1
|
Sun K, Li Y, Gai Y, Wang J, Jian Y, Liu X, Wu L, Shim WB, Lee YW, Ma Z, Haas H, Yin Y. HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance. Nucleic Acids Res 2023; 51:10238-10260. [PMID: 37650633 PMCID: PMC10602907 DOI: 10.1093/nar/gkad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Collapse
Affiliation(s)
- Kewei Sun
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqing Li
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunqing Jian
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubertus Haas
- Instiute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Yanni Yin
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
4
|
Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, Karlsson M, Dubey M. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiol Spectr 2021; 9:e0109921. [PMID: 34549988 PMCID: PMC8557909 DOI: 10.1128/spectrum.01099-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Dicer-like proteins (DCLs) play a vital role in RNA interference (RNAi), by cleaving RNA filament into small RNAs. Although DCL-mediated RNAi can regulate interspecific communication between pathogenic/mutualistic organisms and their hosts, its role in mycoparasitic interactions is yet to be investigated. In this study, we deleted dcl genes in the mycoparasitic fungus Clonostachys rosea and characterize the functions of DCL-dependent RNAi in mycoparasitism. Deletion of dcl2 resulted in a mutant with reduced secondary metabolite production, antagonism toward the plant-pathogenic fungus Botrytis cinerea, and reduced ability to control Fusarium foot rot disease on wheat, caused by Fusarium graminearum. Transcriptome sequencing of the in vitro interaction between the C. rosea Δdcl2 strain and B. cinerea or F. graminearum identified the downregulation of genes coding for transcription factors, membrane transporters, hydrolytic enzymes, and secondary metabolites biosynthesis enzymes putatively involved in antagonistic interactions, in comparison with the C. rosea wild-type interaction. A total of 61 putative novel microRNA-like RNAs (milRNAs) were identified in C. rosea, and 11 were downregulated in the Δdcl2 mutant. In addition to putative endogenous gene targets, these milRNAs were predicted to target B. cinerea and F. graminearum virulence factor genes, which showed an increased expression during interaction with the Δdcl2 mutant incapable of producing the targeting milRNAs. In summary, this study constitutes the first step in elucidating the role of RNAi in mycoparasitic interactions, with important implications for biological control of plant diseases, and poses the base for future studies focusing on the role of cross-species RNAi regulating mycoparasitic interactions. IMPORTANCE Small RNAs mediated RNA interference (RNAi) known to regulate several biological processes. Dicer-like endoribonucleases (DCLs) play a vital role in the RNAi pathway by generating sRNAs. In this study, we investigated a role of DCL-mediated RNAi in interference interactions between mycoparasitic fungus Clonostachys rosea and the two fungal pathogens Botrytis cinerea and Fusarium graminearum (here called mycohosts). We found that the dcl mutants were not able to produce 11 sRNAs predicted to finetune the regulatory network of genes known to be involved in production of hydrolytic enzymes, antifungal compounds, and membrane transporters needed for antagonistic action of C. rosea. We also found C. rosea sRNAs putatively targeting known virulence factors in the mycohosts, indicating RNAi-mediated cross-species communication. Our study expanded the understanding of underlying mechanisms of cross-species communication during interference interactions and poses a base for future works studying the role of DCL-based cross-species RNAi in fungal interactions.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Kushwaha
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Rath M, Crenshaw NJ, Lofton LW, Glenn AE, Gold SE. FvSTUA is a Key Regulator of Sporulation, Toxin Synthesis, and Virulence in Fusarium verticillioides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:958-971. [PMID: 32293993 DOI: 10.1094/mpmi-09-19-0271-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium verticillioides is one of the most important pathogens of maize, causing rot and producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes underperformance and even fatal toxicity in livestock and is associated with neural tube birth defects, growth stunting in children, and some cancers. StuA, an APSES-class transcription factor, is a major developmental transcriptional regulator in fungi. It has been shown to regulate crucial developmental processes, such as sporulation, virulence, and mycotoxin synthesis among others. In this study, the role of FvSTUA in F. verticillioides was examined by characterizing ∆FvstuA deletion mutants functionally and transcriptomally. The deletion mutants exhibited reduced vegetative growth, stunted aerial hyphae, and significant reductions in microconidiation. Macroconidiation and hydrophobicity of the deletion strains were reduced as well. Additionally, fumonisin production and virulence of the deletion mutants were greatly reduced. Transcriptomic analysis revealed downregulation of expression of several genes in the fumonisin and fusarin C biosynthetic clusters and differential expression of genes involved in conidiation and virulence. Nuclear localization of FvSTUA supported its likely function as a transcription factor. Together, our results indicate that FvSTUA plays a global role in transcriptional regulation in F. verticillioides influencing morphogenesis, toxin production, and virulence.
Collapse
Affiliation(s)
- M Rath
- Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A
| | - N J Crenshaw
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - L W Lofton
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - A E Glenn
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - S E Gold
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| |
Collapse
|
6
|
Kim JE, Nam H, Park J, Choi GJ, Lee YW, Son H. Characterization of the CCAAT-binding transcription factor complex in the plant pathogenic fungus Fusarium graminearum. Sci Rep 2020; 10:4898. [PMID: 32184445 PMCID: PMC7078317 DOI: 10.1038/s41598-020-61885-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
The CCAAT sequence is a ubiquitous cis-element of eukaryotic promoters, and genes containing CCAAT sequences have been shown to be activated by the CCAAT-binding transcription factor complex in several eukaryotic model organisms. In general, CCAAT-binding transcription factors form heterodimers or heterotrimeric complexes that bind to CCAAT sequences within the promoters of target genes and regulate various cellular processes. To date, except Hap complex, CCAAT-binding complex has been rarely reported in fungi. In this study, we characterized two CCAAT-binding transcription factors (Fct1 and Fct2) in the plant pathogenic fungus Fusarium graminearum. Previously, FCT1 and FCT2 were shown to be related to DNA damage response among eight CCAAT-binding transcription factors in F. graminearum. We demonstrate that the nuclear CCAAT-binding complex of F. graminearum has important functions in various fungal developmental processes, not just DNA damage response but virulence and mycotoxin production. Moreover, the results of biochemical and genetic analyses revealed that Fct1 and Fct2 may form a complex and play distinct roles among the eight CCAAT-binding transcription factors encoded by F. graminearum. To the best of our knowledge, the results of this study represent a substantial advancement in our understanding of the molecular mechanisms underlying the functions of CCAAT-binding factors in eukaryotes.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyejin Nam
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Jiyeun Park
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yin-Won Lee
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hokyoung Son
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Lv W, Wu J, Xu Z, Dai H, Ma Z, Wang Z. The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Curr Genet 2019; 65:981-994. [DOI: 10.1007/s00294-019-00953-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
|
8
|
Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front Microbiol 2018; 9:2768. [PMID: 30524395 PMCID: PMC6262359 DOI: 10.3389/fmicb.2018.02768] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Penicillium chrysogenum (renamed P. rubens) is the most studied member of a family of more than 350 Penicillium species that constitute the genus. Since the discovery of penicillin by Alexander Fleming, this filamentous fungus is used as a commercial β-lactam antibiotic producer. For several decades, P. chrysogenum was subjected to a classical strain improvement (CSI) program to increase penicillin titers. This resulted in a massive increase in the penicillin production capacity, paralleled by the silencing of several other biosynthetic gene clusters (BGCs), causing a reduction in the production of a broad range of BGC encoded natural products (NPs). Several approaches have been used to restore the ability of the penicillin production strains to synthetize the NPs lost during the CSI. Here, we summarize various re-activation mechanisms of BGCs, and how interference with regulation can be used as a strategy to activate or silence BGCs in filamentous fungi. To further emphasize the versatility of P. chrysogenum as a fungal production platform for NPs with potential commercial value, protein engineering of biosynthetic enzymes is discussed as a tool to develop de novo BGC pathways for new NPs.
Collapse
Affiliation(s)
- Fernando Guzmán-Chávez
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Reto D Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,DSM Biotechnology Centre, Delft, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE. Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize. PHYTOPATHOLOGY 2018; 108:312-326. [PMID: 28971734 DOI: 10.1094/phyto-06-17-0203-rvw] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of understanding the biology of the mycotoxigenic fungus Fusarium verticillioides and its various microbial and plant host interactions is critical given its threat to maize, one of the world's most valuable food crops. Disease outbreaks and mycotoxin contamination of grain threaten economic returns and have grave implications for human and animal health and food security. Furthermore, F. verticillioides is a member of a genus of significant phytopathogens and, thus, data regarding its host association, biosynthesis of secondary metabolites, and other metabolic (degradative) capabilities are consequential to both basic and applied research efforts across multiple pathosystems. Notorious among its secondary metabolites are the fumonisin mycotoxins, which cause severe animal diseases and are implicated in human disease. Additionally, studies of these mycotoxins have led to new understandings of F. verticillioides plant pathogenicity and provide tools for research into cellular processes and host-pathogen interaction strategies. This review presents current knowledge regarding several significant lines of F. verticillioides research, including facets of toxin production, virulence, and novel fitness strategies exhibited by this fungus across rhizosphere and plant environments.
Collapse
Affiliation(s)
- Alex A Blacutt
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Scott E Gold
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Kenneth A Voss
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Minglu Gao
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Anthony E Glenn
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| |
Collapse
|
10
|
Deepa N, Rakesh S, Sreenivasa MY. Morphological, pathological and mycotoxicological variations among Fusarium verticillioides isolated from cereals. 3 Biotech 2018; 8:105. [PMID: 29430366 PMCID: PMC5794680 DOI: 10.1007/s13205-018-1136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022] Open
Abstract
Among the 194 Fusarium verticillioides isolates screened from 127 cereal samples, 176 were fumonisin producers and others were non-producers. Representative nine Fusarium verticillioides strains along with one reference standard strain MTCC156 were selected to study their morphological, pathological and mycotoxicological variations by conventional and molecular approaches. Fusarium verticillioides strains FVM86, FVM146, FV200 and FVS3 showed significant pathogenicity and also in pigmentation production but varied in fumonisin production. Fusarium verticillioides strain FVP19 recorded variations in all the assays. Fusarium verticillioides strain FVM42 showed drastic phenotypic variation and it also produced fumonisin. Genetic variation among the strains was independent of geographic area of origin but depended on their ability to produce fumonisin. The strains were independent in their cultural characteristics, pigmentation production, pathogenicity assays, fumonisin production and in their genetic variability without having any correlation.
Collapse
Affiliation(s)
- N. Deepa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka 570 006 India
| | - S. Rakesh
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka 570 006 India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka 570 006 India
| |
Collapse
|
11
|
Suwandi S, Akino S, Kondo N. Enhanced virulence of Fusarium species associated with spear rot of oil palm following recovery from osmotic stress. Mycology 2017; 9:20-28. [PMID: 30123657 PMCID: PMC6059076 DOI: 10.1080/21501203.2017.1336497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/25/2017] [Indexed: 11/12/2022] Open
Abstract
Fusarium spp., which are common inhabitants of oil palm leaves, are weak pathogens of common spear rot (CSR). We investigated the influence of osmotic stress on the growth, virulence, and activity of cell wall-degrading enzymes of CSR fungi, using potato dextrose agar (PDA) supplemented with KCl or sucrose (hyperosmotic medium). Hyperosmotic stress significantly inhibited mycelial growth, but growth rapidly recovered when mycelia were transferred to control medium. When inoculated into oil palm spear leaflets, Fusarium sp., and F. incarnatum precultured on 1.0 and 1.5 M KCl-hyperosmotic medium induced lesions that were two to four times larger than those in non-stressed cultures, suggesting enhanced virulence of the weak pathogens. Lesion size was not greatly affected in hyperosmotic cultures of moderately virulent F. sacchari. No activity of pectin lyase was detected in liquid cultures of the Fusarium isolates. All isolates except F. incarnatum BT48 secreted polygalacturonase (PG), which was active in both liquid cultures and inoculated leaves. Significantly increased PG activity (5-32-fold) was observed on leaves inoculated with hyperosmotic cultures of Fusarium sp. and F. sacchari. These findings suggest that Fusarium sp., F. incarnatum, and F. sacchari exhibit an adaptive physiological plasticity to hyperosmotic stress that results in enhanced virulence.
Collapse
Affiliation(s)
- Suwandi Suwandi
- Laboratory of Plant Pathology, Faculty of Agriculture, Sriwijaya University, Palembang, Indonesia
| | - Seishi Akino
- Laboratory of Plant Pathology, Division of Bioresources and Product Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Norio Kondo
- Laboratory of Plant Pathology, Division of Bioresources and Product Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Niu C, Payne GA, Woloshuk CP. Involvement of FST1 from Fusarium verticillioides in virulence and transport of inositol. MOLECULAR PLANT PATHOLOGY 2017; 18:695-707. [PMID: 27195938 PMCID: PMC6638204 DOI: 10.1111/mpp.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Fumonisin B1 (FB1), a polyketide mycotoxin produced by Fusarium verticillioides during the colonization of maize kernels, is detrimental to human and animal health. FST1 encodes a putative protein with 12 transmembrane domains; however, its function remains unknown. The FST1 gene is highly expressed by the fungus in the endosperm of maize kernels compared with the levels of expression in germ tissues. Previous research has shown that FST1 affects FB1 production, virulence, hydrogen peroxide resistance, hydrophobicity and macroconidia production. Here, we examine the phylogeny of FST1, its expression in a Saccharomyces cerevisiae strain lacking a functional myo-inositol transporter (ITR1) and the effect of amino acid changes in the central loop and C-terminus regions of FST1 on functionality. The results indicate that expression of FST1 in an ITR1 mutant strain restores growth on myo-inositol medium to wild-type levels and restores the inhibitory effects of FB1, suggesting that FST1 can transport both myo-inositol and FB1 into yeast cells. Our results with engineered FST1 also indicate that amino acids in the central loop and C-terminus regions are important for FST1 functionality in both S. cerevisiae and F. verticillioides. Overall, this research has established the first characterized inositol transporter in filamentous fungi and has advanced our knowledge about the global regulatory functions of FST1.
Collapse
Affiliation(s)
- Chenxing Niu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907‐2054USA
| | - Gary A. Payne
- Department of Plant PathologyNorth Carolina State UniversityRaleighNC27695‐7567USA
| | - Charles P. Woloshuk
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907‐2054USA
| |
Collapse
|
13
|
Ridenour JB, Bluhm BH. The novel fungal-specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2017; 18:513-528. [PMID: 27071505 PMCID: PMC6638258 DOI: 10.1111/mpp.12414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 05/05/2023]
Abstract
Fusarium verticillioides is a globally important pathogen of maize, capable of causing severe yield reductions and economic losses. In addition, F. verticillioides produces toxic secondary metabolites during kernel colonization that pose significant threats to human and animal health. Fusarium verticillioides and other plant-pathogenic fungi possess a large number of genes with no known or predicted function, some of which could encode novel virulence factors or antifungal targets. In this study, we identified and characterized the novel gene FUG1 (Fungal Unknown Gene 1) in F. verticillioides through functional genetics. Deletion of FUG1 impaired maize kernel colonization and fumonisin biosynthesis. In addition, deletion of FUG1 increased sensitivity to the antimicrobial compound 2-benzoxazolinone and to hydrogen peroxide, which indicates that FUG1 may play a role in mitigating stresses associated with host defence. Transcriptional profiling via RNA-sequencing (RNA-seq) identified numerous fungal genes that were differentially expressed in the kernel environment following the deletion of FUG1, including genes involved in secondary metabolism and mycelial development. Sequence analysis of the Fug1 protein provided evidence for nuclear localization, DNA binding and a domain of unknown function associated with previously characterized transcriptional regulators. This information, combined with the observed transcriptional reprogramming in the deletion mutant, suggests that FUG1 represents a novel class of fungal transcription factors or genes otherwise involved in signal transduction.
Collapse
Affiliation(s)
- John B. Ridenour
- Department of Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleAR 72701USA
| | - Burton H. Bluhm
- Department of Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleAR 72701USA
| |
Collapse
|
14
|
Hortschansky P, Haas H, Huber EM, Groll M, Brakhage AA. The CCAAT-binding complex (CBC) in Aspergillus species. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:560-570. [PMID: 27939757 DOI: 10.1016/j.bbagrm.2016.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The CCAAT binding complex (CBC), consisting of a heterotrimeric core structure, is highly conserved in eukaryotes and constitutes an important general transcriptional regulator. Scope of the review. In this review we discuss the scientific history and the current state of knowledge of the multiple gene regulatory functions, protein motifs and structure of the CBC in fungi with a special focus on Aspergillus species. Major conclusions and general significance. Initially identified as a transcriptional activator of respiration in Saccharomyces cerevisiae, in other fungal species the CBC was found to be involved in highly diverse pathways, but a general rationale for its involvement was missing. Subsequently, the CBC was found to sense reactive oxygen species through oxidative modifications of cysteine residues in order to mediate redox regulation. Moreover, via interaction with the iron-sensing bZIP transcription factor HapX, the CBC was shown to mediate adaptation to both iron starvation and iron excess. Due to the control of various pathways in primary and secondary metabolism the CBC is of crucial importance for fungal virulence in both animal and plant hosts as well as antifungal resistance. Consequently, CBC-mediated control affects biological processes that are of high interest in biotechnology, agriculture and infection medicine. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, D-07745, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| | - Eva M Huber
- Center for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748, Garching, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, D-07745, Jena, Germany; Department of Microbiology and Molecular Biology, Friedrich Schiller University (FSU), D-07745 Jena, Germany.
| |
Collapse
|
15
|
Ridenour JB, Smith JE, Bluhm BH. The HAP Complex Governs Fumonisin Biosynthesis and Maize Kernel Pathogenesis in Fusarium verticillioides. J Food Prot 2016; 79:1498-1507. [PMID: 28221941 DOI: 10.4315/0362-028x.jfp-15-596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination of maize ( Zea mays ) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides . Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides , representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides .
Collapse
Affiliation(s)
- John B Ridenour
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Jonathon E Smith
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Burton H Bluhm
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
16
|
Oda S, Yurimoto H, Nitta N, Sakai Y. Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii. MICROBIOLOGY-SGM 2016; 162:898-907. [PMID: 26963751 DOI: 10.1099/mic.0.000275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256-292 or Δ107-237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1-20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.
Collapse
Affiliation(s)
- Saori Oda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| | - Nobuhisa Nitta
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| | - Yasuyoshi Sakai
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University,Kyoto,Japan.,Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| |
Collapse
|
17
|
Niu C, Payne GA, Woloshuk CP. Transcriptome changes in Fusarium verticillioides caused by mutation in the transporter-like gene FST1. BMC Microbiol 2015; 15:90. [PMID: 25906821 PMCID: PMC4422464 DOI: 10.1186/s12866-015-0427-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fusarium verticillioides causes an important seed disease on maize and produces the fumonisin group of mycotoxins, which are toxic to humans and livestock. A previous study discovered that a gene (FST1) in the pathogen affects fumonisin production and virulence. Although the predicted amino acid sequence of FST1 is similar to hexose transporters, previous experimental evidence failed to prove function. RESULTS Three new phenotypes were identified that are associated with the FST1 mutant of F. verticillioides (Δfst1), namely reduction in macroconidia production, increased sensitivity to hydrogen peroxide, and reduced mycelial hydrophobicity. A transcriptome comparison of the wild type and strain Δfst1 grown on autoclaved maize kernels for six days identified 2677 genes that were differentially expressed. Through gene ontology analysis, 961 genes were assigned to one of 12 molecular function categories. Sets of down-regulated genes in strain Δfst1 were identified that could account for each of the mutant phenotypes. CONCLUSION The study provides evidence that disruption of FST1 causes several metabolic and developmental defects in F. verticillioides. FST1 appears to connect the expression of several gene networks, including those involved in secondary metabolism, cell wall structure, conidiogenesis, virulence, and resistance to reactive oxygen species. The results support our hypothesis that FST1 functions within the framework of environmental sensing.
Collapse
Affiliation(s)
- Chenxing Niu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| | - Gary A Payne
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Raleigh, NC, 27695-7567, USA.
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|