1
|
Cheong JH, Qiu X, Liu Y, Krach E, Guo Y, Bhusal S, Schüttler HB, Arnold J, Mao L. The clock in growing hyphae and their synchronization in Neurospora crassa. Commun Biol 2024; 7:735. [PMID: 38890525 PMCID: PMC11189396 DOI: 10.1038/s42003-024-06429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Utilizing a microfluidic chip with serpentine channels, we inoculated the chip with an agar plug with Neurospora crassa mycelium and successfully captured individual hyphae in channels. For the first time, we report the presence of an autonomous clock in hyphae. Fluorescence of a mCherry reporter gene driven by a clock-controlled gene-2 promoter (ccg-2p) was measured simultaneously along hyphae every half an hour for at least 6 days. We entrained single hyphae to light over a wide range of day lengths, including 6,12, 24, and 36 h days. Hyphae tracked in individual serpentine channels were highly synchronized (K = 0.60-0.78). Furthermore, hyphae also displayed temperature compensation properties, where the oscillation period was stable over a physiological range of temperatures from 24 °C to 30 °C (Q10 = 1.00-1.10). A Clock Tube Model developed could mimic hyphal growth observed in the serpentine chip and provides a mechanism for the stable banding patterns seen in race tubes at the macroscopic scale and synchronization through molecules riding the growth wave in the device.
Collapse
Affiliation(s)
- Jia Hwei Cheong
- Chemistry Department, University of Georgia, Athens, GA, 30602, USA
| | - Xiao Qiu
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Yang Liu
- Chemistry Department, University of Georgia, Athens, GA, 30602, USA
| | - Emily Krach
- Genetics Department, University of Georgia, Athens, GA, 30602, USA
| | - Yinping Guo
- Genetics Department, University of Georgia, Athens, GA, 30602, USA
| | - Shishir Bhusal
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | | | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, 30602, USA.
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Wang Z, Bartholomai BM, Loros JJ, Dunlap JC. Optimized fluorescent proteins for 4-color and photoconvertible live-cell imaging in Neurospora crassa. Fungal Genet Biol 2023; 164:103763. [PMID: 36481248 PMCID: PMC10501358 DOI: 10.1016/j.fgb.2022.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Fungal cells are quite unique among life in their organization and structure, and yet implementation of many tools recently developed for fluorescence imaging in animal systems and yeast has been slow in filamentous fungi. Here we present analysis of properties of fluorescent proteins in Neurospora crassa as well as describing genetic tools for the expression of these proteins that may be useful beyond cell biology applications. The brightness and photostability of ten different fluorescent protein tags were compared in a well-controlled system; six different promoters are described for the assessment of the fluorescent proteins and varying levels of expression, as well as a customizable bidirectional promoter system. We present an array of fluorescent proteins suitable for use across the visible light spectrum to allow for 4-color imaging, in addition to a photoconvertible fluorescent protein that enables a change in the color of a small subset of proteins in the cell. These tools build on the rich history of cell biology research in filamentous fungi and provide new tools to help expand research capabilities.
Collapse
Affiliation(s)
- Ziyan Wang
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Bradley M Bartholomai
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Jennifer J Loros
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH, USA
| | - Jay C Dunlap
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA.
| |
Collapse
|
3
|
Cheong JH, Qiu X, Liu Y, Al-Omari A, Griffith J, Schüttler HB, Mao L, Arnold J. The macroscopic limit to synchronization of cellular clocks in single cells of Neurospora crassa. Sci Rep 2022; 12:6750. [PMID: 35468928 PMCID: PMC9039089 DOI: 10.1038/s41598-022-10612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe determined the macroscopic limit for phase synchronization of cellular clocks in an artificial tissue created by a “big chamber” microfluidic device to be about 150,000 cells or less. The dimensions of the microfluidic chamber allowed us to calculate an upper limit on the radius of a hypothesized quorum sensing signal molecule of 13.05 nm using a diffusion approximation for signal travel within the device. The use of a second microwell microfluidic device allowed the refinement of the macroscopic limit to a cell density of 2166 cells per fixed area of the device for phase synchronization. The measurement of averages over single cell trajectories in the microwell device supported a deterministic quorum sensing model identified by ensemble methods for clock phase synchronization. A strong inference framework was used to test the communication mechanism in phase synchronization of quorum sensing versus cell-to-cell contact, suggesting support for quorum sensing. Further evidence came from showing phase synchronization was density-dependent.
Collapse
|
4
|
Identifying a stochastic clock network with light entrainment for single cells of Neurospora crassa. Sci Rep 2020; 10:15168. [PMID: 32938998 PMCID: PMC7495483 DOI: 10.1038/s41598-020-72213-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022] Open
Abstract
Stochastic networks for the clock were identified by ensemble methods using genetic algorithms that captured the amplitude and period variation in single cell oscillators of Neurospora crassa. The genetic algorithms were at least an order of magnitude faster than ensemble methods using parallel tempering and appeared to provide a globally optimum solution from a random start in the initial guess of model parameters (i.e., rate constants and initial counts of molecules in a cell). The resulting goodness of fit [Formula: see text] was roughly halved versus solutions produced by ensemble methods using parallel tempering, and the resulting [Formula: see text] per data point was only [Formula: see text] = 2,708.05/953 = 2.84. The fitted model ensemble was robust to variation in proxies for "cell size". The fitted neutral models without cellular communication between single cells isolated by microfluidics provided evidence for only one Stochastic Resonance at one common level of stochastic intracellular noise across days from 6 to 36 h of light/dark (L/D) or in a D/D experiment. When the light-driven phase synchronization was strong as measured by the Kuramoto (K), there was degradation in the single cell oscillations away from the stochastic resonance. The rate constants for the stochastic clock network are consistent with those determined on a macroscopic scale of 107 cells.
Collapse
|
5
|
Caranica C, Cheong JH, Qiu X, Krach EK, Deng Z, Mao L, Schüttler HB, Arnold J. What is Phase in Cellular Clocks? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:169-178. [PMID: 31249477 PMCID: PMC6585513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four inter-related measures of phase are described to study the phase synchronization of cellular oscillators, and computation of these measures is described and illustrated on single cell fluorescence data from the model filamentous fungus, Neurospora crassa. One of these four measures is the phase shift ϕ in a sinusoid of the form x(t) = A(cos(ωt + ϕ), where t is time. The other measures arise by creating a replica of the periodic process x(t) called the Hilbert transform x̃(t), which is 90 degrees out of phase with the original process x(t). The second phase measure is the phase angle FH(t) between the replica x̃(t) and x(t), taking values between -π and π. At extreme values the Hilbert Phase is discontinuous, and a continuous form FC(t) of the Hilbert Phase is used, measuring time on the nonnegative real axis (t). The continuous Hilbert Phase FC(t) is used to define the phase MC(t1,t0) for an experiment beginning at time t0 and ending at time t1. In that phase differences at time t0 are often of ancillary interest, the Hilbert Phase FC(t0) is subtracted from FC(t1). This difference is divided by 2π to obtain the phase MC(t1,t0) in cycles. Both the Hilbert Phase FC(t) and the phase MC(t1,t0) are functions of time and useful in studying when oscillators phase-synchronize in time in signal processing and circadian rhythms in particular. The phase of cellular clocks is fundamentally different from circadian clocks at the macroscopic scale because there is an hourly cycle superimposed on the circadian cycle.
Collapse
Affiliation(s)
| | - Jia H. Cheong
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA
| | - Xiao Qiu
- Institute of Bioinformatics, University of Georgia, Athens, GA
| | | | - Zhaojie Deng
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA
| | | | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA,To whom all correspondence should be addressed: Jonathan Arnold, Genetics Dept., University of Georgia, Athens, GA 30602; Tel: 706-542-1449, Fax: 706-542-3910,
| |
Collapse
|
6
|
Caranica C, Al-Omari A, Deng Z, Griffith J, Nilsen R, Mao L, Arnold J, Schüttler HB. Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa. PLoS One 2018; 13:e0196435. [PMID: 29768444 PMCID: PMC5955539 DOI: 10.1371/journal.pone.0196435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022] Open
Abstract
A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.
Collapse
Affiliation(s)
- C. Caranica
- Department of Statistics, University of Georgia, Athens, Georgia
| | - A. Al-Omari
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid, Jordan
| | - Z. Deng
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia
| | - J. Griffith
- Genetics Department, University of Georgia, Athens, Georgia
- College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| | - R. Nilsen
- Genetics Department, University of Georgia, Athens, Georgia
| | - L. Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia
| | - J. Arnold
- Genetics Department, University of Georgia, Athens, Georgia
- * E-mail:
| | - H.-B. Schüttler
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia
| |
Collapse
|
7
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Starr TL, Gonçalves AP, Meshgin N, Glass NL. The major cellulases CBH-1 and CBH-2 of Neurospora crassa rely on distinct ER cargo adaptors for efficient ER-exit. Mol Microbiol 2017; 107:229-248. [PMID: 29131484 DOI: 10.1111/mmi.13879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Filamentous fungi are native secretors of lignocellulolytic enzymes and are used as protein-producing factories in the industrial biotechnology sector. Despite the importance of these organisms in industry, relatively little is known about the filamentous fungal secretory pathway or how it might be manipulated for improved protein production. Here, we use Neurospora crassa as a model filamentous fungus to interrogate the requirements for trafficking of cellulase enzymes from the endoplasmic reticulum to the Golgi. We characterized the localization and interaction properties of the p24 and ERV-29 cargo adaptors, as well as their role in cellulase enzyme trafficking. We find that the two most abundantly secreted cellulases, CBH-1 and CBH-2, depend on distinct ER cargo adaptors for efficient exit from the ER. CBH-1 depends on the p24 proteins, whereas CBH-2 depends on the N. crassa homolog of yeast Erv29p. This study provides a first step in characterizing distinct trafficking pathways of lignocellulolytic enzymes in filamentous fungi.
Collapse
Affiliation(s)
- Trevor L Starr
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA
| | - A Pedro Gonçalves
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA.,Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Neeka Meshgin
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA.,Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA.,Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Brunson JK, Griffith J, Bowles D, Case ME, Arnold J. lac-1 and lag-1 with ras-1 affect aging and the biological clock in Neurospora crassa. Ecol Evol 2016; 6:8341-8351. [PMID: 28031787 PMCID: PMC5167027 DOI: 10.1002/ece3.2554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Using an automated cell counting technique developed previously (Case et al., Ecology and Evolution 2014; 4: 3494), we explore the lifespan effects of lac‐1, a ceramide synthase gene paralogous to lag‐1 in Neurospora crassa in conjunction with the band bd (ras‐1) gene. We find that the replicative lifespan of a lac‐1KObd double mutants is short, about one race tube cycle, and this double mutant lacks a strong ~21‐hr clock cycle as shown by race tube and fluorometer analysis of fluorescent strains including lac‐1KO. This short replicative lifespan phenotype is contrasted with a very long estimated chronological lifespan for lac‐1KObd double mutants from 247 to 462 days based on our regression analyses on log viability, and for the single mutant lac‐1KO, 161 days. Both of these estimated lifespans are much higher than that of previously studied WT and bd single mutant strains. In a lac‐1 rescue and induction experiment, the expression of lac‐1+ as driven by a quinic acid‐dependent promoter actually decreases the median chronological lifespan of cells down to only 7 days, much lower than the 34‐day median lifespan found in control bd conidia also grown on quinic acid media, which we interpret as an effect of balancing selection acting on ceramide levels based on previous findings from the literature. Prior work has shown phytoceramides can act as a signal for apoptosis in stressed N. crassa cells. To test this hypothesis of balancing selection on phytoceramide levels, we examine the viability of WT, lag‐1KObd, and lac‐1KObd strains following the dual stresses of heat and glycolysis inhibition, along with phytoceramide treatments of different dosages. We find that the phytoceramide dosage–response curve is altered in the lag‐1KObd mutant, but not in the lac‐1KObd mutant. We conclude that phytoceramide production is responsible for the previously reported longevity effects in the lag‐1KObd mutant, but a different ceramide may be responsible for the longevity effect observed in the lac‐1KObd mutant.
Collapse
Affiliation(s)
- John K Brunson
- Center for Marine Biotechnology and Biomedicine J. Craig Venter Institute-West Coast Campus University of California San Diego Scripps Institution of Oceanography La Jolla CA USA
| | - James Griffith
- College of Agricultural and Environmental Sciences University of Georgia Athens GA USA; Genetics Department University of Georgia Athens GA USA
| | | | - Mary E Case
- Genetics Department University of Georgia Athens GA USA
| | | |
Collapse
|
10
|
Deng Z, Arsenault S, Caranica C, Griffith J, Zhu T, Al-Omari A, Schüttler HB, Arnold J, Mao L. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa. Sci Rep 2016; 6:35828. [PMID: 27786253 PMCID: PMC5082370 DOI: 10.1038/srep35828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype.
Collapse
Affiliation(s)
- Zhaojie Deng
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sam Arsenault
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Cristian Caranica
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - James Griffith
- Genetics Department, University of Georgia, Athens, GA 30602, USA.,College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Taotao Zhu
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ahmad Al-Omari
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid, 21163, Jordan
| | | | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA 30602, USA
| | - Leidong Mao
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Bratsun DA, Merkuriev DV, Zakharov AP, Pismen LM. Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. J Biol Phys 2016; 42:107-32. [PMID: 26293211 PMCID: PMC4713406 DOI: 10.1007/s10867-015-9395-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/17/2015] [Indexed: 12/17/2022] Open
Abstract
We propose a multiscale chemo-mechanical model of cancer tumor development in epithelial tissue. The model is based on the transformation of normal cells into a cancerous state triggered by a local failure of spatial synchronization of the circadian rhythm. The model includes mechanical interactions and a chemical signal exchange between neighboring cells, as well as a division of cells and intercalation that allows for modification of the respective parameters following transformation into the cancerous state. The numerical simulations reproduce different dephasing patterns--spiral waves and quasistationary clustering, with the latter being conducive to cancer formation. Modification of mechanical properties reproduces a distinct behavior of invasive and localized carcinoma.
Collapse
Affiliation(s)
- D A Bratsun
- Theoretical Physics Department, Perm State Humanitarian Pedagogical University, 614990, Perm, Russia
| | - D V Merkuriev
- Department of Hospital Pediatrics, Perm State Medical Academy, 614990, Perm, Russia
| | - A P Zakharov
- Department of Chemical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - L M Pismen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
12
|
Temperature compensation and temperature sensation in the circadian clock. Proc Natl Acad Sci U S A 2015; 112:E6284-92. [PMID: 26578788 DOI: 10.1073/pnas.1511215112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway.
Collapse
|
13
|
Wirsing L, Klawonn F, Sassen WA, Lünsdorf H, Probst C, Hust M, Mendel RR, Kruse T, Jänsch L. Linear Discriminant Analysis Identifies Mitochondrially Localized Proteins in Neurospora crassa. J Proteome Res 2015. [PMID: 26215788 DOI: 10.1021/acs.jproteome.5b00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides their role as powerhouses, mitochondria play a pivotal role in the spatial organization of numerous enzymatic functions. They are connected to the ER, and many pathways are organized through the mitochondrial membranes. Thus, the precise definition of mitochondrial proteomes remains a challenging task. Here, we have established a proteomic strategy to accurately determine the mitochondrial localization of proteins from the fungal model organism Neurospora crassa. This strategy relies on both highly pure mitochondria as well as the quantitative monitoring of mitochondrial components along their consecutive enrichment. Pure intact mitochondria were obtained by a multistep approach combining differential and density Percoll (ultra) centrifugations. When compared with three other intermediate enrichment stages, peptide sequencing and quantitative profiling of pure mitochondrial fractions revealed prototypic regulatory profiles of per se mitochondrial components. These regulatory profiles constitute a distinct cluster defining the mitochondrial compartment and support linear discriminant analyses, which rationalized the annotation process. In total, this approach experimentally validated the mitochondrial localization of 512 proteins including 57 proteins that had not been reported for N. crassa before.
Collapse
Affiliation(s)
- Lisette Wirsing
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences , 38302 Wolfenbüttel, Germany
| | | | | | | | | | | | | | - Lothar Jänsch
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany
| |
Collapse
|
14
|
Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa. EUKARYOTIC CELL 2015; 14:265-77. [PMID: 25595444 DOI: 10.1128/ec.00233-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion.
Collapse
|
15
|
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 2014; 10:e1004783. [PMID: 25412208 PMCID: PMC4238974 DOI: 10.1371/journal.pgen.1004783] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. Cell fusion between genetically identical cells of the fungus Neurospora crassa occurs when germinating asexual cells (conidia) sense each other's proximity and redirect their growth. Chemotropic growth is dependent upon the assembly of a MAPK cascade (NRC-1/MEK-2/MAK-2) at the cell cortex (conidial anastomosis tubes; CATs), followed by disassembly over an ∼8 min cycle. A second protein required for fusion, SO, also assembles and disassembles at CAT tips during chemotropic growth, but with perfectly opposite dynamics to the MAK-2 complex. This process of germling chemotropism, oscillation and cell fusion is regulated by many genes and is poorly understood. Via a phosphoproteomics approach, we identify HAM-5, which functions as a scaffold for the MAK-2 signal transduction complex. HAM-5 is required for assembly/disassembly and oscillation of the MAK-2 complex during chemotropic growth. Our data supports a model whereby regulated modification of HAM-5 controls the disassembly of the MAK-2 MAPK complex and is essential for modulating the tempo of oscillation during chemotropic interactions.
Collapse
|
16
|
Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins. Genetics 2014; 198:895-904. [PMID: 25146971 DOI: 10.1534/genetics.114.168187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic silencing by unpaired DNA (MSUD) is a process that detects unpaired regions between homologous chromosomes and silences them for the duration of sexual development. While the phenomenon of MSUD is well recognized, the process that detects unpaired DNA is poorly understood. In this report, we provide two lines of evidence linking unpaired DNA detection to a physical search for DNA homology. First, we have found that a putative SNF2-family protein (SAD-6) is required for efficient MSUD in Neurospora crassa. SAD-6 is closely related to Rad54, a protein known to facilitate key steps in the repair of double-strand breaks by homologous recombination. Second, we have successfully masked unpaired DNA by placing identical transgenes at slightly different locations on homologous chromosomes. This masking falls apart when the distance between the transgenes is increased. We propose a model where unpaired DNA detection during MSUD is achieved through a spatially constrained search for DNA homology. The identity of SAD-6 as a Rad54 paralog suggests that this process may be similar to the searching mechanism used during homologous recombination.
Collapse
|
17
|
Larrondo LF, Loros JJ, Dunlap JC. High-resolution spatiotemporal analysis of gene expression in real time: in vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 2012; 49:681-3. [PMID: 22695169 DOI: 10.1016/j.fgb.2012.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
Abstract
The pacemaker of the Neurospora circadian clock is composed of a transcriptional-translational feedback loop that has been intensively studied during the last two decades. Invaluable information has been derived from measuring the expression of the central clock component frequency (frq) under liquid culture conditions. Direct analyses of frq mRNA and protein levels on solid media - where overt circadian rhythms are normally visualized - have not been trivial due to technical issues. Nevertheless, a frq promoter-luciferase reporter has recently allowed the study of frq transcription under these conditions. It is known that FRQ undergoes extensive posttranslational modifications, and changes in its levels provide important information regarding the clockworks. Here we describe a FRQ-luciferase translational fusion reporter that directly tracks FRQ levels, granting access to a better understanding and analysis of FRQ dynamics in vivo. More generally the method, which allows the investigator to follow continuous gene expression in real time in a spatially and temporally unrestricted manner, should be widely applicable to analyses of environmentally and developmentally regulated gene expression in ascomycete filamentous fungi as well as in basidiomycetes.
Collapse
Affiliation(s)
- Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | |
Collapse
|
18
|
Bulani SI, Moleleki L, Albertyn J, Moleleki N. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica. AMB Express 2012; 2:27. [PMID: 22608131 PMCID: PMC3441212 DOI: 10.1186/2191-0855-2-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/01/2012] [Indexed: 11/27/2022] Open
Abstract
In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost.
Collapse
Affiliation(s)
- Siyavuya Ishmael Bulani
- Council for Scientific and Industrial Research, CSIR Bioscences, P,O, Box 395, Pretoria, 0001, South Africa.
| | | | | | | |
Collapse
|
19
|
Courdavault V, Millerioux Y, Clastre M, Simkin AJ, Marais E, Crèche J, Giglioli-Guivarc’h N, Papon N. Fluorescent protein fusions in Candida guilliermondii. Fungal Genet Biol 2011; 48:1004-11. [DOI: 10.1016/j.fgb.2011.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
|
20
|
Abstract
Circadian clocks organize our inner physiology with respect to the external world, providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life, except archaebacteria, and within the eukaryotes, the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus N. crassa, and provide an overview of the molecular components and regulation of the circadian clock.
Collapse
|
21
|
Cha J, Yuan H, Liu Y. Regulation of the activity and cellular localization of the circadian clock protein FRQ. J Biol Chem 2011; 286:11469-78. [PMID: 21300798 DOI: 10.1074/jbc.m111.219782] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9040, USA
| | | | | |
Collapse
|
22
|
Lakin-Thomas PL, Bell-Pedersen D, Brody S. The genetics of circadian rhythms in Neurospora. ADVANCES IN GENETICS 2011; 74:55-103. [PMID: 21924975 DOI: 10.1016/b978-0-12-387690-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes our current understanding of the genetics of the Neurospora clock and summarizes the important findings in this area in the past decade. Neurospora is the most intensively studied clock system, and the reasons for this are listed. A discussion of the genetic interactions between clock mutants is included, highlighting the utility of dissecting complex mechanisms by genetic means. The molecular details of the Neurospora circadian clock mechanism are described, as well as the mutations that affect the key clock proteins, FRQ, WC-1, and WC-2, with an emphasis on the roles of protein phosphorylation. Studies on additional genes affecting clock properties are described and place these genes into two categories: those that affect the FRQ/WCC oscillator and those that do not. A discussion of temperature compensation and the mutants affecting this property is included. A section is devoted to the observations pertinent to the existence of other oscillators in this organism with respect to their properties, their effects, and their preliminary characterization. The output of the clock and the control of clock-controlled genes are discussed, emphasizing the phasing of these genes and the layers of control. In conclusion, the authors provide an outlook summarizing their suggestions for areas that would be fruitful for further exploration.
Collapse
|
23
|
Of switches and hourglasses: regulation of subcellular traffic in circadian clocks by phosphorylation. EMBO Rep 2010; 11:927-35. [PMID: 21052092 DOI: 10.1038/embor.2010.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/21/2010] [Indexed: 01/26/2023] Open
Abstract
Investigation of the phosphorylation of circadian clock proteins has shown that this modification contributes to circadian timing in all model organisms. Phosphorylation alters the stability, transcriptional activity and subcellular localization of clock proteins during the course of a day, such that time-of-day-specific phosphorylation encodes information for measuring time and is crucial for the establishment of an approximately 24-h period. One main feature of molecular timekeeping is the daytime-specific nuclear accumulation of clock proteins, which can be regulated by phosphorylation. Here, we discuss increasing knowledge of how subcellular shuttling is regulated in circadian clocks, on the basis of recent observations in Neurospora crassa showing that clock proteins undergo maturation through sequential phosphorylation. In this model organism, clock proteins are regulated by the phosphorylation-dependent modulation of rapid shuttling cycles that alter their subcellular localization in a time-of-day-specific manner.
Collapse
|