1
|
Homer CM, Voorhies M, Walcott K, Ochoa E, Sil A. Transcriptomic atlas of the morphologic development of the fungal pathogen Coccidioides reveals key phase-enriched transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618122. [PMID: 39463982 PMCID: PMC11507689 DOI: 10.1101/2024.10.13.618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Coccidioides spp . are highly understudied but significant dimorphic fungal pathogens that can infect both immunocompetent and immunocompromised people. In the environment, they grow as multicellular filaments (hyphae) that produce vegetative spores called arthroconidia. Upon inhalation by mammals, arthroconidia undergo a process called spherulation. They enlarge and undergo numerous nuclear divisions to form a spherical structure, and then internally segment until the spherule is filled with multiple cells called endospores. Mature spherules rupture and release endospores, each of which can form another spherule, in a process thought to facilitate dissemination. Spherulation is unique to Coccidioides and its molecular determinants remain largely unknown. Here, we report the first high-density transcriptomic analyses of Coccidioides development, defining morphology-dependent transcripts and those whose expression is regulated by Ryp1, a major regulator required for spherulation and virulence. Of approximately 9000 predicted transcripts, we discovered 273 transcripts with consistent spherule-associated expression, 82 of which are RYP1 -dependent, a set likely to be critical for Coccidioides virulence. ChIP-Seq revealed 2 distinct regulons of Ryp1, one shared between hyphae and spherules and the other unique to spherules. Spherulation regulation was elaborate, with the majority of 227 predicted transcription factors in Coccidioides displaying spherule-enriched expression. We identified provocative targets, including 20 transcripts whose expression is endospore-enriched and 14 putative secreted effectors whose expression is spherule-enriched, of which 6 are secreted proteases. To highlight the utility of these data, we selected a cluster of RYP1 -dependent, arthroconidia-associated transcripts and found that they play a role in arthroconidia cell wall biology, demonstrating the power of this resource in illuminating Coccidioides biology and virulence.
Collapse
|
2
|
Mandel MA, Beyhan S, Voorhies M, Shubitz LF, Galgiani JN, Orbach MJ, Sil A. The WOPR family protein Ryp1 is a key regulator of gene expression, development, and virulence in the thermally dimorphic fungal pathogen Coccidioides posadasii. PLoS Pathog 2022; 18:e1009832. [PMID: 35385558 PMCID: PMC9015156 DOI: 10.1371/journal.ppat.1009832] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/18/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Coccidioides spp. are mammalian fungal pathogens endemic to the Southwestern US and other desert regions of Mexico, Central and South America, with the bulk of US infections occurring in California and Arizona. In the soil, Coccidioides grows in a hyphal form that differentiates into 3-5 micron asexual spores (arthroconidia). When arthroconidia are inhaled by mammals they undergo a unique developmental transition from polar hyphal growth to isotropic expansion with multiple rounds of nuclear division, prior to segmentation, forming large spherules filled with endospores. Very little is understood about the molecular basis of spherule formation. Here we characterize the role of the conserved transcription factor Ryp1 in Coccidioides development. We show that Coccidioides Δryp1 mutants have altered colony morphology under hypha-promoting conditions and are unable to form mature spherules under spherule-promoting conditions. We analyze the transcriptional profile of wild-type and Δryp1 mutant cells under hypha- and spherule-promoting conditions, thereby defining a set of hypha- or spherule-enriched transcripts ("morphology-regulated" genes) that are dependent on Ryp1 for their expression. Forty percent of morphology-regulated expression is Ryp1-dependent, indicating that Ryp1 plays a dual role in both hyphal and spherule development. Ryp1-dependent transcripts include key virulence factors such as SOWgp, which encodes the spherule outer wall glycoprotein. Concordant with its role in spherule development, we find that the Δryp1 mutant is completely avirulent in the mouse model of coccidioidomycosis, indicating that Ryp1-dependent pathways are essential for the ability of Coccidioides to cause disease. Vaccination of C57BL/6 mice with live Δryp1 spores does not provide any protection from lethal C. posadasii intranasal infection, consistent with our findings that the Δryp1 mutant fails to make mature spherules and likely does not express key antigens required for effective vaccination. Taken together, this work identifies the first transcription factor that drives mature spherulation and virulence in Coccidioides.
Collapse
Affiliation(s)
- M. Alejandra Mandel
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- Valley Fever Center for Excellence, University of Arizona, Tucson, Arizona, United States of America
| | - Sinem Beyhan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Lisa F. Shubitz
- Valley Fever Center for Excellence, University of Arizona, Tucson, Arizona, United States of America
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona, Tucson, Arizona, United States of America
| | - Marc J. Orbach
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- Valley Fever Center for Excellence, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (MJO); (AS)
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MJO); (AS)
| |
Collapse
|
3
|
Diep AL, Hoyer KK. Host Response to Coccidioides Infection: Fungal Immunity. Front Cell Infect Microbiol 2020; 10:581101. [PMID: 33262956 PMCID: PMC7686801 DOI: 10.3389/fcimb.2020.581101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. This emerging infectious disease ranges from asymptomatic to pulmonary disease and disseminated infection. Most infections are cleared with little to no medical intervention whereas chronic disease often requires life-long medication with severe impairment in quality of life. It is unclear what differentiates hosts immunity resulting in disease resolution versus chronic infection. Current understanding in mycology-immunology suggests that chronic infection could be due to maladaptive immune responses. Immunosuppressed patients develop more severe disease and mouse studies show adaptive Th1 and Th17 responses are required for clearance. This is supported by heightened immunosuppressive regulatory responses and lowered anti-fungal T helper responses in chronic Coccidioides patients. Diagnosis and prognosis is difficult as symptoms are broad and overlapping with community acquired pneumonia, often resulting in misdiagnosis and delayed treatment. Furthermore, we lack clear biomarkers of disease severity which could aid prognosis for more effective healthcare. As the endemic region grows and population increases in endemic areas, the need to understand Coccidioides infection is becoming urgent. There is a growing effort to identify fungal virulence factors and host immune components that influence fungal immunity and relate these to patient disease outcome and treatment. This review compiles the known immune responses to Coccidioides spp. infection and various related fungal pathogens to provide speculation on Coccidioides immunity.
Collapse
Affiliation(s)
- Anh L. Diep
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA, United States
| | - Katrina K. Hoyer
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA, United States
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California Merced, Merced, CA, United States
| |
Collapse
|
4
|
Abstract
Since its description nearly 130 years ago, hundreds of studies have deepened our understanding of coccidioidomycosis, also known as valley fever (VF), and provided useful diagnostic tests and treatments for the disease caused by the dimorphic fungi Coccidioides spp. In general, most of the literature has addressed well-established infections and has described patients who have experienced major complications. In contrast, little attention has been given to the earliest consequences of the pathogen-host interaction and its implications for disease manifestation, progression, and resolution. The purpose of this review is to highlight published studies on early coccidioidomycosis, identify gaps in our knowledge, and suggest new or former research areas that might be or remain fertile ground for insight into the early stages of this invasive fungal disease.
Collapse
|
5
|
Sil A, Andrianopoulos A. Thermally Dimorphic Human Fungal Pathogens--Polyphyletic Pathogens with a Convergent Pathogenicity Trait. Cold Spring Harb Perspect Med 2014; 5:a019794. [PMID: 25384771 PMCID: PMC4526722 DOI: 10.1101/cshperspect.a019794] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fungi are adept at changing their cell shape and developmental program in response to signals in their surroundings. Here we focus on a group of evolutionarily related fungal pathogens of humans known as the thermally dimorphic fungi. These organisms grow in a hyphal form in the environment but shift their morphology drastically within a mammalian host. Temperature is one of the main host signals that initiates their conversion to the "host" form and is sufficient in the laboratory to trigger establishment of this host-adapted developmental program. Here we discuss the major human pathogens in this group, which are Blastomyces dermatiditis, Coccidioides immitis/posadasii, Histoplasma capsulatum, Paracoccidioides brasiliensis/lutzii, Sporothrix schenckii, and Talaromyces marneffei (formerly known as Penicillium marneffei). The majority of these organisms are primary pathogens, with the ability to cause disease in healthy humans who encounter them in endemic areas.
Collapse
Affiliation(s)
- Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Alex Andrianopoulos
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3-GENES GENOMES GENETICS 2013; 3:1997-2014. [PMID: 24062530 PMCID: PMC3815061 DOI: 10.1534/g3.113.006809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify "phase or cell-state-specific" gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase-encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity.
Collapse
|
7
|
Samils N, Gioti A, Karlsson M, Sun Y, Kasuga T, Bastiaans E, Wang Z, Li N, Townsend JP, Johannesson H. Sex-linked transcriptional divergence in the hermaphrodite fungus Neurospora tetrasperma. Proc Biol Sci 2013; 280:20130862. [PMID: 23782882 PMCID: PMC3712418 DOI: 10.1098/rspb.2013.0862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the filamentous ascomycete Neurospora tetrasperma, a large (approx. 7 Mbp) region of suppressed recombination surrounds the mating-type (mat) locus. While the remainder of the genome is largely homoallelic, this region of recombinational suppression, extending over 1500 genes, is associated with sequence divergence. Here, we used microarrays to examine how the molecular phenotype of gene expression level is linked to this divergent region, and thus to the mating type. Culturing N. tetrasperma on agar media that induce sexual/female or vegetative/male tissue, we found 196 genes significantly differentially expressed between mat A and mat a mating types. Our data show that the genes exhibiting mat-linked expression are enriched in the region genetically linked to mating type, and sequence and expression divergence are positively correlated. Our results indicate that the phenotype of mat A strains is optimized for traits promoting sexual/female development and the phenotype of mat a strains for vegetative/male development. This discovery of differentially expressed genes associated with mating type provides a link between genotypic and phenotypic divergence in this taxon and illustrates a fungal analogue to sexual dimorphism found among animals and plants.
Collapse
Affiliation(s)
- Nicklas Samils
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 75007 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Marty AJ, Wüthrich M, Carmen JC, Sullivan TD, Klein BS, Cuomo CA, Gauthier GM. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling. Fungal Genet Biol 2013; 56:1-8. [PMID: 23499858 DOI: 10.1016/j.fgb.2013.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/15/2013] [Accepted: 03/03/2013] [Indexed: 11/30/2022]
Abstract
Blastomyces dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in vivo transcriptional profiling is hindered by the low abundance of fungal cells relative to mammalian tissue and difficulty in isolating fungal cells from the tissues they infect. For the purpose of obtaining B. dermatitidis RNA for in vivo transcriptional analysis by RNA-Seq, we developed a simple technique for isolating yeast from murine lung tissue. Using a two-step approach of filtration and centrifugation following lysis of murine lung cells, 91% of yeast cells causing infection were isolated from lung tissue. B. dermatitidis recovered from the lung yielded high-quality RNA with minimal murine contamination and was suitable for RNA-Seq. Approximately 87% of the sequencing reads obtained from the recovered yeast aligned with the B. dermatitidis genome. This was similar to 93% alignment for yeast grown in vitro. The use of near-freezing temperature along with short ex vivo time minimized transcriptional changes that would have otherwise occurred with higher temperature or longer processing time. In conclusion, we have developed a technique that recovers the majority of yeast causing pulmonary infection and yields high-quality fungal RNA with minimal contamination by mammalian RNA.
Collapse
Affiliation(s)
- Amber J Marty
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - Madison, 1550 Linden Drive, Microbial Sciences Building, Room 4335A, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
McBride RC, Boucher N, Park DS, Turner PE, Townsend JP. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res 2013; 13:162-79. [PMID: 23122216 DOI: 10.1111/1567-1364.12019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Viruses that infect fungi have a ubiquitous distribution and play an important role in structuring fungal communities. Most of these viruses have an unusual life history in that they are propagated exclusively via asexual reproduction or fission of fungal cells. This asexual mode of transmission intimately ties viral reproductive success to that of its fungal host and should select for viruses that have minimal deleterious impact on the fitness of their hosts. Accordingly, viral infections of fungi frequently do not measurably impact fungal growth, and in some instances, increase the fitness of the fungal host. Here we determine the impact of the loss of coinfection by LA virus and the virus-like particle M1 upon global gene expression of the fungal host Saccharomyces cerevisiae and provide evidence supporting the idea that coevolution has selected for viral infection minimally impacting host gene expression.
Collapse
Affiliation(s)
- Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
10
|
Whiston E, Zhang Wise H, Sharpton TJ, Jui G, Cole GT, Taylor JW. Comparative transcriptomics of the saprobic and parasitic growth phases in Coccidioides spp. PLoS One 2012; 7:e41034. [PMID: 22911737 PMCID: PMC3401177 DOI: 10.1371/journal.pone.0041034] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/17/2012] [Indexed: 11/18/2022] Open
Abstract
Coccidioides immitis and C. posadasii, the causative agents of coccidioidomycosis, are dimorphic fungal pathogens, which grow as hyphae in the saprobic phase in the environment and as spherules in the parasitic phase in the mammalian host. In this study, we use comparative transcriptomics to identify gene expression differences between the saprobic and parasitic growth phases. We prepared Illumina mRNA sequencing libraries for saprobic-phase hyphae and parasitic-phase spherules in vitro for C. immitis isolate RS and C. posadasii isolate C735 in biological triplicate. Of 9,910 total predicted genes in Coccidioides, we observed 1,298 genes up-regulated in the saprobic phase of both C. immitis and C. posadasii and 1,880 genes up-regulated in the parasitic phase of both species. Comparing the saprobic and parasitic growth phases, we observed considerable differential expression of cell surface-associated genes, particularly chitin-related genes. We also observed differential expression of several virulence factors previously identified in Coccidioides and other dimorphic fungal pathogens. These included alpha (1,3) glucan synthase, SOWgp, and several genes in the urease pathway. Furthermore, we observed differential expression in many genes predicted to be under positive selection in two recent Coccidioides comparative genomics studies. These results highlight a number of genes that may be crucial to dimorphic phase-switching and virulence in Coccidioides. These observations will impact priorities for future genetics-based studies in Coccidioides and provide context for studies in other fungal pathogens.
Collapse
Affiliation(s)
- Emily Whiston
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.
| | | | | | | | | | | |
Collapse
|
11
|
Rosso LC, Finetti-Sialer MM, Hirsch PR, Ciancio A, Kerry BR, Clark IM. Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia. Appl Microbiol Biotechnol 2011; 90:1981-94. [PMID: 21541788 DOI: 10.1007/s00253-011-3282-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 11/26/2022]
Abstract
Expression profiles were identified in the fungus Pochonia chlamydosporia, a biological control agent of plant parasitic nematodes, through a cDNA-amplified fragment length polymorphism approach. Two isolates with different host ranges, IMI 380407 and IMI 331547, were assayed in conditions of saprotrophic-to-parasitic transition, through in vitro assays. Gene expression profiles from three different nutritional conditions and four sampling times were generated, with eggs of host nematodes Globodera pallida and Meloidogyne incognita. Expression of transcripts changed in RNA fingerprints obtained under different nutritional stresses (starvation in presence/absence of eggs, or rich growth media). Transcript derived fragments (TDFs) obtained from the expression profiles corresponded to 6,800 products. A subset was sequenced and their expression profile confirmed through RT PCR. A total of 57 TDFs were selected for further analysis, based on similarities to translated or annotated sequences. Genes expressed during egg parasitism for both IMI 380407 and IMI 331547 were involved in metabolic functions, cellular signal regulation, cellular transport, regulation of gene expression, DNA repair, and other unknown functions. Multivariate analysis of TDF expression showed three groups for IMI 380407 and one for IMI 331547, each characterized by expression of genes related to eggs parasitism. Common amplification profiles among TDF clusters from both isolates also reflected a pool of constitutive genes, not affected by the nutritional conditions and nematode associations, related to general metabolic functions. The differential expression of parasitism related genes suggest a network of induced/repressed products, playing a role in fungal signaling and infection, with partial overlaps in host infection and parasitism traits.
Collapse
Affiliation(s)
- Laura C Rosso
- Istituto per la Protezione delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 165/A, Bari, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F, Heitman J, Dromer F, Nielsen K. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 2010; 6:e1000953. [PMID: 20585559 PMCID: PMC2887476 DOI: 10.1371/journal.ppat.1000953] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/12/2010] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.
Collapse
Affiliation(s)
- Laura H. Okagaki
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anna K. Strain
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Judith N. Nielsen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline Charlier
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
| | - Nicholas J. Baltes
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fabrice Chrétien
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
- Faculté de médecine; Université Paris XII; APHP Hôpital Henri Mondor and INSERM U955 team10, Paris, France
| | - Joseph Heitman
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Françoise Dromer
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
| | - Kirsten Nielsen
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
13
|
Hodgins-Davis A, Townsend JP. Evolving gene expression: from G to E to GxE. Trends Ecol Evol 2009; 24:649-58. [PMID: 19699549 PMCID: PMC2805859 DOI: 10.1016/j.tree.2009.06.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 12/21/2022]
Abstract
Analyses of gene expression data sets for multiple individuals and species promise to shed light on the mode of evolution of gene expression. However, complementary complexities challenge this goal. Characterization of the genetic variation underlying gene expression can easily be compromised by lack of environmental control. Conversely, the breadth of conclusions from studies of environmental effects has been limited by the use of single strains. Controlled studies have hinted at extensive genexenvironment interaction. Thus, both genetics and environment are key components in models of the evolution of gene expression. We review the literature on the evolution of gene expression in terms of genetics (G), environmental response (E) and GxE interactions to make this conceptual point.
Collapse
Affiliation(s)
- Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
14
|
Normandeau E, Hutchings JA, Fraser DJ, Bernatchez L. Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evol Appl 2009; 2:489-503. [PMID: 25567894 PMCID: PMC3352448 DOI: 10.1111/j.1752-4571.2009.00074.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/29/2022] Open
Abstract
Because of intrinsic differences in their genetic architectures, wild populations invaded by domesticated individuals could experience population-specific consequences following introgression by genetic material of domesticated origin. Expression levels of 16 000 transcripts were quantified by microarrays in liver tissue from farm, wild, and farm-wild backcross (i.e. F1 farm-wild hybrid × wild; total n = 50) Atlantic salmon (Salmo salar) raised under common environmental conditions. The wild populations and farm strain originated from three North American rivers in eastern Canada (Stewiacke, Tusket, and Saint John rivers, respectively). Analysis of variance revealed 177 transcripts with different expression levels among the five strains compared. Five times more of these transcripts were differentiated between farmed parents and Tusket backcrosses (n = 53) than between Stewiacke backcrosses and their farmed parents (n = 11). Altered biological processes in backcrosses also differed between populations both in number and in the type of processes impacted (metabolism vs immunity). Over-dominant gene expression regulation in backcrosses varied considerably between populations (23% in Stewiacke vs 44% in Tusket). Hence, the consequences of introgression of farm genetic material on gene expression depended on population-specific genetic architectures. These results support the need to evaluate impacts of farm-wild genetic interactions at the population scale.
Collapse
Affiliation(s)
| | | | - Dylan J Fraser
- Department of Biology, Dalhousie University Halifax, Nova Scotia, Canada
| | | |
Collapse
|
15
|
Monteiro JP, Clemons KV, Mirels LF, Coller JA, Wu TD, Shankar J, Lopes CR, Stevens DA. Genomic DNA microarray comparison of gene expression patterns in Paracoccidioides brasiliensis mycelia and yeasts in vitro. MICROBIOLOGY-SGM 2009; 155:2795-2808. [PMID: 19406900 DOI: 10.1099/mic.0.027441-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paracoccidioides brasiliensis is a thermally dimorphic fungus, and causes the most prevalent systemic mycosis in Latin America. Infection is initiated by inhalation of conidia or mycelial fragments by the host, followed by further differentiation into the yeast form. Information regarding gene expression by either form has rarely been addressed with respect to multiple time points of growth in culture. Here, we report on the construction of a genomic DNA microarray, covering approximately 25 % of the genome of the organism, and its utilization in identifying genes and gene expression patterns during growth in vitro. Cloned, amplified inserts from randomly sheared genomic DNA (gDNA) and known control genes were printed onto glass slides to generate a microarray of over 12,000 elements. To examine gene expression, mRNA was extracted and amplified from mycelial or yeast cultures grown in semi-defined medium for 5, 8 and 14 days. Principal components analysis and hierarchical clustering indicated that yeast gene expression profiles differed greatly from those of mycelia, especially at earlier time points, and that mycelial gene expression changed less than gene expression in yeasts over time. Genes upregulated in yeasts were found to encode proteins shown to be involved in methionine/cysteine metabolism, respiratory and metabolic processes (of sugars, amino acids, proteins and lipids), transporters (small peptides, sugars, ions and toxins), regulatory proteins and transcription factors. Mycelial genes involved in processes such as cell division, protein catabolism, nucleotide biosynthesis and toxin and sugar transport showed differential expression. Sequenced clones were compared with Histoplasma capsulatum and Coccidioides posadasii genome sequences to assess potentially common pathways across species, such as sulfur and lipid metabolism, amino acid transporters, transcription factors and genes possibly related to virulence. We also analysed gene expression with time in culture and found that while transposable elements and components of respiratory pathways tended to increase in expression with time, genes encoding ribosomal structural proteins and protein catabolism tended to sharply decrease in expression over time, particularly in yeast. These findings expand our knowledge of the different morphological forms of P. brasiliensis during growth in culture.
Collapse
Affiliation(s)
- Jomar Patrício Monteiro
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA.,Genetics Department, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | - Karl V Clemons
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Laurence F Mirels
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - John A Coller
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA, USA
| | - Thomas D Wu
- Bioinformatics Department, Genentech, Inc., South San Francisco, CA, USA
| | - Jata Shankar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Catalina R Lopes
- Genetics Department, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | - David A Stevens
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| |
Collapse
|
16
|
Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Appl Environ Microbiol 2008; 74:4366-80. [PMID: 18502925 DOI: 10.1128/aem.00285-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative nonribosomal peptide synthetase (NPS) gene, MaNPS1. Four of six gene disruption mutants identified were examined further. Chemical analyses showed the presence of serinocyclins, cyclic heptapeptides, in the extracts of conidia of control strains, whereas the compounds were undetectable in DeltaManps1 mutants treated identically or in other developmental stages, suggesting that MaNPS1 encodes a serinocyclin synthetase. Production of the cyclic depsipeptide destruxins, M. anisopliae metabolites also predicted to be synthesized by an NPS, was similar in DeltaManps1 mutant and control strains, indicating that MaNPS1 does not contribute to destruxin biosynthesis. Surprisingly, a MaNPS1 fragment detected DNA polymorphisms that correlated with relative destruxin levels produced in vitro, and MaNPS1 was expressed concurrently with in vitro destruxin production. DeltaManps1 mutants exhibited in vitro development and responses to external stresses comparable to control strains. No detectable differences in pathogenicity of the DeltaManps1 mutants were observed in bioassays against beet armyworm and Colorado potato beetle in comparison to control strains. This is the first report of targeted disruption of a secondary metabolite gene in M. anisopliae, which revealed a novel cyclic peptide spore factor.
Collapse
|
17
|
Heitman J, Howlett B. Fungal horizons: The Asilomar Fungal Genetics Conference 2007. Fungal Genet Biol 2008; 45:77-83. [DOI: 10.1016/j.fgb.2007.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
|
18
|
Crawford JM, Vagstad AL, Ehrlich KC, Townsend CA. Starter unit specificity directs genome mining of polyketide synthase pathways in fungi. Bioorg Chem 2008; 36:16-22. [PMID: 18215412 DOI: 10.1016/j.bioorg.2007.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 11/03/2007] [Accepted: 11/07/2007] [Indexed: 11/26/2022]
Abstract
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce.
Collapse
Affiliation(s)
- Jason M Crawford
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
19
|
Maranhão FCA, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog 2007; 43:166-72. [PMID: 17590307 DOI: 10.1016/j.micpath.2007.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
Trichophyton rubrum is a cosmopolitan and anthropophilic fungus able to invade keratinized tissue, causing infection in human skin and nails. This work evaluated the changes in the extracellular pH during its growth in keratin (after 6, 12, 24, 48, 72h and 7 days) at initial pH 5.0. We observed a gradual increase of basal pH under keratin exposure when compared to glucose condition. Also, we identified 576T. rubrum transcripts differentially expressed by subtractive suppression hybridization (SSH) using conidia cultivated for 72h in keratin as tester, and cultivated in glucose as driver. The over-expression of 238 transcripts obtained under keratin condition was confirmed by macro-array dot-blot, revealing 28 unigenes. Putative proteins encoded by these genes showed similarity to fungi proteins involved in basic metabolism, growth and virulence, i.e., transporters ABC-MDR, MFS and ATPase of copper, NIMA interactive protein, Gag-Pol polyprotein, virulence factors serine-protease subtilisin and metalloprotease, cytochrome P450, GlcN-6-phosphate deaminase and Hsp30. The upregulation of T. rubrum genes encoding subtilisin, metalloprotease and Gag-Pol polyprotein was also validated by northern blot. The results of this study provide the first insight into genes differentially expressed during T. rubrum grown in keratin that may be involved in fungal pathogenesis.
Collapse
Affiliation(s)
- Fernanda C A Maranhão
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
20
|
Abstract
Experimental models of coccidioidomycosis performed using various laboratory animals have been, and remain, a critical component of elucidation and understanding of the pathogenesis and host resistance to infection with Coccidioides spp., as well as to development of more efficacious antifungal therapies. The general availability of genetically defined strains, immunological reagents, ease of handling, and costs all contribute to the use of mice as the primary laboratory animal species for models of this disease. Five types of murine models are studied and include primary pulmonary disease, intraperitoneal with dissemination, intravenous infection emulating systemic disease, and intracranial or intrathecal infection emulating meningeal disease. Each of these models has been used to examine various aspects of host resistance, pathogenesis, or antifungal therapy. Other rodent species, such as rat, have been used much less frequently. A rabbit model of meningeal disease, established by intracisternal infection, has proven to model human meningitis well. This model is useful in studies of host response, as well as in therapy studies. A variety of other animal species including dogs, primates, and guinea pigs have been used to study host response and vaccine efficacy. However, cost and increased needs of animal care and husbandry are limitations that influence the use of the larger animal species.
Collapse
Affiliation(s)
- Karl V Clemons
- Division of Infectious Diseases, Santa Clara Valley Medical Center, 751 South Bascom Ave., San Jose, CA 95128-2699, USA.
| | | | | |
Collapse
|