1
|
Riera-Ferrer E, Del Pozo R, Muñoz-Berruezo U, Palenzuela O, Sitjà-Bobadilla A, Estensoro I, Piazzon MC. Mucosal affairs: glycosylation and expression changes of gill goblet cells and mucins in a fish-polyopisthocotylidan interaction. Front Vet Sci 2024; 11:1347707. [PMID: 38655531 PMCID: PMC11035888 DOI: 10.3389/fvets.2024.1347707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Secreted mucins are highly O-glycosylated glycoproteins produced by goblet cells in mucosal epithelia. They constitute the protective viscous gel layer overlying the epithelia and are involved in pathogen recognition, adhesion and expulsion. The gill polyopisthocotylidan ectoparasite Sparicotyle chrysophrii, feeds on gilthead seabream (Sparus aurata) blood eliciting severe anemia. Methods Control unexposed and recipient (R) gill samples of gilthead seabream experimentally infected with S. chrysophrii were obtained at six consecutive times (0, 11, 20, 32, 41, and 61 days post-exposure (dpe)). In histological samples, goblet cell numbers and their intensity of lectin labelling was registered. Expression of nine mucin genes (muc2, muc2a, muc2b, muc5a/c, muc4, muc13, muc18, muc19, imuc) and three regulatory factors involved in goblet cell differentiation (hes1, elf3, agr2) was studied by qPCR. In addition, differential expression of glycosyltransferases and glycosidases was analyzed in silico from previously obtained RNAseq datasets of S. chrysophrii-infected gilthead seabream gills with two different infection intensities. Results and Discussion Increased goblet cell differentiation (up-regulated elf3 and agr2) leading to neutral goblet cell hyperplasia on gill lamellae of R fish gills was found from 32 dpe on, when adult parasite stages were first detected. At this time point, acute increased expression of both secreted (muc2a, muc2b, muc5a/c) and membrane-bound mucins (imuc, muc4, muc18) occurred in R gills. Mucins did not acidify during the course of infection, but their glycosylation pattern varied towards more complex glycoconjugates with sialylated, fucosylated and branched structures, according to lectin labelling and the shift of glycosyltransferase expression patterns. Gilthead seabream gill mucosal response against S. chrysophrii involved neutral mucus hypersecretion, which could contribute to worm expulsion and facilitate gas exchange to counterbalance parasite-induced hypoxia. Stress induced by the sparicotylosis condition seems to lead to changes in glycosylation characteristic of more structurally complex mucins.
Collapse
Affiliation(s)
| | | | | | | | | | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Castellón, Spain
| | | |
Collapse
|
2
|
Gao L, Jiang Y, Hong K, Chen X, Wu X. Glycosylation of cellulase: a novel strategy for improving cellulase. Crit Rev Biotechnol 2024; 44:191-201. [PMID: 36592990 DOI: 10.1080/07388551.2022.2144117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 01/04/2023]
Abstract
Protein glycosylation is the most complex posttranslational modification process. Most cellulases from filamentous fungi contain N-glycosylation and O-glycosylation. Here, we discuss the potential roles of glycosylation on the characteristics and function of cellulases. The use of certain cultivation, inducer, and alteration of engineering glycosylation pathway can enable the rational control of cellulase glycosylation. Glycosylation does not occur arbitrarily and may tend to modify the 3D structure of cellulases by using specially distributed glycans. Therefore, glycoengineering should be considered comprehensively along with the spatial structure of cellulases. Cellulase glycosylation may be an evolution phenomenon, which has been considered as an economical way for providing different functions from identical proteins. In addition to gene and transcription regulations, glycosylation may be another regulation on the protein expression level. Enhanced understanding of the potential regulatory role of cellulase glycosylation will enable synthetic biology approaches for the development of commercial cellulase.
Collapse
Affiliation(s)
- Le Gao
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yi Jiang
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Kai Hong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoyi Chen
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
3
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
4
|
Dai Z, Pomraning KR, Deng S, Kim J, Campbell KB, Robles AL, Hofstad BA, Munoz N, Gao Y, Lemmon T, Swita MS, Zucker JD, Kim YM, Burnum-Johnson KE, Magnuson JK. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:53. [PMID: 36991437 DOI: 10.1186/s13068-023-02288-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS In this study, the 3-HP β-alanine pathway consisting of aspartate decarboxylase, β-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the β-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional β-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.
Collapse
Affiliation(s)
- Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristen B Campbell
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Marie S Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jeremy D Zucker
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jon K Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
5
|
Liang JX, Chen Q, Gao W, Chen D, Qian XY, Bi JQ, Lin XC, Han BB, Liu JS. A novel glycosylation-related gene signature predicts survival in patients with lung adenocarcinoma. BMC Bioinformatics 2022; 23:562. [PMID: 36575396 PMCID: PMC9793550 DOI: 10.1186/s12859-022-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common malignant tumor that seriously affects human health. Previous studies have indicated that abnormal levels of glycosylation promote progression and poor prognosis of lung cancer. Thus, the present study aimed to explore the prognostic signature related to glycosyltransferases (GTs) for LUAD. METHODS The gene expression profiles were obtained from The Cancer Genome Atlas (TCGA) database, and GTs were obtained from the GlycomeDB database. Differentially expressed GTs-related genes (DGTs) were identified using edge package and Venn diagram. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and ingenuity pathway analysis (IPA) methods were used to investigate the biological processes of DGTs. Subsequently, Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to construct a prognostic model for LUAD. Kaplan-Meier (K-M) analysis was adopted to explore the overall survival (OS) of LUAD patients. The accuracy and specificity of the prognostic model were evaluated by receiver operating characteristic analysis (ROC). In addition, single-sample gene set enrichment analysis (ssGSEA) algorithm was used to analyze the infiltrating immune cells in the tumor environment. RESULTS A total of 48 DGTs were mainly enriched in the processes of glycosylation, glycoprotein biosynthetic process, glycosphingolipid biosynthesis-lacto and neolacto series, and cell-mediated immune response. Furthermore, B3GNT3, MFNG, GYLTL1B, ALG3, and GALNT13 were screened as prognostic genes to construct a risk model for LUAD, and the LUAD patients were divided into high- and low-risk groups. K-M curve suggested that patients with a high-risk score had shorter OS than those with a low-risk score. The ROC analysis demonstrated that the risk model efficiently diagnoses LUAD. Additionally, the proportion of infiltrating aDCs (p < 0.05) and Tgds (p < 0.01) was higher in the high-risk group than in the low-risk group. Spearman's correlation analysis manifested that the prognostic genes (MFNG and ALG3) were significantly correlated with infiltrating immune cells. CONCLUSION In summary, this study established a novel GTs-related risk model for the prognosis of LUAD patients, providing new therapeutic targets for LUAD. However, the biological role of glycosylation-related genes in LUAD needs to be explored further.
Collapse
Affiliation(s)
- Jin-Xiao Liang
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of Banshan East Road, Hangzhou, 310022, Zhejiang Province, Republic of China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Qian Chen
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of Banshan East Road, Hangzhou, 310022, Zhejiang Province, Republic of China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Wei Gao
- School of Medicine, Zhejiang University City College, Hangzhou, People's Republic of China
| | - Da Chen
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of Banshan East Road, Hangzhou, 310022, Zhejiang Province, Republic of China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Xin-Yu Qian
- School of Medicine, Zhejiang University City College, Hangzhou, People's Republic of China
| | - Jin-Qiao Bi
- School of Medicine, Zhejiang University City College, Hangzhou, People's Republic of China
| | - Xing-Chen Lin
- School of Medicine, Zhejiang University City College, Hangzhou, People's Republic of China
| | - Bing-Bing Han
- School of Medicine, Zhejiang University City College, Hangzhou, People's Republic of China
| | - Jin-Shi Liu
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of Banshan East Road, Hangzhou, 310022, Zhejiang Province, Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, People's Republic of China.
| |
Collapse
|
6
|
Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus. Metab Eng Commun 2022; 15:e00203. [PMID: 36065328 PMCID: PMC9440423 DOI: 10.1016/j.mec.2022.e00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity. The Itaconic acid biosynthetic gene cluster is regulated by laeA. LaeA is required for production of itaconic acid. Overexpression of laeA attenuates genes involved in phosphate acquisition. Global regulator engineering increases robustness of itaconic acid production.
Collapse
|
7
|
The N-mannosyltransferase gene BbAlg9 contributes to cell wall integrity, fungal development and the pathogenicity of Beauveria bassiana. Fungal Biol 2021; 125:776-784. [PMID: 34537173 DOI: 10.1016/j.funbio.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
The mannosyltransferase Alg9 plays a vital role in N-linked protein glycosylation in Saccharomyces cerevisiae, but its function in most filamentous fungi is not clear. The present study characterized BbAlg9 (an ortholog of S. cerevisiae Alg9) in Beauveria bassiana to determine the roles of N-mannosyltransferase in biological control potential of the filamentous entomopathogenic fungus. The disruption of BbAlg9 led to slower fungal growth in media with various nutrition compositions. The conidiation of ΔBbAlg9 was less than that of the wild type from the third to the fifth day but showed no significant difference on the sixth day, suggesting that BbAlg9 affects the development of conidia rather than conidial yield of late stage. ΔBbAlg9 showed defects in conidial germination, multiple stress tolerances and the yield of blastospores, with altered size and density, and virulence in hosts infected via the immersion and injection methods. The deletion of BbAlg9 resulted in defects in cell wall integrity, including increased mannoprotein and glucan content and decreased chitin content, which were accompanied by transcriptional activation or suppression of genes related to cell wall component biosynthesis. Notably, deletion of the N-mannosyltransferase BbAlg9 altered the transcription levels of O-mannosyltransferase genes (Pmt and Ktr family). These data show that BbAlg9 is involved in the fungal development, conidial stress tolerance, cell wall integrity and virulence of B. bassiana.
Collapse
|
8
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
9
|
Zubieta MP, Gerhardt JA, Rubio MV, Terrasan CRF, Persinoti GF, Antoniel EP, Contesini FJ, Prade RA, Damasio A. Improvement of homologous GH10 xylanase production by deletion of genes with predicted function in the Aspergillus nidulans secretion pathway. Microb Biotechnol 2020; 13:1245-1253. [PMID: 32212325 PMCID: PMC7264891 DOI: 10.1111/1751-7915.13556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/01/2020] [Indexed: 12/20/2022] Open
Abstract
Filamentous fungi are important cell factories for large-scale enzyme production. However, production levels are often low, and this limitation has stimulated research focusing on the manipulation of genes with predicted function in the protein secretory pathway. This pathway is the major route for the delivery of proteins to the cell exterior, and a positive relationship between the production of recombinant enzymes and the unfolded protein response (UPR) pathway has been observed. In this study, Aspergillus nidulans was exposed to UPR-inducing chemicals and differentially expressed genes were identified by RNA-seq. Twelve target genes were deleted in A. nidulans recombinant strains producing homologous and heterologous GH10 xylanases. The knockout of pbnA (glycosyltransferase), ydjA (Hsp40 co-chaperone), trxA (thioredoxin) and cypA (cyclophilin) improved the production of the homologous xylanase by 78, 171, 105 and 125% respectively. Interestingly, these deletions decreased the overall protein secretion, suggesting that the production of the homologous xylanase was specifically altered. However, the production of the heterologous xylanase and the secretion of total proteins were not altered by deleting the same genes. Considering the results, this approach demonstrated the possibility of rationally increase the production of a homologous enzyme, indicating that trxA, cypA, ydjA and pbnA are involved in protein production by A. nidulans.
Collapse
Affiliation(s)
- Mariane P. Zubieta
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
- Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOKUSA
| | - Jaqueline A. Gerhardt
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Marcelo V. Rubio
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - César R. F. Terrasan
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Gabriela F. Persinoti
- Brazilian Biorenewables National Laboratory (LNBR)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Everton P. Antoniel
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Fabiano J. Contesini
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Rolf A. Prade
- Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOKUSA
| | - André Damasio
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| |
Collapse
|
10
|
Deletion analysis of the itaconic acid biosynthesis gene cluster components in Aspergillus pseudoterreus ATCC32359. Appl Microbiol Biotechnol 2020; 104:3981-3992. [DOI: 10.1007/s00253-020-10418-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023]
|
11
|
Zhou H, Cao T, Li WP, Wu G. Combined expression and prognostic significance of PPFIA1 and ALG3 in head and neck squamous cell carcinoma. Mol Biol Rep 2019; 46:2693-2701. [PMID: 30805892 DOI: 10.1007/s11033-019-04712-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
Abstract
PPFIA family members and ALG3 play important roles in tumorigenesis and tumor progression. However, the exact roles of distinct PPFIA family members and ALG3 in head and neck squamous cell carcinoma (HNSCC) remain unclear. We studied the mRNA expressions of PPFIA family members and ALG3 in a variety of tumor types compared with the normal controls using the Oncomine database along with meta-analyses of their expressions in HNSCC cancer cell line. The mRNA expressions of PPFIA family members and ALG3 in laryngeal squamous cell carcinoma cell line and normal laryngeal cell line were detected by quantitative real-time polymerase chain reaction. Based on the cBioportal database, we further studied mRNA expression alterations and co-occurrence relationships of the PPFIA family members and ALG3 in HNSCC. The relationship between PPFIA1 and ALG3 mRNA expression alterations and prognoses in patients with HNSCC was explored. We found that PPFIA1 and ALG3 were distinctively overexpressed at the mRNA level in HNSCC tissues compared with normal tissues, they had a significant co-occurrence relationship, their mRNA expressions were significantly higher than other PPFIA family members in laryngeal squamous cell carcinoma cell line, and their mRNA expressions were also significantly higher in laryngeal carcinoma cell line than in normal laryngeal cell line. Patients without both PPFIA1 and ALG3 mRNA expression alterations had better overall survival and disease/progression-free survival compared with patients with both PPFIA1 and ALG3 alterations. Based on these findings, PPFIA1 and ALG3 may play roles in oncogene expression in HNSCC. Their combined overexpression is significantly associated with poor survival outcomes. The relationship between them and the mechanism of action in head and neck cancers deserve further investigation.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wen Ping Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Gang Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
12
|
Hacker B, Schultheiß C, Kurzik-Dumke U. Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting in distinct cellular compartments. Hum Mol Genet 2018; 27:4231-4248. [PMID: 30192950 DOI: 10.1093/hmg/ddy315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that the truncated transcripts are not translated. The two main forms hNOT-1/ALG3-1 and -4, distinguishable by alternative exon 1, encode full-length precursors that undergo a complex posttranslational processing. To specifically detect the two full-length hNOT/ALG3 proteins and their distinct derivatives and to examine their expression profiles and cellular location we generated polyclonal antibodies against diverse parts of the putative full-length proteins. We provide experimental evidence for the N-glycosylation of the two precursors. This modification seems to be a prerequisite for their sequential cleavage resulting in derivatives destined to distinct cellular compartments and links them with the N-glycosylation machinery not as its functional component but as molecules functionally dependent on its action. We present the expression profiles and subcellular location of the two full-length proteins, their N-glycosylated forms and distinct cleavage products. Furthermore, using diverse bioinformatics tools, we characterize the properties and predict the 2D and 3D structure of the two proteins and, for comparative purposes, of their Drosophila counterpart.
Collapse
Affiliation(s)
- Benedikt Hacker
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Christoph Schultheiß
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| |
Collapse
|
13
|
Brandl J, Aguilar-Pontes MV, Schäpe P, Noerregaard A, Arvas M, Ram AFJ, Meyer V, Tsang A, de Vries RP, Andersen MR. A community-driven reconstruction of the Aspergillus niger metabolic network. Fungal Biol Biotechnol 2018; 5:16. [PMID: 30275963 PMCID: PMC6158834 DOI: 10.1186/s40694-018-0060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
Background Aspergillus niger is an important fungus used in industrial applications for enzyme and acid production. To enable rational metabolic engineering of the species, available information can be collected and integrated in a genome-scale model to devise strategies for improving its performance as a host organism. Results In this paper, we update an existing model of A. niger metabolism to include the information collected from 876 publications, thereby expanding the coverage of the model by 940 reactions, 777 metabolites and 454 genes. In the presented consensus genome-scale model of A. niger iJB1325 , we integrated experimental data from publications and patents, as well as our own experiments, into a consistent network. This information has been included in a standardized way, allowing for automated testing and continuous improvements in the future. This repository of experimental data allowed the definition of 471 individual test cases, of which the model complies with 373 of them. We further re-analyzed existing transcriptomics and quantitative physiology data to gain new insights on metabolism. Additionally, the model contains 3482 checks on the model structure, thereby representing the best validated genome-scale model on A. niger developed until now. Strain-specific model versions for strains ATCC 1015 and CBS 513.88 have been created containing all data used for model building, thereby allowing users to adopt the models and check the updated version against the experimental data. The resulting model is compliant with the SBML standard and therefore enables users to easily simulate it using their preferred software solution. Conclusion Experimental data on most organisms are scattered across hundreds of publications and several repositories.To allow for a systems level understanding of metabolism, the data must be integrated in a consistent knowledge network. The A. niger iJB1325 model presented here integrates the available data into a highly curated genome-scale model to facilitate the simulation of flux distributions, as well as the interpretation of other genome-scale data by providing the metabolic context. Electronic supplementary material The online version of this article (10.1186/s40694-018-0060-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian Brandl
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Maria Victoria Aguilar-Pontes
- 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Paul Schäpe
- 6Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anders Noerregaard
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Mikko Arvas
- 3VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland.,7Present Address: Finnish Red Cross Blood Service, Helsinki, Finland
| | - Arthur F J Ram
- 5Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vera Meyer
- 6Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Adrian Tsang
- 4Concordia University, 7141 Sherbrooke Street West, H4B1R6 Montreal, Québec Canada
| | - Ronald P de Vries
- 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mikael R Andersen
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Dai Z, Pomraning KR, Deng S, Hofstad BA, Panisko EA, Rodriguez D, Butcher MG, Culley DE, Magnuson JK. Deletion of the KU70 homologue facilitates gene targeting in Lipomyces starkeyi strain NRRL Y-11558. Curr Genet 2018; 65:269-282. [DOI: 10.1007/s00294-018-0875-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
15
|
Boppidi KR, Ribeiro LFC, Iambamrung S, Nelson SM, Wang Y, Momany M, Richardson EA, Lincoln S, Srivastava R, Harris SD, Marten MR. Altered secretion patterns and cell wall organization caused by loss of PodB function in the filamentous fungus Aspergillus nidulans. Sci Rep 2018; 8:11433. [PMID: 30061727 PMCID: PMC6065416 DOI: 10.1038/s41598-018-29615-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 07/12/2018] [Indexed: 12/27/2022] Open
Abstract
Filamentous fungi are widely used in the production of a variety of industrially relevant enzymes and proteins as they have the unique ability to secrete tremendous amounts of proteins. However, the secretory pathways in filamentous fungi are not completely understood. Here, we investigated the role of a mutation in the POlarity Defective (podB) gene on growth, protein secretion, and cell wall organization in Aspergillus nidulans using a temperature sensitive (Ts) mutant. At restrictive temperature, the mutation resulted in lack of biomass accumulation, but led to a significant increase in specific protein productivity. Proteomic analysis of the secretome showed that the relative abundance of 584 (out of 747 identified) proteins was altered due to the mutation. Of these, 517 were secreted at higher levels. Other phenotypic differences observed in the mutant include up-regulation of unfolded protein response (UPR), deformation of Golgi apparatus and uneven cell wall thickness. Furthermore, proteomic analysis of cell wall components in the mutant revealed the presence of intracellular proteins in higher abundance accompanied by lower levels of most cell wall proteins. Taken together, results from this study suggest the importance of PodB as a target when engineering fungal strains for enhanced secretion of valuable biomolecules.
Collapse
Affiliation(s)
- Karthik R Boppidi
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Liliane Fraga Costa Ribeiro
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Sirasa Iambamrung
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Sidney M Nelson
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Yan Wang
- University of Maryland - College Park, Department of Cell Biology and Molecular Genetics, College Park, MD, USA
| | - Michelle Momany
- University of Georgia, Fungal Biology Group and Department of Plant Biology, Athens, GA, USA
| | | | - Stephen Lincoln
- University of Connecticut, Department of Chemical and Biomolecular Engineering, Storrs, CT, USA
| | - Ranjan Srivastava
- University of Connecticut, Department of Chemical and Biomolecular Engineering, Storrs, CT, USA
| | - Steven D Harris
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada
| | - Mark R Marten
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA.
| |
Collapse
|
16
|
Dai Z, Deng S, Culley DE, Bruno KS, Magnuson JK. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species. Appl Microbiol Biotechnol 2017. [DOI: 10.1007/s00253-017-8357-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Xue D, Lin D, Gong C, Peng C, Yao S. Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Xue DS, Liang LY, Zheng G, Lin DQ, Zhang QL, Yao SJ. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Genome-Wide Mapping of Growth-Related Quantitative Trait Loci in Orange-Spotted Grouper (Epinephelus coioides) Using Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq). Int J Mol Sci 2016; 17:501. [PMID: 27058532 PMCID: PMC4848957 DOI: 10.3390/ijms17040501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022] Open
Abstract
Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing (ddRADseq), and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted grouper (Epinephelus coioides) using a regression mapping algorithm. The genetic map contained 24 linkage groups (LGs) spanning a total genetic distance of 1231.98 cM. Twenty-seven significant growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf, sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1) including three (tert, ftz-f1 and notch1) that have been reported to be involved in fish growth. To summarize, we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful in marker-assisted selection (MAS) efforts to improve growth-related traits in this economically important fish.
Collapse
|
20
|
Qu Y, Feng J, Deng S, Cao L, Zhang Q, Zhao R, Zhang Z, Jiang Y, Zink EM, Baker SE, Lipton MS, Paša-Tolić L, Hu JZ, Wu S. Structural analysis of N- and O-glycans using ZIC-HILIC/dialysis coupled to NMR detection. Fungal Genet Biol 2014; 72:207-215. [PMID: 25117693 PMCID: PMC5175459 DOI: 10.1016/j.fgb.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/15/2014] [Accepted: 08/02/2014] [Indexed: 11/21/2022]
Abstract
Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes, including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we developed a glycan enrichment strategy that couples Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) with dialysis to enrich the glycans from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is a simple, fast, and efficient sample preparation approach. The approach was thus applied to analysis of a biological complex sample, the pronase E digest of the secreted proteins from the fungus Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core similar to the structure of the glycan from RNase B, and O-linked glycans bearing mannose and glucose with 1→3 and 1→6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled with dialysis is very effective and accessible in preparing glycans for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.
Collapse
Affiliation(s)
- Yi Qu
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Ju Feng
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Shuang Deng
- Energy and Environment Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Li Cao
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Qibin Zhang
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zhaorui Zhang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Yuxuan Jiang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Erika M Zink
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Mary S Lipton
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Jian Zhi Hu
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
| |
Collapse
|