1
|
Liu K, Huang S, Zhang L, Xiong Y, Wang X, Bao Y, Li D, Li J. Efficient production of single cell protein from biogas slurry using screened alkali-salt-tolerant Debaryomyces hansenii. BIORESOURCE TECHNOLOGY 2024; 393:130119. [PMID: 38040306 DOI: 10.1016/j.biortech.2023.130119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Production of single cell protein (SCP) by recovering ammonia nitrogen from biogas slurry shows great potential against protein scarcity and unsustainable production of plant and animal proteins. Herein, a high-alkali-salt-tolerant yeast strain, Debaryomyces hansenii JL8-0, was isolated and demonstrated for high-efficient SCP production. This strain grew optimally at pH 8.50 and 2500 mg/L NH4+-N, and it could efficiently utilize acetate as the additional carbon source. Under optimal conditions, SCP biomass of 32.21 g/L and productivity of 0.32 g/L·h-1 were obtained in fed-batch fermentation. Remarkably, nearly complete (97.40 %) ammonia nitrogen from biogas slurry was recovered, probably due to its high affinity for NH4+-N. Altogether, this strain showed advantages in terms of cell biomass titer, productivity, and yield. A cultivation strategy was proposed by co-culturing D. hansenii with other compatible yeast strains to achieve high-efficient SCP production from biogas slurry, which could be a promising alternative technology for biogas slurry treatment.
Collapse
Affiliation(s)
- Keyun Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Huang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yingjie Xiong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoyan Wang
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010050, China
| | - Yali Bao
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010050, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Papoušková K, Gómez M, Kodedová M, Ramos J, Zimmermannová O, Sychrová H. Heterologous expression reveals unique properties of Trk K + importers from nonconventional biotechnologically relevant yeast species together with their potential to support Saccharomyces cerevisiae growth. Yeast 2023; 40:68-83. [PMID: 36539385 DOI: 10.1002/yea.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the model yeast Saccharomyces cerevisiae, Trk1 is the main K+ importer. It is involved in many important physiological processes, such as the maintenance of ion homeostasis, cell volume, intracellular pH, and plasma-membrane potential. The ScTrk1 protein can be of great interest to industry, as it was shown that changes in its activity influence ethanol production and tolerance in S. cerevisiae and also cell performance in the presence of organic acids or high ammonium under low K+ conditions. Nonconventional yeast species are attracting attention due to their unique properties and as a potential source of genes that encode proteins with unusual characteristics. In this work, we aimed to study and compare Trk proteins from Debaryomyces hansenii, Hortaea werneckii, Kluyveromyces marxianus, and Yarrowia lipolytica, four biotechnologically relevant yeasts that tolerate various extreme environments. Heterologous expression in S. cerevisiae cells lacking the endogenous Trk importers revealed differences in the studied Trk proteins' abilities to support the growth of cells under various cultivation conditions such as low K+ or the presence of toxic cations, to reduce plasma-membrane potential or to take up Rb+ . Examination of the potential of Trks to support the stress resistance of S. cerevisiae wild-type strains showed that Y. lipolytica Trk1 is a promising tool for improving cell tolerance to both low K+ and high salt and that the overproduction of S. cerevisiae's own Trk1 was the most efficient at improving the growth of cells in the presence of highly toxic Li+ ions.
Collapse
Affiliation(s)
- Klára Papoušková
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Marcos Gómez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Marie Kodedová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Olga Zimmermannová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
3
|
Recent developments in the biology and biotechnological applications of halotolerant yeasts. World J Microbiol Biotechnol 2022; 38:27. [PMID: 34989905 DOI: 10.1007/s11274-021-03213-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Natural hypersaline environments are inhabited by an abundance of prokaryotic and eukaryotic microorganisms capable of thriving under extreme saline conditions. Yeasts represent a substantial fraction of halotolerant eukaryotic microbiomes and are frequently isolated as food contaminants and from solar salterns. During the last years, a handful of new species has been discovered in moderate saline environments, including estuarine and deep-sea waters. Although Saccharomyces cerevisiae is considered the primary osmoadaptation model system for studies of hyperosmotic stress conditions, our increasing understanding of the physiology and molecular biology of halotolerant yeasts provides new insights into their distinct metabolic traits and provides novel and innovative opportunities for genome mining of biotechnologically relevant genes. Yeast species such as Debaryomyces hansenii, Zygosaccharomyces rouxii, Hortaea werneckii and Wallemia ichthyophaga show unique properties, which make them attractive for biotechnological applications. Select halotolerant yeasts are used in food processing and contribute to aromas and taste, while certain gene clusters are used in second generation biofuel production. Finally, both pharmaceutical and chemical industries benefit from applications of halotolerant yeasts as biocatalysts. This comprehensive review summarizes the most recent findings related to the biology of industrially-important halotolerant yeasts and provides a detailed and up-to-date description of modern halotolerant yeast-based biotechnological applications.
Collapse
|
4
|
Technological properties and flavour formation potential of yeast strains isolated from traditional dry fermented sausages in Northeast China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ramos-Moreno L, Ruiz-Pérez F, Rodríguez-Castro E, Ramos J. Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms 2021; 9:microorganisms9071512. [PMID: 34361947 PMCID: PMC8303870 DOI: 10.3390/microorganisms9071512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Debaryomyces hansenii yeast represents a promising target for basic and applied biotechnological research It is known that D. hansenii is abundant in sausages and dry-meat products, but information regarding its contribution to their characteristics is blurry and contradictory. The main goal in this review was to define the biological contribution of D. hansenii to the final features of these products. Depending on multiple factors, D. hansenii may affect diverse physicochemical characteristics of meat products. However, there is general agreement about the significant generation of volatile and aromatic compounds caused by the metabolic activities of this yeast, which consequently provide a tendency for improved consumer acceptance. We also summarize current evidence highlighting that it is not possible to predict what the results would be after the inoculation of a meat product with a selected D. hansenii strain without a pivotal previous study. The use of D. hansenii as a biocontrol agent and to manufacture new meat products by decreasing preservatives are examples of exploring research lines that will complement current knowledge and contribute to prepare new and more ecological products.
Collapse
|
6
|
Inoculation with a terroir selected Debaryomyces hansenii strain changes physico-chemical characteristics of Iberian cured pork loin. Meat Sci 2019; 157:107875. [DOI: 10.1016/j.meatsci.2019.107875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022]
|
7
|
Ramos-Moreno L, Ramos J, Michán C. Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World J Microbiol Biotechnol 2019; 35:170. [PMID: 31673816 DOI: 10.1007/s11274-019-2753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
Abstract
Debaryomyces hansenii is a halotolerant yeast of importance in basic and applied research. Previous reports hinted about possible links between saline and oxidative stress responses in this yeast. The aim of this work was to study that hypothesis at different molecular levels, investigating after oxidative and saline stress: (i) transcription of seven genes related to oxidative and/or saline responses, (ii) activity of two main anti-oxidative enzymes, (iii) existence of common metabolic intermediates, and (iv) generation of damages to biomolecules as lipids and proteins. Our results showed how expression of genes related to oxidative stress was induced by exposure to NaCl and KCl, and, vice versa, transcription of some genes related to osmotic/salt stress responses was regulated by H2O2. Moreover, and contrary to S. cerevisiae, in D. hansenii HOG1 and MSN2 genes were modulated by stress at their transcriptional level. At the enzymatic level, saline stress also induced antioxidative enzymatic defenses as catalase and glutathione reductase. Furthermore, we demonstrated that both stresses are connected by the generation of intracellular ROS, and that hydrogen peroxide can affect the accumulation of in-cell sodium. On the other hand, no significant alterations in lipid oxidation or total glutathione content were observed upon exposure to both stresses tested. The results described in this work could help to understand the responses to both stressors, and to improve the biotechnological potential of D. hansenni.
Collapse
Affiliation(s)
- Laura Ramos-Moreno
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain.
| |
Collapse
|
8
|
Capusoni C, Arioli S, Donzella S, Guidi B, Serra I, Compagno C. Hyper-Osmotic Stress Elicits Membrane Depolarization and Decreased Permeability in Halotolerant Marine Debaryomyces hansenii Strains and in Saccharomyces cerevisiae. Front Microbiol 2019; 10:64. [PMID: 30761110 PMCID: PMC6362939 DOI: 10.3389/fmicb.2019.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
The use of seawater and marine microorganisms can represent a sustainable alternative to avoid large consumption of freshwater performing industrial bioprocesses. Debaryomyces hansenii, which is a known halotolerant yeast, possess metabolic traits appealing for developing such processes. For this purpose, we studied salt stress exposure of two D. hansenii strains isolated from marine fauna. We found that the presence of sea salts during the cultivation results in a slight decrease of biomass yields. Nevertheless, higher concentration of NaCl (2 M) negatively affects other growth parameters, like growth rate and glucose consumption rate. To maintain an isosmotic condition, the cells accumulate glycerol as compatible solute. Flow cytometry analysis revealed that the osmotic adaptation causes a reduced cellular permeability to cell-permeant dye SYBR Green I. We demonstrate that this fast and reversible phenomenon is correlated to the induction of membrane depolarization, and occurred even in presence of high concentration of sorbitol. The decrease of membrane permeability induced by osmotic stress confers to D. hansenii resistance to cationic drugs like Hygromycin B. In addition, we describe that also in Saccharomyces cerevisiae the exposure to hyper-osmotic conditions induced membrane depolarization and reduced the membrane permeability. These aspects are very relevant for the optimization of industrial bioprocesses, as in the case of fermentations and bioconversions carried out by using media/buffers containing high nutrients/salts concentrations. Indeed, an efficient transport of molecules (nutrients, substrates, and products) is the prerequisite for an efficient cellular performance, and ultimately for the efficiency of the industrial process.
Collapse
Affiliation(s)
- Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Benedetta Guidi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Immacolata Serra
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum. Fungal Genet Biol 2018; 118:10-20. [DOI: 10.1016/j.fgb.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/09/2023]
|