HEK293 cells through the patch-clamp technique and FURA-2 measurements. Specifically, we observed an increase in the voltage-dependent (Kv) and calcium-dependent (KCa) potassium currents in HEK293 and U251 cell lines, respectively. Interestingly, in both cellular models, we observed a depolarization of the mitochondrial membrane potential in accordance with an alteration of U251 cell growth. We, therefore, investigated the transcriptional effect of E protein on the signaling pathways and found several gene alterations associated with apoptosis, cytokines and WNT pathways. The electrophysiological and transcriptional changes observed after E protein expression could explain the impact of SARS-CoV-2 infection on gliomagenesis.
Collapse
Affiliation(s)
- Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (L.M.); (F.R.); (A.B.); (P.S.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, 06132 Perugia, Italy;
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (L.M.); (F.R.); (A.B.); (P.S.)
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (L.M.); (F.R.); (A.B.); (P.S.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, 06132 Perugia, Italy;
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (L.M.); (F.R.); (A.B.); (P.S.)
| | - Matteo Pacini
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.Z.)
| | - Alessandro Zucchi
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.Z.)
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, 06132 Perugia, Italy;
- Interuniversity Consortium for Biotechnology (C.I.B.), 34148 Trieste, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (L.M.); (F.R.); (A.B.); (P.S.)
| |
Collapse
|
6
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
7
|
Vitkova V, Hazarosova R, Valkova I, Momchilova A, Staneva G. Glycerophospholipid polyunsaturation modulates resveratrol action on biomimetic membranes. Colloids Surf B Biointerfaces 2024; 238:113922. [PMID: 38678790 DOI: 10.1016/j.colsurfb.2024.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.
Collapse
Affiliation(s)
- Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria.
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Iva Valkova
- Faculty of Pharmacy, Medical University, Sofia 1000, Bulgaria; Drug Design and Development Lab, Sofia Tech Park, Sofia 1784, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
8
|
Italiano E, Ceccarelli G, Italiano G, Piazza F, Iannitti RG, Puglisi T. Positive Effects of a Resveratrol-Based Nutraceutical in Association with Surgical Scleroembolization: A Pilot Retrospective Clinical Trial. J Clin Med 2024; 13:2925. [PMID: 38792465 PMCID: PMC11122415 DOI: 10.3390/jcm13102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Varicocele still today represents a common cause of infertility in young men. The treatment strategy remains a surgical approach such as scleroembolization; however, the complete restoration of spermatic parameters afterward requires an average of six or more months to fully regain optimal seminal parameters. Recently, many studies have demonstrated the beneficial effects of Resveratrol in male fertility, given its potential anti-inflammatory, antiapoptotic, and mitochondrial effects. Therefore, Resveratrol-based nutraceuticals could be promising as an adjuvant to mitigate subfertility in patients with varicocele. Methods: In the present study, we retrospectively analyzed the effects of the administration of a Resveratrol-based nutraceutical after the scleroembolization procedure. The improvement of sperm quality in terms of number, motility, and morphology were considered to be the study's main endpoints. A spreadsheet program was used for data analysis, and a p-value of <0.05 was considered significant. Results: We found a statistically significant improvement in the spermatic parameters (sperm count and total motility) and an increase in normal sperm after only 4 months of treatment. The supplementation with a Resveratrol-based nutraceutical associated with the surgical procedure showed encouraging results if compared to data from a control group and the results reported in the literature linked to scleroembolization practice alone. In fact, there was a clear improvement in the seminal parameters at 4 months. Conclusions: This suggests the positive impact of the Resveratrol-based nutraceutical in synergizing with scleroembolization in reducing the time needed to fully recover sperm function.
Collapse
Affiliation(s)
| | | | - Giovanna Italiano
- Policlinico Brescia, Unità Operativa di Urologia, 25128 Brescia, Italy;
| | - Fulvio Piazza
- Azienda Ospedaliera “Cervello-Villa Sofia“, 90146 Palermo, Italy; (F.P.); (T.P.)
| | | | - Tiziana Puglisi
- Azienda Ospedaliera “Cervello-Villa Sofia“, 90146 Palermo, Italy; (F.P.); (T.P.)
| |
Collapse
|
9
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
10
|
Ma C, Xu Y, Chen H, Huang Y, Wang S, Zhang P, Li G, Xu Z, Xu X, Ding Z, Xiang H, Cao Y. Bisphenol Z exposure inhibits oocyte meiotic maturation by rupturing mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116312. [PMID: 38608383 DOI: 10.1016/j.ecoenv.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 μM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Shanshan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Guojing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
11
|
Cheng W, Di F, Li L, Pu C, Wang C, Zhang J. Anti-Photodamage Effect of Agaricus blazei Murill Polysaccharide on UVB-Damaged HaCaT Cells. Int J Mol Sci 2024; 25:4676. [PMID: 38731895 PMCID: PMC11083510 DOI: 10.3390/ijms25094676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1β (IL-1β), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.
Collapse
Affiliation(s)
- Wenjing Cheng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Luyao Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Chunhong Pu
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| |
Collapse
|
12
|
Conforti A, Iorio GG, Di Girolamo R, Rovetto MY, Picarelli S, Cariati F, Gentile R, D'Amato A, Gliozheni O, Fioretti B, Alviggi C. The impact of resveratrol on the outcome of the in vitro fertilization: an exploratory randomized placebo-controlled trial. J Ovarian Res 2024; 17:81. [PMID: 38622741 PMCID: PMC11020196 DOI: 10.1186/s13048-024-01391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Resveratrol is a natural polyphenolic compound present in plants and red wine with many potential health benefits. This compound has various anti-inflammatory and anti-tumor properties and can improve cellular mitochondrial activity. This trial was designed to evaluate the effect on the outcome of IVF of Resveratrol supplementation in women > 35 years with good ovarian reserve (AMH > 1.2 ng/ml). Women were randomized to receive or placebo or Resveratrol (150 mg per day) for three months preceding the ovarian stimulation (OS). All patients were stimulated with a starting dose of recombinant FSH ranging between 150 and 300 IU according to age and ovarian reserve. GnRH antagonist flexible protocol was adopted for pituitary suppression. Triggering was performed with urinary hCG (10.000 IU). RESULTS The study was conducted between January 2019 and December 2022 with aa total of 37 cases and 33 controls were recruited. No statistically significant differences in the number of oocytes retrieved, biochemical pregnancy, clinical pregnancy and live birth rates were observed between women treated with resveratrol and control group. A statistically significant increase in the follicle output rate (FORT) and follicle-to oocyte index (FOI) was observed in women treated with resveratrol-based nutraceutical (0.92 versus 0.77 [p = 0.02], and 0.77 versus 0.64 [p = 0.006], respectively). CONCLUSIONS Preliminary results from this study indicate that pre-treatment with resveratrol may improve ovarian sensitivity to exogenous FSH, which in turn may decrease the risk of hypo-response to OS in advanced reproductive age women.
Collapse
Affiliation(s)
- A Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine, University of Naples "Federico II, Naples, Italy, Via Sergio Pansini, 5, 80131
| | - G G Iorio
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine, University of Naples "Federico II, Naples, Italy, Via Sergio Pansini, 5, 80131.
| | - R Di Girolamo
- Department of Public Health. School of Medicine, University of Naples "Federico II, Naples, Italy
| | - M Y Rovetto
- Department of Public Health. School of Medicine, University of Naples "Federico II, Naples, Italy
| | - S Picarelli
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine, University of Naples "Federico II, Naples, Italy, Via Sergio Pansini, 5, 80131
| | - F Cariati
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine, University of Naples "Federico II, Naples, Italy, Via Sergio Pansini, 5, 80131
| | - R Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - A D'Amato
- Department of Interdisciplinary Medicine, University of Bari, 1St Unit of Obstetrics and Gynecology, Bari, Italy
| | - O Gliozheni
- Head of Department of Obstetrics and Gynecology, University Hospital for Obstetrics & Gynecology, University of Medicine of Tirana, KocoGliozheni", Tirana, Albania
| | - B Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - C Alviggi
- Department of Public Health. School of Medicine, University of Naples "Federico II, Naples, Italy
| |
Collapse
|
13
|
Jiang X, Ma Y, Gong S, Zi X, Zhang D. Resveratrol Promotes Proliferation, Antioxidant Properties, and Progesterone Production in Yak ( Bos grunniens) Granulosa Cells. Animals (Basel) 2024; 14:240. [PMID: 38254409 PMCID: PMC10812796 DOI: 10.3390/ani14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RES) is a class of natural polyphenolic compounds known for its strong anti-apoptotic and antioxidant properties. Granulosa cells (GCs) are one of the important components of ovarian follicles and play crucial roles in follicular development of follicles in the ovary. Here, we explored the effects of RES on the proliferation and functions of yak GCs. Firstly, we evaluated the effect of RES dose and time in culture on the viability of GCs, and then the optimum treatment protocol (10 μM RES, 36 h) was selected to analyze the effects of RES on the proliferation, cell cycle, apoptosis, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) accumulation, lipid droplet content, ATP production, and steroidogenesis of GCs, as well as the expression of related genes. The results show that RES treatment significantly (1) increased cell viability and proliferation and inhibited cell apoptosis by upregulating BCL-2 and SIRT1 genes and downregulating BAX, CASP3, P53, and KU70 genes; (2) increased the proportion of GCs in the S phase and upregulated CCND1, PCNA, CDK4, and CDK5 genes; (3) reduced ROS accumulation and MDA content and increased GSH content, as well as upregulating the relative expression levels of CAT, SOD2, and GPX1 genes; (4) decreased lipid droplet content and increased ATP production; (5) promoted progesterone (P4) secretion and the expression of P4 synthesis-related genes (StAR, HSD3B1, and CYP11A1); and (6) inhibited E2 secretion and CYP19A1 expression. These findings suggest that RES at 10 μM increases the proliferation and antioxidant properties, inhibits apoptosis, and promotes ATP production, lipid droplet consumption, and P4 secretion of yak GCs.
Collapse
Affiliation(s)
- Xudong Jiang
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Yao Ma
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Sanni Gong
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Xiangdong Zi
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Dawei Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
14
|
Hou Y, Hu J, Li J, Li H, Lu Y, Liu X. MFN2 regulates progesterone biosynthesis and proliferation of granulosa cells during follicle selection in hens. J Cell Physiol 2024; 239:51-66. [PMID: 37921053 DOI: 10.1002/jcp.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Follicle selection in hens refers to a biological process that only one small yellow follicle (SYF) is selected daily or near-daily for following hierarchical development (from F5/F6 to F1) until ovulation. MFN2 is a kind of GTPases located on the mitochondrial outer membrane, which plays a crucial role in mitochondrial fusion. This study aimed to elucidate the role of MFN2 in proliferation and progesterone biosynthesis of granulosa cells (GCs) during follicle selection in hens. The results showed that GCs began to produce progesterone (P4) after follicle selection, accompanied with changes from multi-layer with flat cells to single layer with cubic cells. MFN2 was detected in GCs of follicles from SYF to F1. After follicle selection, the expression level of MFN2 in GCs upregulated significantly, accompanied with increases in P4 biosynthesis, ATP production, mitochondrial DNA (mtDNA) copy numbers of granulosa cells. FSH (80 ng/mL) facilitated the effects of P4 biosynthesis and secretion, ATP production, mtDNA copy numbers, cell proliferation and the MFN2 transcription of granulosa cells from F5 (F5G) in vitro. However, FSH treatment did not promote P4 secretion in granulosa cells from SYF (SYFG) in vitro. Meanwhile, we observed that change fold of MFN2 transcription, ATP production, mtDNA copy numbers and cell proliferation rate in F5G after treatment with FSH were greater than those in SYFG. Furthermore, expression levels of MFN2 protein and messenger RNA in F5G were significantly higher than those in SYFG after treatment with FSH. P4 biosynthesis, ATP production, mtDNA copy numbers as well as cell proliferation reduced significantly in F5G with MFN2 knockdown. Oppositely, P4 biosynthesis, ATP production, mtDNA copy numbers and cell proliferation increased significantly in SYFG after the overexpression of MFN2. Our results suggest that the upregulation of MFN2 may be involved in the initiation of P4 biosynthesis, and promotion of GCs proliferation during follicle selection.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
16
|
Hung KC, Yao WC, Liu YL, Yang HJ, Liao MT, Chong K, Peng CH, Lu KC. The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease. Biomedicines 2023; 11:2076. [PMID: 37509715 PMCID: PMC10377042 DOI: 10.3390/biomedicines11072076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with chronic kidney disease (CKD) often experience a high accumulation of protein-bound uremic toxins (PBUTs), specifically indoxyl sulfate (IS) and p-cresyl sulfate (pCS). In the early stages of CKD, the buildup of PBUTs inhibits bone and muscle function. As CKD progresses, elevated PBUT levels further hinder bone turnover and exacerbate muscle wasting. In the late stage of CKD, hyperparathyroidism worsens PBUT-induced muscle damage but can improve low bone turnover. PBUTs play a significant role in reducing both the quantity and quality of bone by affecting osteoblast and osteoclast lineage. IS, in particular, interferes with osteoblastogenesis by activating aryl hydrocarbon receptor (AhR) signaling, which reduces the expression of Runx2 and impedes osteoblast differentiation. High PBUT levels can also reduce calcitriol production, increase the expression of Wnt antagonists (SOST, DKK1), and decrease klotho expression, all of which contribute to low bone turnover disorders. Furthermore, PBUT accumulation leads to continuous muscle protein breakdown through the excessive production of reactive oxygen species (ROS) and inflammatory cytokines. Interactions between muscles and bones, mediated by various factors released from individual tissues, play a crucial role in the mutual modulation of bone and muscle in CKD. Exercise and nutritional therapy have the potential to yield favorable outcomes. Understanding the underlying mechanisms of bone and muscle loss in CKD can aid in developing new therapies for musculoskeletal diseases, particularly those related to bone loss and muscle wasting.
Collapse
Affiliation(s)
- Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Medical Education and Clinical Research, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Yi-Lien Liu
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Hung-Jen Yang
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Keong Chong
- Division of Endocrinology and Metabolism, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Ching-Hsiu Peng
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
17
|
Deng D, Xie J, Tian Y, Zhu L, Liu X, Liu J, Huang G, Li J. Effects of meiotic stage-specific oocyte vitrification on mouse oocyte quality and developmental competence. Front Endocrinol (Lausanne) 2023; 14:1200051. [PMID: 37455899 PMCID: PMC10338221 DOI: 10.3389/fendo.2023.1200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Acquisition of germinal vesicle (GV) stage oocytes for fertility preservation (FP) offers several benefits over in vivo matured oocyte cryopreservation following ovarian stimulation, particularly for cancer patients necessitating immediate treatment. Two FP approaches for GV oocytes are available: vitrification before in vitro maturation (IVM) at the GV stage (GV-VI) or post-IVM at the metaphase II (MII) stage (MII-VI). The optimal method remains to be determined. Methods In this study, mouse oocytes were collected without hormonal stimulation and vitrified either at the GV stage or the MII stage following IVM; non-vitrified in vitro matured MII oocytes served as the control (CON). The oocyte quality and developmental competence were assessed to obtain a better method for immediate FP. Results No significant differences in IVM and survival rates were observed among the three groups. Nevertheless, GV-VI oocytes exhibited inferior quality, including abnormal spindle arrangement, mitochondrial dysfunction, and early apoptosis, compared to MII-VI and CON oocytes. Oocyte vitrification at the GV stage impacted maternal mRNA degradation during IVM. In addition, the GV-VI group demonstrated significantly lower embryonic developmental competence relative to the MII-VI group. RNA sequencing of 2-cell stage embryos revealed abnormal minor zygotic genome activation in the GV-VI group. Conclusion Vitrification at the GV stage compromised oocyte quality and reduced developmental competence. Consequently, compared to the GV stage, oocyte vitrification at the MII stage after IVM is more suitable for patients who require immediate FP.
Collapse
Affiliation(s)
- Dongmei Deng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Tian
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junxia Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Miao C, Zhao Y, Chen Y, Wang R, Ren N, Chen B, Dong P, Zhang Q. Investigation of He's Yang Chao recipe against oxidative stress-related mitophagy and pyroptosis to improve ovarian function. Front Endocrinol (Lausanne) 2023; 14:1077315. [PMID: 36777359 PMCID: PMC9911881 DOI: 10.3389/fendo.2023.1077315] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is a common gynecological disease with serious ramifications including low pregnancy rate and low estrogen symptoms. Traditional Chinese medicine is regarded as an effective treatment for POI. However, the therapeutic mechanism of it is unclear. METHODS In this study, a mouse model of primary ovarian insufficiency was established by intraperitoneal injection of cyclophosphamide (CTX) and He's Yang Chao Recipe (HSYC) concentrate was used for intragastric administration. Serum hormone levels (Anti-Müllerian Hormone, Estradiol, Progesterone, Luteinizing Hormone and Follicle Stimulating Hormone) and Oxidative Stress (OS) related products, superoxide dismutase (SOD), GSH-Px, and malondialdehyde (MDA) were measured by enzyme-linked immunosorbent assay. Pathological changes in ovarian tissue were evaluated by hematoxylin and eosin staining, and flow cytometry was used to determine reactive oxygen species content and mitochondrial membrane potential levels in granulosa cells. Mitochondrial distribution and morphology were investigated using immunofluorescence staining. The level of mitophagy was evaluated by LC3 immunofluorescence staining and autophagosome counts using electron microscopy. Western blotting and qPCR were used to detect the expression of proteins and genes related to mitophagy and the NLRP3 inflammasome. RESULTS After HSYC treatment, the ovarian damage was milder than in the CTX group. Compared with the CTX group; SOD, GSH-Px, and the total antioxidant capacity were significantly increased, while MDA and ROS were decreased in the HSYC treatment groups. Furthermore, mitochondrial distribution and membrane potential levels were improved after HSYC treatment compared to the CTX group. After the HSYC treatment, the LC3 fluorescent intensity and autophagosome counts were decreased. Similarly, mitophagy related markers PINK1, Parkin, LC3, and Beclin1 were decreased, while p62 was significantly increased, compared with the CTX groups. The mRNA and protein expression of NLRP3 inflammasome, NLRP3, caspase-1, GSDMD, IL-18, and IL-1β were significantly decreased in the HSYC treatment groups. CONCLUSION This is the first study in molecular mechanisms underlying HSYC against granulosa cell injury in POI. HSYC protects ovaries from CTX-induced ovarian damage and oxidative stress. HSYC enhanced ovarian function in mice with primary ovarian insufficiency by inhibiting PINK1-Parkin mitophagy and NLRP3 inflammasome activation.
Collapse
|
19
|
Dave KM, Dobbins DX, Farinelli MN, Sullivan A, Milosevic J, Stolz DB, Kim J, Zheng S, Manickam DS. Engineering Extracellular Vesicles to Modulate Their Innate Mitochondrial Load. Cell Mol Bioeng 2022; 15:367-389. [PMID: 36444353 PMCID: PMC9700543 DOI: 10.1007/s12195-022-00738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Extracellular vesicles (EVs) are promising carriers for the delivery of biotherapeutic cargo such as RNA and proteins. We have previously demonstrated that the innate EV mitochondria in microvesicles (MVs), but not exosomes (EXOs) can be transferred to recipient BECs and mouse brain slice neurons. Here, we sought to determine if the innate EV mitochondrial load can be further increased via increasing mitochondrial biogenesis in the donor cells. We hypothesized that mitochondria-enriched EVs ("mito-EVs") may increase the recipient BEC ATP levels to a greater extent than naïve MVs. Methods We treated NIH/3T3, a fibroblast cell line and hCMEC/D3, a human brain endothelial cell (BEC) line using resveratrol to activate peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), the central mediator of mitochondrial biogenesis. Naïve EVs and mito-EVs isolated from the non-activated and activated donor cells were characterized using transmission electron microscopy, dynamic light scattering and nanoparticle tracking analysis. The effect of mito-EVs on resulting ATP levels in the recipient BECs were determined using Cell Titer Glo ATP assay. The uptake of Mitotracker Red-stained EVs into recipient BECs and their colocalization with recipient BEC mitochondria were studied using flow cytometry and fluorescence microscopy. Results Resveratrol treatment increased PGC-1α expression in the donor cells. Mito-MVs but not mito-EXOs showed increased expression of mitochondrial markers ATP5A and TOMM20 compared to naïve MVs. TEM images showed that a greater number of mito-MVs contained mitochondria compared to naïve MVs. Mito-MVs but not mito-EXOs showed a larger particle diameter compared to their naïve EV counterparts from the non-activated cells suggesting increased mitochondria incorporation. Mito-EVs were generated at higher particle concentrations compared to naïve EVs from non-activated cells. Mito-EVs increased the cellular ATP levels and transferred their mitochondrial load into the recipient BECs. Mito-MV mitochondria also colocalized with recipient BEC mitochondria. Conclusions Our results suggest that the pharmacological modulation of mitochondrial biogenesis in the donor cells can change the mitochondrial load in the secreted MVs. Outcomes of physicochemical characterization studies and biological assays confirmed the superior effects of mito-MVs compared to naïve MVs-suggesting their potential to improve mitochondrial function in neurovascular and neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00738-8.
Collapse
Affiliation(s)
- Kandarp M. Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 453 Mellon Hall, Pittsburgh, PA USA
| | - Duncan X. Dobbins
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 453 Mellon Hall, Pittsburgh, PA USA
| | - Maura N. Farinelli
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 453 Mellon Hall, Pittsburgh, PA USA
- Department of Biochemistry and Molecular Biology, Gettysburg College, Gettysburg, PA USA
| | - Abigail Sullivan
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 453 Mellon Hall, Pittsburgh, PA USA
- Psychological and Brain Sciences, Villanova University, Villanova, PA USA
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
- Captis Diagnostics Inc, Pittsburgh, PA USA
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA USA
| | - Jeongyun Kim
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Siyang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Devika S. Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 453 Mellon Hall, Pittsburgh, PA USA
| |
Collapse
|
20
|
Yuan B, Luo S, Feng L, Wang J, Mao J, Luo B. Resveratrol regulates the inflammation and oxidative stress of granulosa cells in PCOS via targeting TLR2. J Bioenerg Biomembr 2022; 54:191-201. [PMID: 35836030 DOI: 10.1007/s10863-022-09942-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is featured as a common endocrine disorder in reproductive-aged women, while its pathophysiology is not fully illustrated. This study examined potential actions of resveratrol in PCOS cellular model and explored the underlying interaction between resveratrol and toll-like receptor 2 (TLR2). This study performed the bioinformatics analysis on two microarray datasets (GSE34526 and GSE138518). We found that TLR2 was one of potential hub genes that may be associated with PCOS. Further examination showed that TLR2 was highly expressed in granulosa cells from PCOS group compared with control. The in vitro studies showed that LPS intervention caused an increased expression of TLR2 and the pro-inflammatory mediators, and induced oxidative stress in the granulosa cells, which was concentration-dependently antagonized by resveratrol treatment. TLR2 silence significantly attenuated LPS-induced increase TNF-α, IL-1β, IL-6 and IL-8 expression and oxidative stress of granulosa cells. Furthermore, TLR2 overexpression promoted inflammatory response and oxidative stress in the granulosa cells, which was antagonized by resveratrol treatment. In conclusion, resveratrol could attenuate LPS-induced inflammation and oxidative stress in granulosa cells, and the underlying mechanisms may be related to the inhibitory effect of resveratrol on TLR2 expression in granulosa cells.
Collapse
Affiliation(s)
- Ben Yuan
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China.
| | - Shuhong Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Liulian Feng
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Junbiao Mao
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Bingbing Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| |
Collapse
|
21
|
Battaglia R, Caponnetto A, Caringella AM, Cortone A, Ferrara C, Smirni S, Iannitti R, Purrello M, D’Amato G, Fioretti B, Di Pietro C. Resveratrol Treatment Induces Mito-miRNome Modification in Follicular Fluid from Aged Women with a Poor Prognosis for In Vitro Fertilization Cycles. Antioxidants (Basel) 2022; 11:antiox11051019. [PMID: 35624883 PMCID: PMC9137561 DOI: 10.3390/antiox11051019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Advanced maternal age impairs reproductive performance, influencing the quantity and the quality of oocytes. Mitochondria dysfunction seems to play a decisive role in conditioning the quality of the female gamete. Different in vitro and in vivo studies, demonstrated the antioxidant and anti-inflammatory activities of Resveratrol and its ability to improve mitochondria function even if the exact mechanism of action has not yet been demonstrated in human oocytes. In this paper, by retrospective analysis, we evaluated follicular fluid (FF) miRNome modification in aged women with a poor ovarian reserve receiving a resveratrol-based supplement the three months before the in vitro Fertilization (IVF) cycle. We found 13 differentially expressed microRNAs (miRNAs) in women treated with resveratrol and specifically miR-125b-5p, miR-132-3p, miR-19a-3p, miR-30a-5p and miR-660-5p, regulating mitochondrial proteins, are able to control metabolism and mitochondrial biogenesis. MiRNA expression differences, observed after resveratrol treatment in FF from women with a poor prognosis for IVF, demonstrated that resveratrol may act on mitomiRNAs to improve follicular microenvironment by transcriptomic and proteomic modifications in granulosa cells.
Collapse
Affiliation(s)
- Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, CT, Italy; (R.B.); (A.C.); (C.F.); (S.S.); (M.P.)
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, CT, Italy; (R.B.); (A.C.); (C.F.); (S.S.); (M.P.)
| | - Anna Maria Caringella
- Asl Bari, Reproductive and IVF Unit, PTA “F Jaia”, 70014 Conversano, BA, Italy; (A.M.C.); (A.C.); (G.D.)
| | - Anna Cortone
- Asl Bari, Reproductive and IVF Unit, PTA “F Jaia”, 70014 Conversano, BA, Italy; (A.M.C.); (A.C.); (G.D.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, CT, Italy; (R.B.); (A.C.); (C.F.); (S.S.); (M.P.)
| | - Salvatore Smirni
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, CT, Italy; (R.B.); (A.C.); (C.F.); (S.S.); (M.P.)
| | | | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, CT, Italy; (R.B.); (A.C.); (C.F.); (S.S.); (M.P.)
| | - Giuseppe D’Amato
- Asl Bari, Reproductive and IVF Unit, PTA “F Jaia”, 70014 Conversano, BA, Italy; (A.M.C.); (A.C.); (G.D.)
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, PG, Italy;
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, CT, Italy; (R.B.); (A.C.); (C.F.); (S.S.); (M.P.)
- Correspondence: ; Tel.: +39-0954781484
| |
Collapse
|
22
|
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, Okada H. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function. Reprod Med Biol 2021; 21:e12428. [PMID: 34934403 PMCID: PMC8656197 DOI: 10.1002/rmb2.12428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian function is closely related to the degree of vascular network development surrounding the ovary. Maternal aging‐related construction defects in this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient supply, leading to physiological changes in the ovaries and oocytes. The anti‐aging gene Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic environments and mitochondrial biogenesis. Methods The present study is a literature review focusing on investigations involving the changes in SIRT1 and mitochondrial expression during hypoxia and the cytoprotective effects of the SIRT1 activator, resveratrol. Main findings Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol can reverse the hypoxia‐induced decrease in mitochondrial and SIRT1 activity. Resveratrol suppresses the production of hypoxia‐inducible factor‐1α and vascular endothelial growth factor proteins. Conclusion Resveratrol exhibits protective activity against hypoxic stress and may prevent hypoxia‐ or aging‐related mitochondrial dysfunction. Resveratrol treatment may be a potential option for infertility therapy.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | | | - Hidetaka Okada
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| |
Collapse
|
23
|
Wu W, Duan C, Lv H, Song J, Cai W, Fu K, Xu J. MiR-let-7d-3p inhibits granulosa cell proliferation by targeting TLR4 in polycystic ovary syndrome. Reprod Toxicol 2021; 106:61-68. [PMID: 34655744 DOI: 10.1016/j.reprotox.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a typical reproductive and endocrinological disorder of women at child-bearing age. In this study, we used miRNA sequencing technology and verified miR-let-7d-3p as a vital miRNA in PCOS. RT-qPCR confirmed miR-let-7d-3p was significantly increased in granulosa cells (GCs) of PCOS. Cell counting kit-8 (CCK-8) identified the suppression of miR-let-7d-3p mimic in KGN cell proliferation and PI3K/Akt signaling pathway. Dual luciferase reporter assay proved that Toll-like receptor 4 (TLR4) was a target of miR-let-7d-3p, and TLR4 was significantly down-regulated by miR-let-7d-3p. Furthermore, over-expression of TLR4 promoted KGN cell proliferation and rescued the inhibition of miR-let-7d-3p on KGN cells. In conclusion, miR-let-7d-3p was a crucial miRNA up-regulated in GCs of PCOS, and inhibited cell proliferation by targeting TLR4 gene.
Collapse
Affiliation(s)
- Wei Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Cuicui Duan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Houyi Lv
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyuan Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wangyu Cai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kaiyou Fu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
24
|
van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev 2021; 70:101378. [PMID: 34091076 DOI: 10.1016/j.arr.2021.101378] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
The oocyte is recognised as the largest cell in mammalian species and other multicellular organisms. Mitochondria represent a high proportion of the cytoplasm in oocytes and mitochondrial architecture is different in oocytes than in somatic cells, characterised by a rounder appearance and fragmented network. Although the number of mitochondria per oocyte is higher than in any other mammalian cell, their number and activity decrease with advancing age. Mitochondria integrate numerous processes essential for cellular function, such as metabolic processes related to energy production, biosynthesis, and waste removal, as well as Ca2+ signalling and reactive oxygen species (ROS) homeostasis. Further, mitochondria are responsible for the cellular adaptation to different types of stressors such as oxidative stress or DNA damage. When these stressors outstrip the adaptive capacity of mitochondria to restore homeostasis, it leads to mitochondrial dysfunction. Decades of studies indicate that mitochondrial function is multifaceted, which is reflected in the oocyte, where mitochondria support numerous processes during oocyte maturation, fertilization, and early embryonic development. Dysregulation of mitochondrial processes has been consistently reported in ageing and age-related diseases. In this review, we describe the functions of mitochondria as bioenergetic powerhouses and signal transducers in oocytes, how dysfunction of mitochondrial processes contributes to reproductive ageing, and whether mitochondria could be targeted to promote oocyte rejuvenation.
Collapse
|
25
|
Gerli S, Della Morte C, Ceccobelli M, Mariani M, Favilli A, Leonardi L, Lanti A, Iannitti RG, Fioretti B. Biological and clinical effects of a resveratrol-based multivitamin supplement on intracytoplasmic sperm injection cycles: a single-center, randomized controlled trial. J Matern Fetal Neonatal Med 2021; 35:7640-7648. [PMID: 34338114 DOI: 10.1080/14767058.2021.1958313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Resveratrol display's positive effects on follicle growth and development in preclinical studies while there is scantly information from clinical trials. The aim of this study was to evaluate the biological and clinical impact of a resveratrol-based multivitamin supplement on intracytoplasmatic sperm injection (ICSI) cycles. METHODS A randomized, single-center controlled trial conducted at the University Center of Assisted Reproductive Technologies involving 101 women infertile women undergoing ICSI cycles was conducted. A pretreatment with a daily resveratrol based nutraceutical was administered to the Study Group; Control Group received folic acid. The primary outcomes were the number of developed mature follicles (>16 mm), total oocytes and MII oocytes recovered, the fertilization rate and the number of cleavage embryos/blastocysts obtained. Secondary endpoints were the duration and dosage of gonadotropins, the number of embryos for transfer, implantation, biochemical, clinical pregnancy rates, live birth and miscarriage rates. RESULTS A significantly higher number of oocytes and MII oocytes were retrieved in the Study Group than in Control Group (p = .03 and p = .04, respectively). A higher fertilization rate (p = .004), more cleavage embryos/patient (p = .01), blastocytes/patients (p = .01) and cryopreserved embryos (p = .03) were obtained in the Study Group. No significant differences in biochemical or clinical pregnancy, live birth, and miscarriage rates were revealed, but a trend to a higher live birth rate was revealed in the Study Group. CONCLUSIONS A 3 months period of dietary supplementation with a resveratrol-based multivitamin nutraceutical leads to better biological effects on ICSI cycles. TRIAL REGISTRATION NUMBER ClinicalTrials.gov registration identifier: NCT04386499.
Collapse
Affiliation(s)
- Sandro Gerli
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Chiara Della Morte
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Margherita Ceccobelli
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Monica Mariani
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Lucio Leonardi
- Department of R&D, S&R Farmaceutici S.p.A Bastia Umbra, Perugia, Italy
| | - Alessandro Lanti
- Department of R&D, S&R Farmaceutici S.p.A Bastia Umbra, Perugia, Italy
| | | | - Bernard Fioretti
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy.,Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Resveratrol improves granulosa cell activity through mitochondrial biogenesis. Fertil Steril 2021; 115:909-910. [PMID: 33832750 DOI: 10.1016/j.fertnstert.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
|
27
|
Moreira-Pinto B, Costa L, Felgueira E, Fonseca BM, Rebelo I. Low Doses of Resveratrol Protect Human Granulosa Cells from Induced-Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040561. [PMID: 33916585 PMCID: PMC8065718 DOI: 10.3390/antiox10040561] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Resveratrol is a phytoalexin present in plant-derived foods, including grape’s skin, cocoa, and peanuts. Evidence suggests that it has beneficial effects on human health because of its antioxidant properties. However, there is limited knowledge about the part played by resveratrol in ovarian function. In this paper, the influence of resveratrol on granulosa cells (GC) was evaluated. In addition to being the main estradiol producers, GC are in direct contact with the oocyte, playing a fundamental role in its growth and development. The cell line COV434 and human granulosa cells (hGC), obtained from women undergoing assisted reproductive technology (ART), were used. GC were treated with resveratrol (0.001–20 μM) at different times (24–72 h). Low concentrations of this compound suggest a protective role, as they tend to reduce ROS/RNS formation after inducement of stress. On the contrary, high concentrations of resveratrol affect GC viability and steroidogenic function. As it may act as a direct modulator of GC oxidative balance, this work may help to clarify the impact of resveratrol on GC and the usefulness of this antioxidant as adjunct to infertility treatments.
Collapse
Affiliation(s)
- Beatriz Moreira-Pinto
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| | - Lia Costa
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Eduarda Felgueira
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Bruno M. Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
- Correspondence: ; Tel.: +351-220428557
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| |
Collapse
|