1
|
Replicative Aging Remodels the Cell Wall and Is Associated with Increased Intracellular Trafficking in Human Pathogenic Yeasts. mBio 2021; 13:e0019022. [PMID: 35164553 PMCID: PMC8844920 DOI: 10.1128/mbio.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replicative aging is an underexplored field of research in medical mycology. Cryptococcus neoformans (Cn) and Candida glabrata (Cg) are dreaded fungal pathogens that cause fatal invasive infections. The fungal cell wall is essential for yeast viability and pathogenesis. In this study, we provide data characterizing age-associated modifications to the cell wall of Cn and Cg. Here, we report that old yeast cells upregulate genes of cell wall biosynthesis, leading to cell wall reorganization and increased levels of all major components, including glucan, chitin, and its derivatives, as well as mannan. This results in a significant thickening of the cell wall in aged cells. Old-generation yeast cells exhibited drastic ultrastructural changes, including the presence of abundant vesicle-like particles in the cytoplasm, and enlarged vacuoles with altered pH homeostasis. Our findings suggest that the cell wall modifications could be enabled by augmented intracellular trafficking. This work furthers our understanding of the cell phenotype that emerges during aging. It highlights differences in these two fungal pathogens and elucidates mechanisms that explain the enhanced resistance of old cells to antifungals and phagocytic attacks. IMPORTANCE Cryptococcus neoformans and Candida glabrata are two opportunistic human fungal pathogens that cause life-threatening diseases. During infection, both microorganisms have the ability to persist for long periods, and treatment failure can occur even if standard testing identifies the yeasts to be sensitive to antifungals. Replicative life span is a trait that is measured by the number of divisions a cell undergoes before death. Aging in fungi is associated with enhanced tolerance to antifungals and resistance to phagocytosis, and characterization of old cells may help identify novel antifungal targets. The cell wall remains an attractive target for new therapies because it is essential for fungi and is not present in humans. This study shows that the organization of the fungal cell wall changes remarkably during aging and becomes thicker and is associated with increased intracellular trafficking as well as the alteration of vacuole morphology and pH homeostasis.
Collapse
|
2
|
Beattie SR, Schnicker NJ, Murante T, Kettimuthu K, Williams NS, Gakhar L, Krysan DJ. Benzothiourea Derivatives Target the Secretory Pathway of the Human Fungal Pathogen Cryptococcus neoformans. ACS Infect Dis 2020; 6:529-539. [PMID: 32070095 DOI: 10.1021/acsinfecdis.9b00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cryptococcus neoformans is one of the most important human fungal pathogens and causes life-threatening meningoencephalitis in immunocompromised patients. The current gold standard therapy for C. neoformans meningoencephalitis is based on medications that are over 50 years old and is not readily available in regions with high disease burden. Here, we report the mycologic, mechanistic, and pharmacologic characterization of a set of benzothioureas with highly selective fungicidal activity against C. neoformans. In addition, to direct antifungal activity, benzothioureas inhibit C. neoformans virulence traits. On the basis of a set of phenotypic, biochemical, and biophysical assays, the benzothioureas (BTUs) inhibit the late secretory pathway (post-Golgi), possibly through a direct interaction with Sav1, an orthologue of the Sec4-class small GTPase. Importantly, pharmacological characterization of the BTUs indicates it readily penetrates the blood-brain barrier. Together, our data support the further development of this scaffold as an antifungal agent with a novel mechanism of action against C. neoformans.
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, 25 South Grand Avenue, Iowa City, Iowa 52245, United States
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52245, United States
| | - Thomas Murante
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Kavitha Kettimuthu
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Noelle S. Williams
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Lokesh Gakhar
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52245, United States
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52245, United States
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, 25 South Grand Avenue, Iowa City, Iowa 52245, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 25 South Grand Avenue, Iowa City, Iowa 52245, United States
| |
Collapse
|
3
|
Wang ZA, Li LX, Doering TL. Unraveling synthesis of the cryptococcal cell wall and capsule. Glycobiology 2019; 28:719-730. [PMID: 29648596 DOI: 10.1093/glycob/cwy030] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/28/2018] [Indexed: 11/15/2022] Open
Abstract
Fungal pathogens cause devastating infections in millions of individuals each year, representing a huge but underappreciated burden on human health. One of these, the opportunistic fungus Cryptococcus neoformans, kills hundreds of thousands of patients annually, disproportionately affecting people in resource-limited areas. This yeast is distinguished from other pathogenic fungi by a polysaccharide capsule that is displayed on the cell surface. The capsule consists of two complex polysaccharide polymers: a mannan substituted with xylose and glucuronic acid, and a galactan with galactomannan side chains that bear variable amounts of glucuronic acid and xylose. The cell wall, with which the capsule is associated, is a matrix of alpha and beta glucans, chitin, chitosan, and mannoproteins. In this review, we focus on synthesis of the wall and capsule, both of which are critical for the ability of this microbe to cause disease and are distinct from structures found in either model yeasts or the mammals afflicted by this infection. Significant research effort over the last few decades has been applied to defining the synthetic machinery of these two structures, including nucleotide sugar metabolism and transport, glycosyltransferase activities, polysaccharide export, and assembly and association of structural elements. Discoveries in this area have elucidated fundamental biology and may lead to novel targets for antifungal therapy. In this review, we summarize the progress made in this challenging and fascinating area, and outline future research questions.
Collapse
Affiliation(s)
- Zhuo A Wang
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| |
Collapse
|
4
|
Esher SK, Ost KS, Kohlbrenner MA, Pianalto KM, Telzrow CL, Campuzano A, Nichols CB, Munro C, Wormley FL, Alspaugh JA. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLoS Pathog 2018; 14:e1007126. [PMID: 29864141 PMCID: PMC6002136 DOI: 10.1371/journal.ppat.1007126] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/14/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022] Open
Abstract
The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.
Collapse
Affiliation(s)
- Shannon K. Esher
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Kyla S. Ost
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Maria A. Kohlbrenner
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Kaila M. Pianalto
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Calla L. Telzrow
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Althea Campuzano
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Connie B. Nichols
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Carol Munro
- MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Floyd L. Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - J. Andrew Alspaugh
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
5
|
Hu G, Caza M, Bakkeren E, Kretschmer M, Bairwa G, Reiner E, Kronstad J. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2017; 19. [PMID: 28061020 DOI: 10.1111/cmi.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 12/29/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans delivers virulence factors such as capsule polysaccharide to the cell surface to cause disease in vertebrate hosts. In this study, we screened for mutants sensitive to the secretion inhibitor brefeldin A to identify secretory pathway components that contribute to virulence. We identified an ortholog of the cell division control protein 50 (Cdc50) family of the noncatalytic subunit of type IV P-type ATPases (flippases) that establish phospholipid asymmetry in membranes and function in vesicle-mediated trafficking. We found that a cdc50 mutant in C. neoformans was defective for survival in macrophages, attenuated for virulence in mice and impaired in iron acquisition. The mutant also showed increased sensitivity to drugs associated with phospholipid metabolism (cinnamycin and miltefosine), the antifungal drug fluconazole and curcumin, an iron chelator that accumulates in the endoplasmic reticulum. Cdc50 is expected to function with catalytic subunits of flippases, and we previously documented the involvement of the flippase aminophospholipid translocases (Apt1) in virulence factor delivery. A comparison of phenotypes with mutants defective in genes encoding candidate flippases (designated APT1, APT2, APT3, and APT4) revealed similarities primarily between cdc50 and apt1 suggesting a potential functional interaction. Overall, these results highlight the importance of membrane composition and homeostasis for the ability of C. neoformans to cause disease.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erik Bakkeren
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Institute of Microbiology, Zurich, Switzerland
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Gaurav Bairwa
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ethan Reiner
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Albuquerque PC, Cordero RJB, Fonseca FL, Peres da Silva R, Ramos CL, Miranda KR, Casadevall A, Puccia R, Nosanchuk JD, Nimrichter L, Guimaraes AJ, Rodrigues ML. A Paracoccidioides brasiliensis glycan shares serologic and functional properties with cryptococcal glucuronoxylomannan. Fungal Genet Biol 2012; 49:943-54. [PMID: 23010152 DOI: 10.1016/j.fgb.2012.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 01/04/2023]
Abstract
The cell wall of the yeast form of the dimorphic fungus Paracoccidioides brasiliensis is enriched with α1,3-glucans. In Cryptococcus neoformans, α1,3-glucans interact with glucuronoxylomannan (GXM), a heteropolysaccharide that is essential for fungal virulence. In this study, we investigated the occurrence of P. brasiliensis glycans sharing properties with cryptococcal GXM. Protein database searches in P. brasiliensis revealed the presence of sequences homologous to those coding for enzymes involved in the synthesis of GXM and capsular architecture in C. neoformans. In addition, monoclonal antibodies (mAbs) raised to cryptococcal GXM bound to P. brasiliensis cells. Using protocols that were previously established for extraction and analysis of C. neoformans GXM, we recovered a P. brasiliensis glycan fraction composed of mannose and galactose, in addition to small amounts of glucose, xylose and rhamnose. In comparison with the C. neoformans GXM, the P. brasiliensis glycan fraction components had smaller molecular dimensions. The P. brasiliensis components, nevertheless, reacted with different GXM-binding mAbs. Extracellular vesicle fractions of P. brasiliensis also reacted with a GXM-binding mAb, suggesting that the polysaccharide-like molecule is exported to the extracellular space in secretory vesicles. An acapsular mutant of C. neoformans incorporated molecules from the P. brasiliensis extract onto the cell wall, resulting in the formation of surface networks that resembled the cryptococcal capsule. Coating the C. neoformans acapsular mutant with the P. brasiliensis glycan fraction resulted in protection against phagocytosis by murine macrophages. These results suggest that P. brasiliensis and C. neoformans share metabolic pathways required for the synthesis of similar polysaccharides and that P. brasiliensis yeast cell walls have molecules that mimic certain aspects of C. neoformans GXM. These findings are important because they provide additional evidence for the sharing of antigenically similar components across phylogenetically distant fungal species. Since GXM has been shown to be important for the pathogenesis of C. neoformans and to elicit protective antibodies, the finding of similar molecules in P. brasiliensis raises the possibility that these glycans play similar functions in paracoccidiomycosis.
Collapse
Affiliation(s)
- Priscila C Albuquerque
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rodrigues ML, Nosanchuk JD, Schrank A, Vainstein MH, Casadevall A, Nimrichter L. Vesicular transport systems in fungi. Future Microbiol 2012; 6:1371-81. [PMID: 22082294 DOI: 10.2217/fmb.11.112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Canonical and unconventional mechanisms of secretion in many eukaryotic cells are relatively well known. In contrast to the situation in animal cells, mechanisms of secretion in fungi must include the capacity for trans-cell wall passage of macromolecules to the extracellular space. Although these mechanisms remain somewhat elusive, several studies in recent years have suggested that vesicular transport is required for trans-cell wall secretion of large molecules. Several fungal molecules, including proteins, lipids, polysaccharides and pigments, are released to the extracellular space in vesicles. In pathogenic fungi, a number of these vesicular components are associated with fungal virulence. Indeed, extracellular vesicles produced by fungi can interfere with the immunomodulatory activity of host cells. Fungal vesicles share many functional aspects with mammalian exosomes and extracellular vesicles produced by bacteria, plants and protozoa, but their cellular origin remains unknown. Here, we discuss the involvement of vesicular transport systems in fungal physiology and pathogenesis, making parallels with the mammalian, bacterial, protozoan and plant cell literature.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Lessons from Cryptococcal Laccase: From Environmental Saprophyte to Pathogen. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. Mycopathologia 2011; 173:407-18. [PMID: 21898146 DOI: 10.1007/s11046-011-9468-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 01/10/2023]
Abstract
Secretion pathways in fungi are essential for the maintenance of cell wall architecture and for the export of a number of virulence factors. In the fungal pathogen, Cryptococcus neoformans, much evidence supports the existence of more than one route taken by secreted molecules to reach the cell periphery and extracellular space, and a significant degree of crosstalk between conventional and non-conventional secretion routes. The need for such complexity may be due to differences in the nature of the exported cargo, the spatial and temporal requirements for constitutive and non-constitutive protein secretion, and/or as a means of compensating for the extra burden on the secretion machinery imposed by the elaboration of the polysaccharide capsule. This review focuses on the role of specific components of the C. neoformans secretion machinery in protein and/or polysaccharide export, including Sec4, Sec6, Sec14, Golgi reassembly and stacking protein and extracellular exosome-like vesicles. We also address what is known about traffic of the lipid, glucosylceramide, a target of therapeutic antibodies and an important regulator of C. neoformans pathogenicity, and the role of signalling pathways in the regulation of secretion.
Collapse
|
10
|
Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ, Geddes JMH, Hu G, Jung WH, Kretschmer M, Saikia S, Wang J. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 2011; 9:193-203. [PMID: 21326274 DOI: 10.1038/nrmicro2522] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcus neoformans is generally considered to be an opportunistic fungal pathogen because of its tendency to infect immunocompromised individuals, particularly those infected with HIV. However, this view has been challenged by the recent discovery of specialized interactions between the fungus and its mammalian hosts, and by the emergence of the related species Cryptococcus gattii as a primary pathogen of immunocompetent populations. In this Review, we highlight features of cryptococcal pathogens that reveal their adaptation to the mammalian environment. These features include not only remarkably sophisticated interactions with phagocytic cells to promote intracellular survival, dissemination to the central nervous system and escape, but also surprising morphological and genomic adaptations such as the formation of polyploid giant cells in the lung.
Collapse
Affiliation(s)
- James W Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Oliveira DL, Nimrichter L, Miranda K, Frases S, Faull KF, Casadevall A, Rodrigues ML. Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Fungal Genet Biol 2009; 46:956-63. [PMID: 19747978 DOI: 10.1016/j.fgb.2009.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 01/19/2023]
Abstract
Cryptococcus neoformans is an encapsulated pathogenic fungus. The cryptococcal capsule is composed of polysaccharides and is necessary for virulence. It has been previously reported that glucuronoxylomannan (GXM), the major capsular component, is synthesized in cytoplasmic compartments and transported to the extracellular space in vesicles, but knowledge on the organelles involved in polysaccharide synthesis and traffic is extremely limited. In this paper we report the GXM distribution in C. neoformans cells sectioned by cryoultramicrotomy and visualized by transmission electron microscopy (TEM) and polysaccharide immunogold staining. Cryosections of fungal cells showed high preservation of intracellular organelles and cell wall structure. Incubation of cryosections with an antibody to GXM revealed that cytoplasmic structures associated to vesicular compartments and reticular membranes are in close proximity to the polysaccharide. GXM was generally found in association with the membrane of intracellular compartments and within different layers of the cell wall. Analysis of extracellular fractions from cryptococcal supernatants by transmission electron microscopy in combination with serologic, chromatographic and spectroscopic methods revealed fractions containing GXM and lipids. These results indicate an intimate association of GXM and lipids in both intracellular and extracellular spaces consistent with polysaccharide synthesis and transport in membrane-associated structures.
Collapse
Affiliation(s)
- Débora L Oliveira
- Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | | | | | | | | | | | | |
Collapse
|