1
|
Mi D, Yanatori I, Zheng H, Kong Y, Hirayama T, Toyokuni S. Association of poly( rC)-binding protein-2 with sideroflexin-3 through TOM20 as an iron entry pathway to mitochondria. Free Radic Res 2024; 58:261-275. [PMID: 38599240 DOI: 10.1080/10715762.2024.2340711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.
Collapse
Affiliation(s)
- Danyang Mi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| |
Collapse
|
2
|
Attwood MM, Schiöth HB. Characterization of Five Transmembrane Proteins: With Focus on the Tweety, Sideroflexin, and YIP1 Domain Families. Front Cell Dev Biol 2021; 9:708754. [PMID: 34350187 PMCID: PMC8327215 DOI: 10.3389/fcell.2021.708754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More than half of the 58 proteins identified with the 5TM architecture belong to 12 families with two or more members. Interestingly, more than half the proteins in the dataset function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this dataset in large contrast with other TM groups. The three major 5TM families, which comprise nearly 30% of the dataset, include the tweety family, the sideroflexin family and the Yip1 domain (YIPF) family. We also analyzed the evolutionary origin of these three families. The YIPF family appears to be the most ancient with presence in bacteria and archaea, while the tweety and sideroflexin families are first found in eukaryotes. We found no evidence of common decent for these three families. About 30% of the 5TM proteins have prominent expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumor types. Nearly 10% of the 5TMs are still not fully characterized and further investigation of their functional activities and expression is warranted. This study provides the first comprehensive analysis of proteins with the 5TM architecture, providing details of their unique characteristics.
Collapse
Affiliation(s)
- Misty M Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Tifoun N, De las Heras JM, Guillaume A, Bouleau S, Mignotte B, Le Floch N. Insights into the Roles of the Sideroflexins/SLC56 Family in Iron Homeostasis and Iron-Sulfur Biogenesis. Biomedicines 2021; 9:103. [PMID: 33494450 PMCID: PMC7911444 DOI: 10.3390/biomedicines9020103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Sideroflexins (SLC56 family) are highly conserved multi-spanning transmembrane proteins inserted in the inner mitochondrial membrane in eukaryotes. Few data are available on their molecular function, but since their first description, they were thought to be metabolite transporters probably required for iron utilization inside the mitochondrion. Such as numerous mitochondrial transporters, sideroflexins remain poorly characterized. The prototypic member SFXN1 has been recently identified as the previously unknown mitochondrial transporter of serine. Nevertheless, pending questions on the molecular function of sideroflexins remain unsolved, especially their link with iron metabolism. Here, we review the current knowledge on sideroflexins, their presumed mitochondrial functions and the sparse-but growing-evidence linking sideroflexins to iron homeostasis and iron-sulfur cluster biogenesis. Since an imbalance in iron homeostasis can be detrimental at the cellular and organismal levels, we also investigate the relationship between sideroflexins, iron and physiological disorders. Investigating Sideroflexins' functions constitutes an emerging research field of great interest and will certainly lead to the main discoveries of mitochondrial physio-pathology.
Collapse
Affiliation(s)
- Nesrine Tifoun
- LGBC, UVSQ, Université Paris-Saclay, 78000 Versailles, France; (N.T.); (J.M.D.l.H.); (A.G.); (S.B.); (B.M.)
| | - José M. De las Heras
- LGBC, UVSQ, Université Paris-Saclay, 78000 Versailles, France; (N.T.); (J.M.D.l.H.); (A.G.); (S.B.); (B.M.)
| | - Arnaud Guillaume
- LGBC, UVSQ, Université Paris-Saclay, 78000 Versailles, France; (N.T.); (J.M.D.l.H.); (A.G.); (S.B.); (B.M.)
| | - Sylvina Bouleau
- LGBC, UVSQ, Université Paris-Saclay, 78000 Versailles, France; (N.T.); (J.M.D.l.H.); (A.G.); (S.B.); (B.M.)
| | - Bernard Mignotte
- LGBC, UVSQ, Université Paris-Saclay, 78000 Versailles, France; (N.T.); (J.M.D.l.H.); (A.G.); (S.B.); (B.M.)
- École Pratique des Hautes Études, PSL University, 75014 Paris, France
| | - Nathalie Le Floch
- LGBC, UVSQ, Université Paris-Saclay, 78000 Versailles, France; (N.T.); (J.M.D.l.H.); (A.G.); (S.B.); (B.M.)
- GCGP Department, IUT de Vélizy/Rambouillet, UVSQ, Université Paris-Saclay, 78120 Rambouillet, France
| |
Collapse
|
4
|
Palomba M, Cipriani P, Giulietti L, Levsen A, Nascetti G, Mattiucci S. Differences in Gene Expression Profiles of Seven Target Proteins in Third-Stage Larvae of Anisakis simplex (Sensu Stricto) by Sites of Infection in Blue Whiting ( Micromesistius poutassou). Genes (Basel) 2020; 11:genes11050559. [PMID: 32429519 PMCID: PMC7288290 DOI: 10.3390/genes11050559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
The third-stage larvae of the parasitic nematode genus Anisakis tend to encapsulate in different tissues including the musculature of fish. Host tissue penetration and degradation involve both mechanic processes and the production of proteins encoded by an array of genes. Investigating larval gene profiles during the fish infection has relevance in understanding biological traits in the parasite’s adaptive ability to cope with the fish hosts’ defense responses. The present study aimed to investigate the gene expression levels of some proteins in L3 of A. simplex (s.s.) infecting different tissues of blue whiting Micromesistius poutassou, a common fish host of the parasite in the NE Atlantic. The following genes encoding for Anisakis spp. proteins were studied: Kunitz-type trypsin inhibitor (TI), hemoglobin (hb), glycoprotein (GP), trehalase (treh), zinc metallopeptidase 13 (nas 13), ubiquitin-protein ligase (hyd) and sideroflexin 2 (sfxn 2). Significant differences in gene transcripts (by quantitative real-time PCR, qPCR) were observed in larvae located in various tissues of the fish host, with respect to the control. ANOVA analysis showed that relative gene expression levels of the seven target genes in the larvae are linked to the infection site in the fish host. Genes encoding some of the target proteins seem to be involved in the host tissue migration and survival of the parasite in the hostile target tissues of the fish host.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Paolo Cipriani
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway; (P.C.); (L.G.); (A.L.)
| | - Lucilla Giulietti
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway; (P.C.); (L.G.); (A.L.)
| | - Arne Levsen
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway; (P.C.); (L.G.); (A.L.)
| | - Giuseppe Nascetti
- Department of Biological and Ecological Sciences, Tuscia University, 01100 Viterbo, Italy;
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-0649914894
| |
Collapse
|
5
|
Paul BT, Tesfay L, Winkler CR, Torti FM, Torti SV. Sideroflexin 4 affects Fe-S cluster biogenesis, iron metabolism, mitochondrial respiration and heme biosynthetic enzymes. Sci Rep 2019; 9:19634. [PMID: 31873120 PMCID: PMC6928202 DOI: 10.1038/s41598-019-55907-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sideroflexin4 (SFXN4) is a member of a family of nuclear-encoded mitochondrial proteins. Rare germline mutations in SFXN4 lead to phenotypic characteristics of mitochondrial disease including impaired mitochondrial respiration and hematopoetic abnormalities. We sought to explore the function of this protein. We show that knockout of SFXN4 has profound effects on Fe-S cluster formation. This in turn diminishes mitochondrial respiratory chain complexes and mitochondrial respiration and causes a shift to glycolytic metabolism. SFXN4 knockdown reduces the stability and activity of cellular Fe-S proteins, affects iron metabolism by influencing the cytosolic aconitase-IRP1 switch, redistributes iron from the cytosol to mitochondria, and impacts heme synthesis by reducing levels of ferrochelatase and inhibiting translation of ALAS2. We conclude that SFXN4 is essential for normal functioning of mitochondria, is necessary for Fe-S cluster biogenesis and iron homeostasis, and plays a critical role in mitochondrial respiration and synthesis of heme.
Collapse
Affiliation(s)
- Bibbin T Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Lia Tesfay
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - C R Winkler
- Institute for Critical Technology and Applied Science, Nanoscale Characterization and Fabrication Laboratory, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
6
|
Kory N, Wyant GA, Prakash G, Uit de Bos J, Bottanelli F, Pacold ME, Chan SH, Lewis CA, Wang T, Keys HR, Guo YE, Sabatini DM. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 2019; 362:362/6416/eaat9528. [PMID: 30442778 DOI: 10.1126/science.aat9528] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism generates the one-carbon units required to synthesize many critical metabolites, including nucleotides. The pathway has cytosolic and mitochondrial branches, and a key step is the entry, through an unknown mechanism, of serine into mitochondria, where it is converted into glycine and formate. In a CRISPR-based genetic screen in human cells for genes of the mitochondrial pathway, we found sideroflexin 1 (SFXN1), a multipass inner mitochondrial membrane protein of unclear function. Like cells missing mitochondrial components of one-carbon metabolism, those null for SFXN1 are defective in glycine and purine synthesis. Cells lacking SFXN1 and one of its four homologs, SFXN3, have more severe defects, including being auxotrophic for glycine. Purified SFXN1 transports serine in vitro. Thus, SFXN1 functions as a mitochondrial serine transporter in one-carbon metabolism.
Collapse
Affiliation(s)
- Nora Kory
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Gregory A Wyant
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Gyan Prakash
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Jelmi Uit de Bos
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Francesca Bottanelli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael E Pacold
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.,Department of Radiation Oncology at NYU Langone Medical Center, New York, NY 10016, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Yang Eric Guo
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Mon EE, Wei FY, Ahmad RNR, Yamamoto T, Moroishi T, Tomizawa K. Regulation of mitochondrial iron homeostasis by sideroflexin 2. J Physiol Sci 2018; 69:359-373. [PMID: 30570704 PMCID: PMC6373408 DOI: 10.1007/s12576-018-0652-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
Mitochondrial iron is indispensable for heme biosynthesis and iron–sulfur cluster assembly. Several mitochondrial transmembrane proteins have been implicated to function in the biosynthesis of heme and iron–sulfur clusters by transporting reaction intermediates. However, several mitochondrial proteins related to iron metabolism remain uncharacterized. Here, we show that human sideroflexin 2 (SFXN2), a member of the SFXN protein family, is involved in mitochondrial iron metabolism. SFXN2 is an evolutionarily conserved protein that localized to mitochondria via its transmembrane domain. SFXN2-knockout (KO) cells had an increased mitochondrial iron content, which was associated with decreases in the heme content and heme-dependent enzyme activities. By contrast, the activities of iron–sulfur cluster-dependent enzymes were unchanged in SFXN2-KO cells. Moreover, abnormal iron metabolism impaired mitochondrial respiration in SFXN2-KO cells and accelerated iron-mediated death of these cells. Our findings demonstrate that SFXN2 functions in mitochondrial iron metabolism by regulating heme biosynthesis.
Collapse
Affiliation(s)
- Ei Ei Mon
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan.
| | - Raja Norazireen Raja Ahmad
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takahiro Yamamoto
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan. .,Neutron Therapy Research Center, Okayama University, Okayama, 700-8558, Japan.
| |
Collapse
|
8
|
Wang D, Wu D, Yang X, Hong J. Transcriptomic analysis of thermotolerant yeastKluyveromyces marxianusin multiple inhibitors tolerance. RSC Adv 2018; 8:14177-14192. [PMID: 35540752 PMCID: PMC9079866 DOI: 10.1039/c8ra00335a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022] Open
Abstract
Global transcriptional response ofK. marxianusto multiple inhibitors including acetic acid, phenols, furfural and HMF at 42 °C.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Dan Wu
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiaoxue Yang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiong Hong
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
9
|
Identification of Novel SCIRR69-Interacting Proteins During ER Stress Using SILAC-Immunoprecipitation Quantitative Proteomics Approach. Neuromolecular Med 2016; 19:81-93. [PMID: 27488499 DOI: 10.1007/s12017-016-8431-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
Spinal cord injury and regeneration-related protein #69 (SCIRR69),also known as cAMP-responsive element-binding protein 3-like 2, belongs to the CREB/ATF family, some members of which play significant roles in ER stress. However, it is still not fully elucidated whether SCIRR69 involves in ER stress and its biochemical and functional roles during ER stress. In this study, we firstly treated fetal rat spinal cord neuron cells (SCN) and PC12 cells with ER stress activator thapsigargin (TG) or tunicamycin (TM) and then detected the expression pattern of SCIRR69 in response to ER stress at mRNA and protein levels using real-time PCR assay and immunoblotting. Results showed that the expression pattern of SCIRR69 was largely consistent with those of ER stress marker (ATF6, BIP and CHOP) at either mRNA level or protein level, implying that SCIRR69 may play important roles in ER stress. Subsequently, we used stable isotope labeling by amino acids in cell culture (SILAC)-immunoprecipitation quantitative proteomics to identify interaction partners of SCIRR69 during TG-induced ER stress in PC12 cells and found that transitional endoplasmic reticulum ATPase (TERA) and sideroflexin-1 (SFXN1) were potential SCIRR69-interacting proteins. The interaction between SCIRR69 and TERA or SFXN1 was validated using co-immunoprecipitation. Those results provide some clues for novel signaling nexuses that made by interactions between SCIRR69 and TERA or SFXN1. Our findings may facilitate a better understanding of the fundamental functions of SCIRR69 during ER stress.
Collapse
|
10
|
Sahu SN, Lewis J, Patel I, Bozdag S, Lee JH, Sprando R, Cinar HN. Genomic analysis of stress response against arsenic in Caenorhabditis elegans. PLoS One 2013; 8:e66431. [PMID: 23894281 PMCID: PMC3722197 DOI: 10.1371/journal.pone.0066431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 05/08/2013] [Indexed: 11/25/2022] Open
Abstract
Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.
Collapse
Affiliation(s)
- Surasri N. Sahu
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Jada Lewis
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Isha Patel
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Serdar Bozdag
- Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Jeong H. Lee
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- Kyungpook National University (KNU), Daegu, South Korea
| | - Robert Sprando
- Division of Toxicology, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail: (RS); (HNC)
| | - Hediye Nese Cinar
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail: (RS); (HNC)
| |
Collapse
|
11
|
Fowler S, Akins M, Zhou H, Figeys D, Bennett SA. The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. J Proteome Res 2013; 12:2597-610. [PMID: 23590695 PMCID: PMC3714164 DOI: 10.1021/pr301166p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Connexins are the structural subunits of gap junctions and act as protein platforms for signaling complexes. Little is known about tissue-specific connexin signaling nexuses, given significant challenges associated with affinity-purifying endogenous channel complexes to the level required for interaction analyses. Here, we used multiple subcellular fractionation techniques to isolate connexin32-enriched membrane microdomains from murine liver. We show, for the first time, that connexin32 localizes to both the plasma membrane and inner mitochondrial membrane of hepatocytes. Using a combination of immunoprecipitation-high throughput mass spectrometry, reciprocal co-IP, and subcellular fractionation methodologies, we report a novel interactome validated using null mutant controls. Eighteen connexin32 interacting proteins were identified. The majority represent resident mitochondrial proteins, a minority represent plasma membrane, endoplasmic reticulum, or cytoplasmic partners. In particular, connexin32 interacts with connexin26 and the mitochondrial protein, sideroflexin-1, at the plasma membrane. Connexin32 interaction enhances connexin26 stability. Converging bioinformatic, biochemical, and confocal analyses support a role for connexin32 in transiently tethering mitochondria to connexin32-enriched plasma membrane microdomains through interaction with proteins in the outer mitochondrial membrane, including sideroflexin-1. Complex formation increases the pool of sideroflexin-1 that is present at the plasma membrane. Together, these data identify a novel plasma membrane/mitochondrial signaling nexus in the connexin32 interactome.
Collapse
Affiliation(s)
- Stephanie
L. Fowler
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark Akins
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai,
China
| | - Daniel Figeys
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steffany A.L. Bennett
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Kutuzov MA, Andreeva AV. Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life. Funct Integr Genomics 2011; 12:11-23. [DOI: 10.1007/s10142-011-0254-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 12/12/2022]
|
13
|
Marobbio CMT, Giannuzzi G, Paradies E, Pierri CL, Palmieri F. alpha-Isopropylmalate, a leucine biosynthesis intermediate in yeast, is transported by the mitochondrial oxalacetate carrier. J Biol Chem 2008; 283:28445-53. [PMID: 18682385 DOI: 10.1074/jbc.m804637200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, alpha-isopropylmalate (alpha-IPM), which is produced in mitochondria, must be exported to the cytosol where it is required for leucine biosynthesis. Recombinant and reconstituted mitochondrial oxalacetate carrier (Oac1p) efficiently transported alpha-IPM in addition to its known substrates oxalacetate, sulfate, and malonate and in contrast to other di- and tricarboxylate transporters as well as the previously proposed alpha-IPM transporter. Transport was saturable with a half-saturation constant of 75 +/- 4 microm for alpha-IPM and 0.31 +/- 0.04 mm for beta-IPM and was inhibited by the substrates of Oac1p. Though not transported, alpha-ketoisocaproate, the immediate precursor of leucine in the biosynthetic pathway, inhibited Oac1p activity competitively. In contrast, leucine, alpha-ketoisovalerate, valine, and isoleucine neither inhibited nor were transported by Oac1p. Consistent with the function of Oac1p as an alpha-IPM transporter, cells lacking the gene for this carrier required leucine for optimal growth on fermentable carbon sources. Single deletions of other mitochondrial carrier genes or of LEU4, which is the only other enzyme that can provide the cytosol with alpha-IPM (in addition to Oac1p) exhibited no growth defect, whereas the double mutant DeltaOAC1DeltaLEU4 did not grow at all on fermentable substrates in the absence of leucine. The lack of growth of DeltaOAC1DeltaLEU4 cells was partially restored by adding the leucine biosynthetic cytosolic intermediates alpha-ketoisocaproate and alpha-IPM to these cells as well as by complementing them with one of the two unknown human mitochondrial carriers SLC25A34 and SLC25A35. Oac1p is important for leucine biosynthesis on fermentable carbon sources catalyzing the export of alpha-IPM, probably in exchange for oxalacetate.
Collapse
Affiliation(s)
- Carlo M T Marobbio
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|