1
|
Li Y, Guo W, Zhang Q, Yang B, Zhang Y, Yang Y, Liu G, Pan L, Zhang W, Kong D. Improved analysis ZIC-HILIC-HCD-Orbitrap method for mapping the glycopeptide by mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123852. [PMID: 37633008 DOI: 10.1016/j.jchromb.2023.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs). Protein glycosylation analysis is the bottleneck to deeply understand their functions. At present, the LC-MS analysis of glycosylated post-translational modification is mainly focused on the analysis of glycopeptides. However, the factors affecting the identification of glycopeptides were not fully elucidated. In the paper, we have carefully studied the factors, e.g., HILIC materials, search engines, protein amount, gradient duration, extraction solution, etc. According to the results, HILIC materials were the most important factors affecting the glycopeptides identification, and the amphoteric sulfoalkyl betaine stationary phase enriched glycopeptides 6-fold more compared to the amphiphilic ion-bonded fully porous spherical silica stationary phase. We explored the influence of the extraction solutions on glycan identification. Comparing sodium dodecyl sulfate (SDS) and urea (UA), the results showed that N-glycolylneuraminic acid (NeuGc) type of glycan content was found to be increased 1.4-fold in the SDS compared to UA. Besides, we explored the influence of the search engine on glycopeptide identification. Comparing pGlyco3.0 and MSFragger-Glyco, it was observed that pGlyco3.0 outperformed MSFragger-Glyco in identifying glycopeptides. Then, using our optimized method we found that there was a significant difference in the distribution of monosaccharide types in plasma and brain tissue, e.g., the content of NeuAc in brain was 5-fold higher than that in plasma. To importantly, two glycoproteins (Neurexin-2 and SUN domain-containing protein 2) were also found for the first time by our method. In summary, we have comprehensively studied the factors influencing glycopeptide identification than any previous research, and the optimized method could be widely used for identifying the glycoproteins or glycolpeptides biomarkers for disease detection and therapeutic targets.
Collapse
Affiliation(s)
- Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yi Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Abstract
Mucin-domain glycoproteins comprise a class of proteins whose densely O-glycosylated mucin domains adopt a secondary structure with unique biophysical and biochemical properties. The canonical family of mucins is well-known to be involved in various diseases, especially cancer. Despite this, very little is known about the site-specific molecular structures and biological activities of mucins, in part because they are extremely challenging to study by mass spectrometry (MS). Here, we summarize recent advancements toward this goal, with a particular focus on mucin-domain glycoproteins as opposed to general O-glycoproteins. We summarize proteolytic digestion techniques, enrichment strategies, MS fragmentation, and intact analysis, as well as new bioinformatic platforms. In particular, we highlight mucin directed technologies such as mucin-selective proteases, tunable mucin platforms, and a mucinomics strategy to enrich mucin-domain glycoproteins from complex samples. Finally, we provide examples of targeted mucin-domain glycoproteomics that combine these techniques in comprehensive site-specific analyses of proteins. Overall, this Review summarizes the methods, challenges, and new opportunities associated with studying enigmatic mucin domains.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
3
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
4
|
Cao L, Qu Y, Zhang Z, Wang Z, Prytkova I, Wu S. Intact glycopeptide characterization using mass spectrometry. Expert Rev Proteomics 2017; 13:513-22. [PMID: 27140194 DOI: 10.1586/14789450.2016.1172965] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.
Collapse
Affiliation(s)
- Li Cao
- a Pharma Research and Development , R&D Platform Technology & Science, GSK , King of Prussia , PA , USA
| | - Yi Qu
- b ChemEco Division , Evans Analytical Group , Hercules , CA , USA
| | - Zhaorui Zhang
- c Process Research & Development , AbbVie , North Chicago , IL , USA
| | - Zhe Wang
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| | - Iya Prytkova
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| | - Si Wu
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| |
Collapse
|
5
|
Ma H, Delafield DG, Wang Z, You J, Wu S. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:655-663. [PMID: 28083757 PMCID: PMC5373979 DOI: 10.1007/s13361-016-1569-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/29/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Daniel G Delafield
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Jianlan You
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
6
|
Alves MJM, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, Larsen MR, Palmisano G. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteomics 2016; 151:182-192. [PMID: 27318177 DOI: 10.1016/j.jprot.2016.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. In this study, comprehensive glycoprofiling analysis was performed in the epimastigote and trypomastigote stages of T. cruzi using two glycopeptide enrichment strategies, lectin-based and hydrophilic interaction liquid chromatography, followed by high resolution LC-MS/MS. Following deglycosylation, a total of 1306 N-glycosylation sites in NxS/T/C motifs were identified from 690 T. cruzi glycoproteins. Among them, 170 and 334 glycoproteins were exclusively identified in epimastigotes and trypomastigotes, respectively. Besides, global site-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. This study aimed to provide an in depth characterization of the N-linked and O-linked glycoproteome of two T. cruzi life stages: epimastigotes and trypomastigotes. Mass spectrometry-based proteomics showed interesting stage-specific glycoproteome signatures that are valuable to better understand the importance of protein glycosylation in epimastigotes and trypomastigotes and to expand the repertoire of potential therapeutic targets against Chagas disease.
Collapse
Affiliation(s)
- Maria Julia Manso Alves
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Walter Colli
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eliciane Cevolani Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern, Odense, DK, Denmark
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|
7
|
Mäkelä MR, Donofrio N, de Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol 2014; 72:2-9. [PMID: 25192611 DOI: 10.1016/j.fgb.2014.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022]
Abstract
Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Nicole Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|