1
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
2
|
Chigira Y, Sasaki N, Komatsu K, Mashimo K, Tanaka S, Numamoto M, Moriyama H, Motobayashi T. Mating Types of Ustilago esculenta Infecting Zizania latifolia Cultivars in Japan Are Biased towards MAT-2 and MAT-3. Microbes Environ 2023; 38:ME23034. [PMID: 37704449 PMCID: PMC10522849 DOI: 10.1264/jsme2.me23034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Zizania latifolia cultivars infected by the endophytic fungus Ustilago esculenta develop an edible stem gall. Stem gall development varies among cultivars and individuals and may be affected by the strain of U. esculenta. To isolate haploids from two Z. latifolia cultivars in our paddy fields, Shirakawa and Ittenkou, we herein performed the sporadic isolation of U. esculenta strains from stem gall tissue, a PCR-based assessment of the mating type, and in vitro mating experiments. As a result, we obtained heterogametic strains of MAT-2 and MAT-3 as well as MAT-2, but not MAT-3, haploid strains. Another isolation method, in which we examined poorly growing small clusters of sporidia derived from teliospores, succeeded in isolating a MAT-3 haploid strain. We also identified the mating types of 10 U. esculenta strains collected as genetic resources from different areas in Japan. All strains, except for one MAT-1 haploid strain, were classified as MAT-2 haploid strains or heterogametic strains of MAT-2 and MAT-3. The isolated strains of MAT-1, MAT-2, and MAT-3 mated with each other to produce hyphae. Collectively, these results indicate that the mating types of U. esculenta infecting Z. latifolia cultivars in Japan are biased towards MAT-2 and MAT-3 and that U. esculenta populations in these Japanese cultivars may be characterized by the low isolation efficiency of the MAT-3 haploid.
Collapse
Affiliation(s)
- Yuka Chigira
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Nobumitsu Sasaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kouji Mashimo
- Field Science Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shigeyuki Tanaka
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Minori Numamoto
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Motobayashi
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Transcriptome Comparison between Two Strains of Ustilago esculenta during the Mating. J Fungi (Basel) 2022; 9:jof9010032. [PMID: 36675853 PMCID: PMC9862937 DOI: 10.3390/jof9010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ustilago esculenta is a smut fungus that obligately infects Zizania latifolia and stimulates tissue swelling to form galls. Unlike T-type, MT-type U. esculenta can only proliferate within plant tissues and infect the offspring of their host. Production of telispores, haploid life, and plant cuticle penetration are not essential for it, which may lead to the degeneration in these processes. Transcriptome changes during the mating of T- and MT-type U. esculenta were studied. The functions of several secreted proteins were further confirmed by knock-out mutants. Our results showed that MT-type U. esculenta can receive environmental signals in mating and circumstance sensing as T-type does. However, MT-type U. esculenta takes a longer time for conjunction tube formation and cytoplasmic fusion. A large number of genes encoding secreted proteins are enriched in the purple co-expression module. They are significantly up-regulated in the late stage of mating in T-type U. esculenta, indicating their relationship with infecting. The knock-out of g6161 (xylanase) resulted in an attenuated symptom. The knock-out of g943 or g4344 (function unidentified) completely blocked the infection at an early stage. This study provides a comprehensive comparison between T- and MT-type during mating and identifies two candidate effectors for further study.
Collapse
|
4
|
Zhang ZP, Song SX, Liu YC, Zhu XR, Jiang YF, Shi LT, Jiang JZ, Miao MM. Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between Zizania latifolia and Ustilago esculenta Inducing Jiaobai Stem-Gall Formation. Int J Mol Sci 2021; 22:ijms222212258. [PMID: 34830140 PMCID: PMC8618054 DOI: 10.3390/ijms222212258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Si-Xiao Song
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yan-Cheng Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Xin-Rui Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yi-Feng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Ling-Tong Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Jie-Zeng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Min-Min Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
5
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
6
|
Zhang Y, Hu Y, Cao Q, Yin Y, Xia W, Cui H, Yu X, Ye Z. Functional Properties of the MAP Kinase UeKpp2 in Ustilago esculenta. Front Microbiol 2020; 11:1053. [PMID: 32582058 PMCID: PMC7295950 DOI: 10.3389/fmicb.2020.01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Ustilago esculenta undergoes an endophytic life cycle in Zizania latifolia. It induces the stem of its host to swell, forming the edible galls called jiaobai in China, which are the second most commonly cultivated aquatic vegetable in China. Z. latifolia raised for jiaobai can only reproduce asexually because the U. esculenta infection completely inhibits flowering. The infection and proliferation in the host plants during the formation of edible gall differ from those of conventional pathogens. Previous studies have shown a close relationship between mitogen-activated protein kinase (MAPK) and fungal pathogenesis. In this study, we explored the functional properties of the MAPK UeKpp2. Cross-species complementation assays were carried out, which indicated a functional complementation between the UeKpp2 of U. esculenta and the Kpp2 of Ustilago maydis. Next, UeKpp2 mutants of the UeT14 and the UeT55 sporidia background were generated; these showed an aberrant morphology of budding cells, and attenuated mating and filamentous growth in vitro, in the context of normal pathogenicity. Interestingly, we identified another protein kinase, UeUkc1, which acted downstream of UeKpp2 and may participate in the regulation of cell shape. We also found a defect of filamentous growth in UeKpp2 mutants that was not related to a defect of the induction of mating-type genes but was directly related to a defect in UeRbf1 induction. Overall, our results indicate an important role for UeKpp2 in U. esculenta that is slightly different from those reported for other smut fungi.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yingli Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|