1
|
Zhu Q, Wijnants S, Feil R, Van Genechten W, Vergauwen R, Van Goethem O, Lunn JE, Van Ende M, Van Dijck P. The stress-protectant molecule trehalose mediates fluconazole tolerance in Candida glabrata. Antimicrob Agents Chemother 2025:e0134924. [PMID: 39853120 DOI: 10.1128/aac.01349-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The incidence of non-albicans Candida infections has witnessed a substantial rise in recent decades. Candida glabrata (Nakaseomyces glabratus), an opportunistic human fungal pathogen, is accountable for both superficial mucosal and life-threatening bloodstream infections, particularly in immunocompromised individuals. Distinguished by its remarkable resilience to environmental stressors, C. glabrata exhibits intrinsic tolerance to azoles and a high propensity to swiftly develop azole resistance during treatment. The molecular mechanism for the high tolerance is not fully understood. In this work, we investigated the possible role of trehalose in this tolerance. We generated mutants in the C. glabrata TPS1, TPS2, and NTH1 genes, encoding trehalose 6-phosphate synthase (Tps1), trehalose 6-phosphate phosphatase (Tps2), and neutral trehalase (Nth1), respectively. As expected, the tps1∆ strain cannot grow on glucose. The tps2∆ strain demonstrated diminished trehalose accumulation and very high levels of trehalose 6-phosphate (T6P), the biosynthetic intermediate, in comparison to the wild-type (WT) strain. Whereas these higher T6P levels did not affect growth, the lower trehalose levels clearly resulted in lower environmental stress tolerance and a lower susceptibility to fluconazole. More interestingly, the tps2∆ strain completely lost tolerance to fluconazole, characterized by the absence of slow growth at supra-MIC concentrations of this drug. All these phenotypes are reversed in the nth1∆ strain, which accumulates high levels of trehalose. Our findings underscore the role of trehalose in enabling tolerance toward fluconazole in C. glabrata. We further show that the change in tolerance is a result of the effect that trehalose has on the sterol pattern in the cell.
Collapse
Affiliation(s)
- Qingjuan Zhu
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Stefanie Wijnants
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wouter Van Genechten
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Rudy Vergauwen
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Odessa Van Goethem
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mieke Van Ende
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Leuven One Health Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
De Beul E, Franceus J, Desmet T. The many functions of carbohydrate-active enzymes in family GH65: diversity and application. Appl Microbiol Biotechnol 2024; 108:476. [PMID: 39348028 PMCID: PMC11442529 DOI: 10.1007/s00253-024-13301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Glycoside Hydrolase family 65 (GH65) is a unique family of carbohydrate-active enzymes. It is the first protein family to bring together glycoside hydrolases, glycoside phosphorylases and glycosyltransferases, thereby spanning a broad range of reaction types. These enzymes catalyze the hydrolysis, reversible phosphorolysis or synthesis of various α-glucosides, typically α-glucobioses or their derivatives. In this review, we present a comprehensive overview of the diverse reaction types and substrate specificities found in family GH65. We describe the determinants that control this remarkable diversity, as well as the applications of GH65 enzymes for carbohydrate synthesis.
Collapse
Affiliation(s)
- Emma De Beul
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Jorick Franceus
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Tom Desmet
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Maicas S, Sánchez-Fresneda R, Solano F, Argüelles JC. The Enigma of NTH2 Gene in Yeasts. Microorganisms 2024; 12:1232. [PMID: 38930613 PMCID: PMC11206128 DOI: 10.3390/microorganisms12061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The enzymatic hydrolysis of the non-reducing disaccharide trehalose in yeasts is carried out by trehalase, a highly specific α-glucosidase. Two types of such trehalase activity are present in yeasts, and are referred to as neutral and acid enzymes. They are encoded by distinct genes (NTH1 and ATH1, respectively) and exhibit strong differences in their biochemical and physiological properties as well as different subcellular location and regulatory mechanisms. Whereas a single gene ATH1 codes for acid trehalase, the genome of some yeasts appears to predict the existence of a second redundant neutral trehalase, encoded by the NTH2 gene, a paralog of NTH1. In S. cerevisiae the corresponding two proteins share 77% amino acid identity, leading to the suggestion that NTH2 codes for a functional trehalase activity. However, Nth2p lacks any measurable neutral trehalase activity and disruption of NTH2 gene has no effect on this activity compared to a parental strain. Likewise, single nth1Δ and double nth1Δ/nth2Δ null mutants display no detectable neutral activity. Furthermore, disruption of NTH2 does not cause any apparent phenotype apart from a slight involvement in thermotolerance. To date, no evidence of a duplicated NTH gene has been recorded in other archetypical yeasts, like C. albicans or C. parapsilosis, and a possible regulatory mechanism of Nth2p remains unknown. Therefore, although genomic analysis points to the existence, in some yeasts, of two distinct genes encoding trehalase activities, the large body of biochemical and physiological evidence gathered from NTH2 gene does not support this proposal. Indeed, much more experimental evidence would be necessary to firmly validate this hypothesis.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| | - Francisco Solano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina Campus de Ciencias de la Salud, Universidad de Murcia, 30120 Murcia, Spain;
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
4
|
Muñoz-Megías ML, Sánchez-Fresneda R, Solano F, Maicas S, Martínez-Esparza M, Argüelles JC. The antifungal effect induced by itraconazole in Candida parapsilosis largely depends on the oxidative stress generated at the mitochondria. Curr Genet 2023; 69:165-173. [PMID: 37119267 PMCID: PMC10163099 DOI: 10.1007/s00294-023-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
In Candida parapsilosis, homozygous disruption of the two genes encoding trehalase activity increased the susceptibility to Itraconazole compared with the isogenic parental strain. The fungicidal effect of this azole can largely be counteracted by preincubating growing cells with rotenone and the protonophore 2,4-Dinitrophenol. In turn, measurement of endogenous reactive oxygen species formation by flow cytometry confirmed that Itraconazole clearly induced an internal oxidative stress, which can be significantly abolished in rotenone-exposed cells. Analysis of the antioxidant enzymatic activities of catalase and superoxide dismutase pointed to a moderate decrease of catalase in trehalase-deficient mutant cells compared to the wild type, with an additional increase upon addition of rotenone. These enzymatic changes were imperceptible in the case of superoxide dismutase. Alternative assays with Voriconazole led to a similar profile in the results regarding cell growth and antioxidant activities. Collectively, our data suggest that the antifungal action of Itraconazole on C. parapsilosis is dependent on a functional mitochondrial activity. They also suggest that the central metabolic pathways in pathogenic fungi should be considered as preferential antifungal targets in new research.
Collapse
Affiliation(s)
- Mª Luz Muñoz-Megías
- Facultad de Biología, Área de Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Ruth Sánchez-Fresneda
- Facultad de Biología, Área de Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Francisco Solano
- Departamento de Bioquímica, Biología Molecular B & Inmunología, Facultad de Medicina, Campus de Ciencias de La Salud, Universidad de Murcia, 30120, Murcia, Spain
| | - Sergi Maicas
- Departamento de Microbiología & Ecología, Facultad de Biología, Universitat de València, Burjassot, 46100, Valencia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular B & Inmunología, Facultad de Medicina, Campus de Ciencias de La Salud, Universidad de Murcia, 30120, Murcia, Spain
| | - Juan-Carlos Argüelles
- Facultad de Biología, Área de Microbiología, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Lack of Functional Trehalase Activity in Candida parapsilosis Increases Susceptibility to Itraconazole. J Fungi (Basel) 2022; 8:jof8040371. [PMID: 35448602 PMCID: PMC9028276 DOI: 10.3390/jof8040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Central metabolic pathways may play a major role in the virulence of pathogenic fungi. Here, we have investigated the susceptibility of a Candida parapsilosis mutant deficient in trehalase activity (atc1Δ/ntc1Δ strain) to the azolic compounds fluconazole and itraconazole. A time-course exposure to itraconazole but not fluconazole induced a significant degree of cell killing in mutant cells compared to the parental strain. Flow cytometry determinations indicated that itraconazole was able to induce a marked production of endogenous ROS together with a simultaneous increase in membrane potential, these effects being irrelevant after fluconazole addition. Furthermore, only itraconazole induced a significant synthesis of endogenous trehalose. The recorded impaired capacity of mutant cells to produce structured biofilms was further increased in the presence of both azoles, with itraconazole being more effective than fluconazole. Our results in the opportunistic pathogen yeast C. parapsilosis reinforce the study of trehalose metabolism as an attractive therapeutic target and allow extending the hypothesis that the generation of internal oxidative stress may be a component of the antifungal action exerted by the compounds currently available in medical practice.
Collapse
|
6
|
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 2021; 12:329-345. [PMID: 33356857 PMCID: PMC7808424 DOI: 10.1080/21505594.2020.1868825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen and is frequently present in the human microbiome. It has a high relative resistance to environmental stresses and several antifungal drugs. An important component involved in microbial stress tolerance is trehalose. In this work, we characterized the three C. glabrata trehalase enzymes Ath1, Nth1 and Nth2. Single, double and triple deletion strains were constructed and characterized both in vitro and in vivo to determine the role of these enzymes in virulence. Ath1 was found to be located in the periplasm and was essential for growth on trehalose as sole carbon source, while Nth1 on the other hand was important for oxidative stress resistance, an observation which was consistent by the lower survival rate of the NTH1 deletion strain in human macrophages. No significant phenotype was observed for Nth2. The triple deletion strain was unable to establish a stable colonization of the gastrointestinal (GI) tract in mice indicating the importance of having trehalase activity for colonization in the gut.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Bea Timmermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Giel Vanreppelen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, VIB, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Yuke Cen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
7
|
Guirao-Abad JP, Pujante V, Sánchez-Fresneda R, Yagüe G, Argüelles JC. Sensitivity of the Candida albicans trehalose-deficient mutants tps1Δ and tps2Δ to amphotericin B and micafungin. J Med Microbiol 2019; 68:1479-1488. [DOI: 10.1099/jmm.0.001053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Vanessa Pujante
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30100, Spain
| | | | - Genoveva Yagüe
- Servicio de Microbiología Clínica, Hospital Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | | |
Collapse
|
8
|
Cabello L, Gómez-Herreros E, Fernández-Pereira J, Maicas S, Martínez-Esparza MC, de Groot PWJ, Valentín E. Deletion of GLX3 in Candida albicans affects temperature tolerance, biofilm formation and virulence. FEMS Yeast Res 2019; 19:5195521. [PMID: 30476034 DOI: 10.1093/femsyr/foy124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a predominant cause of fungal infections in mucosal tissues as well as life-threatening bloodstream infections in immunocompromised patients. Within the human body, C. albicans is mostly embedded in biofilms, which provides increased resistance to antifungal drugs. The glyoxalase Glx3 is an abundant proteomic component of the biofilm extracellular matrix. Here, we document phenotypic studies of a glx3Δ null mutant concerning its role in biofilm formation, filamentation, antifungal drug resistance, cell wall integrity and virulence. First, consistent with its function as glyoxalase, the glx3 null mutant showed impaired growth on media containing glycerol as the carbon source and in the presence of low concentrations of hydrogen peroxide. Importantly, the glx3Δ mutant showed decreased fitness at 37°C and formed less biofilm as compared to wild type and a reintegrant strain. At the permissive temperature of 28°C, the glx3Δ mutant showed impaired filamentation as well as increased sensitivity to Calcofluor white, Congo red, sodium dodecyl sulfate and zymolyase, indicating subtle alterations in wall architecture even though gross quantitative compositional changes were not detected. Interestingly, and consistent with its impaired filamentation, biofilm formation and growth at 37°C, the glx3Δ mutant is avirulent. Our results underline the role of Glx3 in fungal pathogenesis and the involvement of the fungal wall in this process.
Collapse
Affiliation(s)
- Laura Cabello
- Departamento de Microbiología y Ecología, Universidad de Valencia, 46100-E Burjassot, Spain
| | | | - Jordan Fernández-Pereira
- Regional Center for Biomedical Research, Science and Technology Park Castilla-La Mancha, University of Castilla-La Mancha, Albacete 02008, Spain
| | - Sergi Maicas
- Departamento de Microbiología y Ecología, Universidad de Valencia, 46100-E Burjassot, Spain
| | | | - Piet W J de Groot
- Regional Center for Biomedical Research, Science and Technology Park Castilla-La Mancha, University of Castilla-La Mancha, Albacete 02008, Spain
| | - Eulogio Valentín
- Departamento de Microbiología y Ecología, Universidad de Valencia, 46100-E Burjassot, Spain.,Severe Infection Research Group, Health Research Institute La Fe, Valencia 46009, Spain
| |
Collapse
|
9
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
10
|
Guirao-Abad JP, Sánchez-Fresneda R, Alburquerque B, Hernández JA, Argüelles JC. ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans. Int J Med Microbiol 2017; 307:241-248. [PMID: 28412040 DOI: 10.1016/j.ijmm.2017.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/14/2017] [Accepted: 03/12/2017] [Indexed: 01/02/2023] Open
Abstract
The hypothetical role played by the intracellular formation of reactive oxygen species (ROS) in the fungicidal action carried out by Amphotericin B (AmB) and Micafungin (MF) was examined in Candida albicans, which remains the most prevalent fungal pathogen. The clinical MICs for MF and AmB were 0.016 and 0.12μg/ml, respectively. Whereas AmB (0.5-1.0×MIC) induced a marked production of intracellular ROS accompanied by a high degree of cell killing in the C. albicans SC5314 strain, the fungicidal effect of MF was still operative, but ROS generation was slight. Preincubation with thiourea suppressed the formation of ROS and caused a marked increase in cell viability, regardless of the antifungal used. Simultaneous measurement of several well established antioxidant enzymes (catalase, glutathione reductase and superoxide dismutase) revealed strong AmB-induced activation of the three enzymatic activities, whereas MF only had a weak stimulating effect. Likewise, AmB but not MF promoted a conspicuous rise in the mitochondrial membrane potential together with the intracellular synthesis of trehalose, the non-reducing disaccharide which acts as a specific protector against oxidative stress in C. albicans. Optical and electronic microscopy analysis revealed a significant damage to cell integrity and structural alterations caused by both antifungals. Taken together, our results strongly suggest that the induction of an internal oxidative stress in C. albicans through the accumulation of ROS is a preferential contributory factor to the antifungal action of a widely used polyene (AmB) but not of MF (echinocandin).
Collapse
Affiliation(s)
- José P Guirao-Abad
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain; IMIB-Arrixaca, 30100 Murcia, Spain
| | - Begoña Alburquerque
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain; IMIB-Arrixaca, 30100 Murcia, Spain
| | - José A Hernández
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal. Centro de Edafología y Biología Aplicada del Segura (C.S.I.C.), Apdo 164, E-30100 Murcia, Spain
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain; IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
11
|
Maicas S, Caminero A, Martínez JP, Sentandreu R, Valentín E. The GCA1 gene encodes a glycosidase-like protein in the cell wall of Candida albicans. FEMS Yeast Res 2016; 16:fow032. [PMID: 27189368 DOI: 10.1093/femsyr/fow032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/14/2022] Open
Abstract
Candida albicans Gca1p is a putative glucoamylase enzyme which contains 946 amino acids, 11 putative sites for N-glycosylation and 9 for O-glycosylation. Gca1p was identified in β-mercaptoethanol extracts from isolated cell walls of strain C. albicans SC5314 and it is involved in carbohydrate metabolism. The significance and the role of this protein within the cell wall structure were studied in the corresponding mutants. The homozygous mutant showed that GCA1 was not an essential gene for cell viability. Subsequent phenotypic analysis performed in the mutants obtained did not show significant difference in the behavior of mutant when compared with the wild strain SC5314. Zymoliase, Calcofluor White, Congo red, SDS, caffeine or inorganic compounds did not affect the integrity of the cell wall. No differences were observed when hyphal formation assays were carried out. However, an enzyme assay in the presence of substrate p-nitrophenyl-α-D-glucopyranoside enabled us to detect a significant decrease in glycosidase activity in the mutants compared with the parental strain, revealing the function of Gca1.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Biologia, Universitat de València, 46100-E, Burjassot, Spain
| | - Antonio Caminero
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| | - José Pedro Martínez
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| | - Rafael Sentandreu
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| | - Eulogio Valentín
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| |
Collapse
|