1
|
Petrillo F, Buonanno A, Fedi L, Galdiero M, Reibaldi M, Tamburini B, Galdiero E. Atopic Dermatitis and Atopic Keratoconjunctivitis: New Insights in the Analyses of Microbiota and Probiotic Effect. Int J Mol Sci 2025; 26:1463. [PMID: 40003928 PMCID: PMC11855157 DOI: 10.3390/ijms26041463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Atopy is defined as a predisposition to hypersensitivity reactions against a range of antigens. It is characterized by the activation of CD4+ T helper type 2 (Th2) cells and an increased production of immunoglobulin E (IgE). The most common atopic conditions are atopic dermatitis, asthma, allergic rhinitis, food allergies, and atopic ocular diseases. Atopic keratoconjunctivitis (AKC) is a chronic, bilateral inflammatory condition affecting the ocular surface, frequently occurring in conjunction with atopic dermatitis. It is not uncommon for patients to present with multiple conditions simultaneously or in a sequential manner. A comprehensive understanding of the underlying mechanisms of atopic diseases is essential for the effective clinical evaluation and treatment. Recent research has underscored the pivotal role of the microbiota in the pathogenesis of atopic dermatitis and atopic eye diseases, with alterations in microbial composition (dysbiosis) being linked to a spectrum of atopic conditions. Probiotics are currently being investigated as a potential treatment option for restoring microbial balance and alleviating disease symptoms. This review examines the relationship between atopic dermatitis, atopic keratoconjunctivitis, and the microbiota, evaluating the current evidence and exploring the potential of probiotics as a novel therapeutic approach.
Collapse
Affiliation(s)
- Francesco Petrillo
- Department of Medical Sciences, Eye Clinic, Turin University, 10024 Turin, Italy;
| | - Annalisa Buonanno
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (E.G.)
| | - Ludovica Fedi
- Department of Translational Medical Science, Section of Pediatrics, Università Degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Michele Reibaldi
- Department of Medical Sciences, Eye Clinic, Turin University, 10024 Turin, Italy;
| | - Bruno Tamburini
- Department of Experimental Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (E.G.)
| |
Collapse
|
2
|
Mal S, Das TK, Pradhan S, Ghosh K. Probiotics as a Therapeutic Approach for Non-infectious Gastric Ulcer Management: a Comprehensive Review. Probiotics Antimicrob Proteins 2025; 17:393-418. [PMID: 39190267 DOI: 10.1007/s12602-024-10348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A gastric ulcer is a stomach lining or nearby intestine disruption caused by acid and pepsin. Helicobacter pylori (H. pylori) and NSAIDs are the primary culprits behind stomach infections that can lead to gastric ulcers and other digestive disorders. Additionally, lifestyle choices such as alcohol consumption and cigarette smoking, stress, and exposure to cold environments can also contribute to non-infectious gastric ulcers. Various treatments are available for gastric ulcers, including antibiotics, anticholinergics, and antacids. However, potential concerns include antibiotic resistance, side effects, and treatment failure. Considering this, there is a need for an alternative approach to manage it. Fortunately, probiotics, typically Lactobacillus and Bifidobacterium, show potential for healing gastric ulcers, offering a non-invasive alternative to conventional treatments. A notable concern arises from applying probiotic bacteria stemming from the propensity of pathogenic bacteria to develop antimicrobial resistance in response to antibiotic therapies. Therefore, the use of yeast becomes more imperative due to its natural resistance to antibacterial antibiotics for antibacterial-treated patients. Probiotic bacteria and yeasts could heal gastric ulcers by regulating the immune response, reducing inflammation, and restoring the balance between defensive and aggressive factors of the gastric layer. This comprehensive review provides an in-depth analysis of the benefits of probiotics and their potential as a therapeutic treatment for non-infectious gastric ulcers, along with other probiotic options. In particular, this review provides a succinct summary of multiple literature studies on probiotics, emphasising the distinctive properties of yeast probiotics, as well as their (bacteria and yeasts) application in the management of non-infectious gastric ulcers.
Collapse
Affiliation(s)
- Subhasree Mal
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Tridip K Das
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
3
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
4
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Martyniak A, Wójcicka M, Rogatko I, Piskorz T, Tomasik PJ. A Comprehensive Review of the Usefulness of Prebiotics, Probiotics, and Postbiotics in the Diagnosis and Treatment of Small Intestine Bacterial Overgrowth. Microorganisms 2025; 13:57. [PMID: 39858825 PMCID: PMC11768010 DOI: 10.3390/microorganisms13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a disorder characterized by the excessive growth of bacteria in the small intestine. Bacterial overgrowth disrupts the bacterial balance and can lead to abdominal pain, weight loss, and gastrointestinal symptoms, including bloating, diarrhea, and malabsorption. SIBO is widespread in the population. There are two main methods for diagnosing SIBO: breath tests and bacterial culture. The most commonly used method is a breath test, which enables the division of SIBO into the following three types: hydrogen-dominant (H-SIBO), methane-dominant (CH4-SIBO), and hydrogen/methane-dominant (H/CH4-SIBO). This comprehensive review aims to present the current knowledge on the use of prebiotics, probiotics, and postbiotics in the context of SIBO. For this purpose, medical databases such as MEDLINE (PubMed) and Scopus were analyzed using specific keywords and their combinations. This review is based on research studies no older than 10 years old and those using only human models. In summary, clinical studies have shown that the efficacy of SIBO therapy can be increased by combining antibiotics with probiotics, especially in vulnerable patients such as children and pregnant women. The further development of diagnostic methods, such as point of care testing (POCT) and portable devices, and a better understanding of the mechanisms of biotics action are needed to treat SIBO more effectively and improve the quality of life of patients.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Magdalena Wójcicka
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Iwona Rogatko
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Tomasz Piskorz
- Chair in Gynecology and Obstetrics, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| |
Collapse
|
6
|
Alvarez SCV, Pendón MD, Bengoa AA, Leiva Alaniz MJ, Maturano YP, Garrote GL. Probiotic Potential of Yeasts Isolated from Fermented Beverages: Assessment of Antagonistic Strategies Against Salmonella enterica Serovar Enteritidis. J Fungi (Basel) 2024; 10:878. [PMID: 39728373 DOI: 10.3390/jof10120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Global concern about pathogenic resistance to antibiotics is prompting interest in probiotics as a strategy to prevent or inhibit infections. Fermented beverages are promising sources of probiotic yeasts. This study aimed to evaluate the antagonistic effects of Kluyveromyces marxianus, Wickerhamomyces anomalus, and Pichia manshurica strains from kefir and wine against Salmonella enterica serovar Enteritidis in intestinal epithelial cells. The ability of these yeasts to adhere to Caco-2/TC-7 cells was evaluated, as well as their influence on the ability of Salmonella to associate and invade these cells. The behavior of the pathogen was analyzed by (a) incubation of enterocytes with yeast before adding Salmonella, (b) co-incubation of Salmonella with yeast before contact with the enterocytes, and (c) incubation of Salmonella with yeast metabolites before contact with enterocytes. All yeast strains demonstrated adherence to Caco-2/TC-7 cells (33-100%) and effectively inhibited Salmonella invasion. Among the treatments, co-culture showed the greatest effect, reducing Salmonella association and invasion by more than 50%. Additionally, these yeasts modulated the epithelial immune response, significantly decreasing CCL20-driven luminescence by 60-81% (p < 0.0001). These results highlight the potential of yeasts from fermented beverages as probiotics to counteract Salmonella infections, offering a promising alternative in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Silvia Cristina Vergara Alvarez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - María Dolores Pendón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| | - Ana Agustina Bengoa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| | - María José Leiva Alaniz
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Graciela Liliana Garrote
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| |
Collapse
|
7
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
8
|
Sukmawati D, Adisyahputra A, Al-Ani LKT, Al Husna SN, Afifah ZN, Sriherwanto C, Surono S, Setiarto RHB, Nurjayadi M, Rahman RA. Pichia kudriavzevii UNJCC Y-137 and Candida tropicalis UNJCC Y-140 isolated from Durio kutejensis as potential probiotic agents. Food Sci Biotechnol 2024; 33:3527-3540. [PMID: 39493392 PMCID: PMC11525367 DOI: 10.1007/s10068-024-01609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 11/05/2024] Open
Abstract
Durio kutejensis, commonly known as Lai durian, has a unique characteristics of a creamy texture and a combination of sweet and bitter tastes. This study aimed to isolate and screen yeast from fruits as a potential probiotic agent. The tests consisted of tolerance to bile salt and gastric acid at pH 2, antibacterial activity against Listeria monocytogenes and Salmonella enteriditis, and hemolytic activity on blood agar medium. The results showed that 40 yeasts isolated from Lai durian fruit and 34 of these isolates grew on YMA medium. The two isolates showed high significance in the probiotic tests. These two isolates were able to grow on bile salt up to a concentration of 2% and gastric acid for up to 6 h, with survival rates of 99.06% and 100%, respectively. Two isolates were identified as Pichia kudriavzevii UNJCC Y-137 and Candida tropicalis UN-JCC Y-140 Therefore, these two yeast isolates can be used as potential probiotic agents.
Collapse
Affiliation(s)
- Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
- Universitas Negeri Jakarta Culture Collection (UNJCC), Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| | - Adisyahputra Adisyahputra
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| | | | - Shabrina Nida Al Husna
- Department of Microbiology, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Zakiah Nur Afifah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| | - Catur Sriherwanto
- Biotechnology Laboratory, Agency for the Assessment and Application of Technology, BPPT, Building 630, Science and Technology Park, Tangerang Selatan, Banten 15314 Indonesia
| | - Surono Surono
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Main Street Jakarta-Bogor Km 46, KST Soekarno, Cibinong, Bogor, West Java 16911 Indonesia
| | - R. Haryo Bimo Setiarto
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Main Street Jakarta-Bogor Km 46, KST Soekarno, Cibinong, Bogor, West Java 16911 Indonesia
- Research Collaboration Center for Traditional Fermentation, National Research and Innovation Agency (BRIN), Main Street Jakarta-Bogor Km 46, KST Soekarno, Cibinong, Bogor, West Java 16911 Indonesia
| | - Muktiningsih Nurjayadi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur, Indonesia
| | - Roshanida A. Rahman
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| |
Collapse
|
9
|
Grambusch IM, Schmitz C, Schlabitz C, Ducati RG, Lehn DN, Volken de Souza CF. Encapsulation of Saccharomyces spp. for Use as Probiotic in Food and Feed: Systematic Review and Meta-analysis. Probiotics Antimicrob Proteins 2024; 16:1979-1995. [PMID: 39249640 DOI: 10.1007/s12602-024-10331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/10/2024]
Abstract
Probiotics, particularly yeasts from the genus Saccharomyces, are valuable for their health benefits and potential as antibiotic alternatives. To be effective, these microorganisms must withstand harsh environmental conditions, necessitating advanced protective technologies such as encapsulation to maintain probiotic viability during processing, storage, and passage through the digestive system. This review and meta-analysis aims to describe and compare methods and agents used for encapsulating Saccharomyces spp., examining operating conditions, yeast origins, and species. It provides an overview of the literature on the health benefits of nutritional yeast consumption. A bibliographic survey was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The meta-analysis compared encapsulation methods regarding their viability after encapsulation and exposure to the gastrointestinal tract. Nineteen studies were selected after applying inclusion/exclusion criteria. Freeze drying was found to be the most efficient for cell survival, while ionic gelation was best for maintaining viability after exposure to the gastrointestinal tract. Consequently, the combination of freeze drying and ionic gelation proved most effective in maintaining high cell viability during encapsulation, storage, and consumption. Research on probiotics for human food and animal feed indicates that combining freeze drying and ionic gelation effectively protects Saccharomyces spp.; however, industrial scalability must be considered. Reports on yeast encapsulation using agro-industrial residues as encapsulants offer promising strategies for preserving potential probiotic yeasts, contributing to the environmental sustainability of industrial processes.
Collapse
Affiliation(s)
- Isabel Marie Grambusch
- Food Biotechnology Laboratory, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Caroline Schmitz
- Food Biotechnology Laboratory, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Cláudia Schlabitz
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil
| | - Rodrigo Gay Ducati
- Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil.
| |
Collapse
|
10
|
Moonsamy G, Roets-Dlamini Y, Langa CN, Ramchuran SO. Advances in Yeast Probiotic Production and Formulation for Preventative Health. Microorganisms 2024; 12:2233. [PMID: 39597622 PMCID: PMC11596959 DOI: 10.3390/microorganisms12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The use of probiotics has been gaining popularity in terms of inclusion into human diets over recent years. Based on properties exerted by these organisms, several benefits have been elucidated and conferred to the host. Bacteria have been more commonly used in probiotic preparations compared to yeast candidates; however, yeast exhibit several beneficial properties, such as the prevention and treatment of diarrhea, the production of antimicrobial agents, the prevention of pathogen adherence to intestinal sites, the maintenance of microbial balance, the modulation of the immune system, antibiotic resistance, amongst others. Saccharomyces boulardii is by far the most studied strain; however, the potential for the use of other yeast candidates, such as Kluyveromyces lactis and Debaryomyces hansenii, amongst others, have also been evaluated in this review. Furthermore, a special focus has been made regarding the production considerations for yeast-based probiotics and their formulation into different delivery formats. When drafting this review, evidence suggests that the use of yeasts, both wild-type and genetically modified candidates, can extend beyond gut health to support skin, the respiratory system, and overall immune health. Hence, this review explores the potential of yeast probiotics as a safe, effective strategy for preventative health in humans, highlighting their mechanisms of action, clinical applications, and production considerations.
Collapse
Affiliation(s)
- Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR) Future Production Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa; (Y.R.-D.); (C.N.L.); (S.O.R.)
| | | | | | | |
Collapse
|
11
|
Maher A, Miśkiewicz K, Rosicka-Kaczmarek J, Nowak A. Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules 2024; 29:4922. [PMID: 39459290 PMCID: PMC11510321 DOI: 10.3390/molecules29204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated from various sources. Namely, the effect of AA was tested on the growth of LAB and yeast strains, as well in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, the AA-binding ability of LAB and yeast was investigated in various environments, including the pH, incubation temperature, cell density, and with inanimate cells. The ability of selected LAB and yeast to reduce the genotoxicity of AA was tested on Caco-2 and Hep-G2 cell lines. The results showed that all tested strains exhibited strong resistance to AA at concentrations of 5, 10, and 50 µg/mL. Also, AA was detected in the intracellular and membrane extracts of tested strains. The most effective binding strain was Pediococcus acidilactici 16 at pH = 5, cell density = 109 CFU/mL, and incubation temperature = 37 °C (87.6% of AA removed). Additionally, all tested strains reduced the genotoxicity of AA, with the greatest reduction observed at the highest concentration of 50 µg/mL. The phenomena of detoxification by potentially probiotic strains could reduce the toxic and harmful effects of AA exposure to humans every day.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| |
Collapse
|
12
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Yan Z, Fu Y, Tan X, Xu L, Ling J, Liu X, Miao C, Liu L, Cui Y, Li H, Kuang L, Jiang Y. Isolate distribution and antifungal susceptibility of Saccharomyces cerevisiae in the national regional medical center of Southwest China for women and children during 2018-2023. BMC Microbiol 2024; 24:345. [PMID: 39271978 PMCID: PMC11401246 DOI: 10.1186/s12866-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Saccharomyces cerevisiae has been considered a harmless yeast, but in recent years, increasing evidence has shown that it can cause disease in humans, especially invasive infections in infants/children and vulvovaginal infections in women. This study aimed to investigate the clinical information and antifungal susceptibility of clinical cases with S. cerevisiae and establish a foundation for the prevention and treatment of fungal infections. METHODS This study was conducted from May 2018 to May 2023 at a national regional medical center in Southwest China for women and children. The demographic and clinical characteristics of patients isolated with S. cerevisiae were collected and analyzed. All the isolates were cultured on Sabouraud medium plates and identified by MALDI-TOF MS. The antifungal susceptibility of S. cerevisiae to 10 agents (amphotericin B, fluconazole, itraconazole, voriconazole, micafungin, caspofungin, terbinafine and 5-flucytosine) was determined via the microdilution broth method to determine the minimum inhibitory concentrations (MICs). RESULTS A total of 75 cases of S. cerevisiae isolated from patients with vulvovaginal candidiasis (VVC, 44 cases), pneumonia (13 cases), or diarrhea (18 cases) were included after data review. The MICs of voriconazole and flucytosine for S. cerevisiae isolated from different body sites differed, with higher resistance in intestinal isolates. In this study, S. cerevisiae caused VVC, but there was no clear evidence that it was involved in pneumonia or diarrhea. Compared with those of Candida albicans, the primary pathogen of VVC, the MICs of fluconazole (11.96 ± 5.78 µg/mL vs. 67.64 ± 16.62 µg/mL, p = 0.002), itraconazole (0.77 ± 0.19 µg/mL vs. 2.31 ± 0.53 µg/mL, p = 0.008), voriconazole (0.22 ± 0.09 µg/mL vs. 5.02 ± 1.09 µg/mL, p < 0.001), and terbinafine (10.41 ± 0.84 µg/mL vs. 14.93 ± 4.77 µg/mL, p < 0.001) for S. cerevisiae (isolated from the genital tract) were significantly lower, while those of micafungin (0.14 ± 0.01 µg/mL vs. 0.06 ± 0.01 µg/mL, p < 0.001) and caspofungin (0.27 ± 0.04 µg/mL vs. 0.06 ± 0.01 µg/mL, p < 0.001) were significantly greater. CONCLUSION Azoles remain the recommended regimen for S. cerevisiae-related VVC, and the use of amphotericin B vaginal effervescent tablets could be considered for the treatment of azole-resistant isolates. The antifungal susceptibility of S. cerevisiae varies according to the isolated source, and the pathogenicity trend of S. cerevisiae should be studied.
Collapse
Affiliation(s)
- Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yunhan Fu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Tan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Xu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiaji Ling
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinxing Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Meishan Women and Children's Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University / Sichuan Provincial Children's Hospital, Meishan, Sichuan Province, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
- Department of Laboratory Medicine, Chengdu Hi-Tech Zone Hospital for Women and Children (Chengdu Hi-Tech Zone Hospital for Maternal and Child Healthcare), Chengdu, China.
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Das M, Dam S. Evaluation of probiotic efficacy of indigenous yeast strain, Saccharomyces cerevisiae Y-89 isolated from a traditional fermented beverage of West Bengal, India having protective effect against DSS-induced colitis in experimental mice. Arch Microbiol 2024; 206:398. [PMID: 39254791 DOI: 10.1007/s00203-024-04128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Increasing awareness regarding health promotion and disease prevention has driven inclusion of fermented foods and beverages in the daily diet. These are the enormous sources of beneficial microbes, probiotics. This study aims to isolate yeast strains having probiotic potential and effectivity against colitis. Initially, ninety-two yeast strains were isolated from Haria, an ethnic fermented beverage of West Bengal, India. Primary screening was done by their acid (pH 4) and bile salt (0.3%) tolerance ability. Four potent isolates were selected and found effective against Entamoeba histolytica, as this human pathogen is responsible to cause colitis. They were identified as Saccharomyces cerevisiae. They showed luxurious growth even at 37 oC, tolerance up to 5% of NaCl, resistance to gastric juice and high bile salt (2.0%) and oro-gastrointestinal transit tolerance. They exhibited good auto-aggregation and co-aggregation ability and strong hydrophobicity. Finally, heat map and principal component analysis revealed that strain Y-89 was the best candidate. It was further characterised and found to have significant protective effects against DSS-induced colitis in experimental mice model. It includes improvement in colon length, body weight and organ indices; reduction in disease activity index; reduction in cholesterol, LDL, SGPT, SGOT, urea and creatinine levels; improvement in HDL, ALP, total protein and albumin levels; decrease in coliform count and restoration of tissue damage. This study demonstrates that the S. cerevisiae strain Y-89 possesses remarkable probiotic traits and can be used as a potential bio-therapeutic candidate for the prevention of colitis.
Collapse
Affiliation(s)
- Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
15
|
Holzknecht J, Marx F. Navigating the fungal battlefield: cysteine-rich antifungal proteins and peptides from Eurotiales. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1451455. [PMID: 39323611 PMCID: PMC11423270 DOI: 10.3389/ffunb.2024.1451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.
Collapse
Affiliation(s)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| |
Collapse
|
16
|
Sizova EA, Yausheva EV, Nechitailo KS, Kamirova AM, Ryazanceva KV, Shoshin DE, Skalny AV, Tinkov AA. Influence of the Saccharomyces cerevisiae-based probiotic complex on gut microbiota, serum biochemistry, and circulating trace element and mineral levels in lactating dairy cows. Vet World 2024; 17:1864-1871. [PMID: 39328446 PMCID: PMC11422632 DOI: 10.14202/vetworld.2024.1864-1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim The existing data demonstrate that gut microbiota is involved in regulating mineral metabolism in cattle, although the data are quite contradictory. The study aimed to evaluate Saccharomyces cerevisiae-based probiotic's effects on gut microbiota, systemic metabolism, and dairy cows' essential trace element and mineral body burden. Materials and Methods Fifteen cows received a daily supplement of a 50 g S. cerevisiae-based probiotic, fortified with methionine, choline, eugenol, cinnamaldehyde, and Capsicum oleoresin, for a month. 16S metagenomic sequencing was used to evaluate the taxonomic features of fecal microbiota. Serum trace elements and minerals levels were determined through inductively coupled plasma mass spectrometry. Results Supplementation with S. cerevisiae-based probiotic complex significantly increased alpha and beta diversity, as well as the abundance of Mediterranea and Clostridium IV within the Bacillota phylum, whereas that of Bacteroidota and specifically unclassified Bacteroidales and unclassified Oscillospiraceae decreased. Following probiotic supplementation with the S. cerevisiae-based complex, gut microbiota modulation led to a significant boost in circulating levels of calcium, copper, selenium, and zinc. Creatinine levels decreased while total cholesterol levels increased within normal limits in the serum analysis. Conclusion The observed improvement in trace elements and minerals in dairy cows might be due to changes in intestinal microflora caused by supplementation. Therefore, probiotic supplementation in cattle may be considered a potential tool for improvement of mineral nutrition in cattle. However, the influence of probiotic treatment and modulation of mineral metabolism on milk productivity and overall performance in cattle is yet to be estimated.
Collapse
Affiliation(s)
- Elena A Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
- Scientific-Educational Center "Biological Systems and Nanotechnologies", Orenburg State University, Orenburg, Russia, 460018
| | - Elena V Yausheva
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Ksenia S Nechitailo
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
- Scientific-Educational Center "Biological Systems and Nanotechnologies", Orenburg State University, Orenburg, Russia, 460018
| | - Aina M Kamirova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Kristina V Ryazanceva
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Daniil E Shoshin
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
- Scientific-Educational Center "Biological Systems and Nanotechnologies", Orenburg State University, Orenburg, Russia, 460018
| | - Anatoly V Skalny
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119991
| | - Alexey A Tinkov
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119991
- Laboratory of Microbial Persistence and Symbiosis, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia, 460000
| |
Collapse
|
17
|
Tullio V. Probiotic Yeasts: A Developing Reality? J Fungi (Basel) 2024; 10:489. [PMID: 39057374 PMCID: PMC11277836 DOI: 10.3390/jof10070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Yeasts are gaining increasing attention for their potential health benefits as probiotics in recent years. Researchers are actively searching for new yeast strains with probiotic properties (i.e, Debaryomyces hansenii; Kluyveromyces marxianus; Yarrowia lipolytica; Pichia hudriavzevii; and Torulaspora delbrueckii) from various sources, including traditional fermented foods, the human gut, and the environment. This exploration is expanding the pool of potential probiotic yeasts beyond the well-studied Saccharomyces boulardii. Research suggests that specific yeast strains possess properties that could be beneficial for managing conditions like inflammatory bowel disease, irritable bowel syndrome, skin disorders, and allergies. Additionally, probiotic yeasts may compete with pathogenic bacteria for adhesion sites and nutrients, thereby inhibiting their growth and colonization. They might also produce antimicrobial compounds that directly eliminate harmful bacteria. To achieve these goals, the approach that uses probiotics for human health is changing. Next-generation yeast probiotics are emerging as a powerful new approach in the field of live biotherapeutics. By using genetic engineering, scientists are able to equip these tools with specialized capabilities. However, most research on these probiotic yeasts is still in its early stages, and more clinical trials are needed to confirm their efficacy and safety for various health conditions. This review could provide a brief overview of the situation in this field.
Collapse
Affiliation(s)
- Vivian Tullio
- Department of Public Health and Pediatrics, University of Turin, via Santena 9; 10126 Turin, Italy
| |
Collapse
|
18
|
Lee NK, Jang HJ, Paik HD. Non-lactic acid bacteria probiotics isolated from intestine or various circumstances. Food Sci Biotechnol 2024; 33:1997-2007. [PMID: 39130655 PMCID: PMC11315843 DOI: 10.1007/s10068-024-01608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
Probiotics are live microorganisms beneficial to host health, predominantly comprising lactic acid bacteria (LAB) such as Lactobacillus. Additional non-LAB probiotics, termed intestinal isolates, encompass next-generation strains like Akkermansia muciniphila, Faecalibacterium prausnitzii, Christensenella minuta, Anaerobutyricum soehngenii, Oxalobacter formigenes, etc. and alongside externally sourced Bacillus, Saccharomyces cerevisiae, Clostridium butyricum, and Propionibacterium. Intestinal-derived probiotics represent strictly anaerobic strains with challenging culturing requirements, contrasting with the aerobic nature of Bacillus probiotics and the ease of culturing S. cerevisiae. These strains exhibit diverse health-promoting properties, encompassing antimicrobial, anticancer, antioxidant, and vitamin production capabilities, albeit contingent upon strain specificity. This review delineates the characteristics, culturing conditions, and health advantages associated with non-LAB probiotics.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
19
|
Durmusoglu D, Haller DJ, Al'Abri IS, Day K, Sands C, Clark A, San-Miguel A, Vazquez-Uribe R, Sommer MOA, Crook NC. Programming Probiotics: Diet-Responsive Gene Expression and Colonization Control in Engineered S. boulardii. ACS Synth Biol 2024; 13:1851-1865. [PMID: 38787439 DOI: 10.1021/acssynbio.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.
Collapse
Affiliation(s)
- Deniz Durmusoglu
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Daniel J Haller
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ibrahim S Al'Abri
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Katie Day
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan C Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
20
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
21
|
Santos‐Beneit F. What is the role of microbial biotechnology and genetic engineering in medicine? Microbiologyopen 2024; 13:e1406. [PMID: 38556942 PMCID: PMC10982607 DOI: 10.1002/mbo3.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.
Collapse
Affiliation(s)
- Fernando Santos‐Beneit
- Institute of Sustainable ProcessesValladolidSpain
- Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringUniversity of ValladolidValladolidSpain
| |
Collapse
|
22
|
Yadav A, Yadav R, Sharma V, Dutta U. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J Gastroenterol 2024; 43:112-128. [PMID: 38409485 DOI: 10.1007/s12664-023-01510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Renu Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
23
|
Samakkarn W, Vandecruys P, Moreno MRF, Thevelein J, Ratanakhanokchai K, Soontorngun N. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Appl Microbiol Biotechnol 2024; 108:153. [PMID: 38240846 PMCID: PMC10799125 DOI: 10.1007/s00253-023-12946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 01/22/2024]
Abstract
Evolutionary engineering experiments, in combination with omics technologies, revealed genetic markers underpinning the molecular mechanisms behind acetic acid stress tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Here, compared to the ancestral Ent strain, evolved yeast strains could quickly adapt to high acetic acid levels (7 g/L) and displayed a shorter lag phase of growth. Bioinformatic-aided whole-genome sequencing identified genetic changes associated with enhanced strain robustness to acetic acid: a duplicated sequence in the essential endocytotic PAN1 gene, mutations in a cell wall mannoprotein (dan4Thr192del), a lipid and fatty acid transcription factor (oaf1Ser57Pro) and a thiamine biosynthetic enzyme (thi13Thr332Ala). Induction of PAN1 and its associated endocytic complex SLA1 and END3 genes was observed following acetic acid treatment in the evolved-resistant strain when compared to the ancestral strain. Genome-wide transcriptomic analysis of the evolved Ent acid-resistant strain (Ent ev16) also revealed a dramatic rewiring of gene expression among genes associated with cellular transport, metabolism, oxidative stress response, biosynthesis/organization of the cell wall, and cell membrane. Some evolved strains also displayed better growth at high acetic acid concentrations and exhibited adaptive metabolic profiles with altered levels of secreted ethanol (4.0-6.4% decrease), glycerol (31.4-78.5% increase), and acetic acid (53.0-60.3% increase) when compared to the ancestral strain. Overall, duplication/mutations and transcriptional alterations are key mechanisms driving improved acetic acid tolerance in probiotic strains. We successfully used adaptive evolutionary engineering to rapidly and effectively elucidate the molecular mechanisms behind important industrial traits to obtain robust probiotic yeast strains for myriad biotechnological applications. KEY POINTS: •Acetic acid adaptation of evolutionary engineered robust probiotic yeast S. boulardii •Enterol ev16 with altered genetic and transcriptomic profiles survives in up to 7 g/L acetic acid •Improved acetic acid tolerance of S. boulardii ev16 with mutated PAN1, DAN4, OAF1, and THI13 genes.
Collapse
Affiliation(s)
- Wiwan Samakkarn
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Leuven, Flanders, Belgium
| | - Maria Remedios Foulquié Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Leuven, Flanders, Belgium
| | - Johan Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Leuven, Flanders, Belgium
- NovelYeast Bv, Open Bio-Incubator, Erasmus High School, (Jette), Brussels, Belgium
| | - Khanok Ratanakhanokchai
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
24
|
Doan HT, Cheng LC, Chiu YL, Cheng YK, Hsu CC, Chen YC, Lo HJ, Chiang HS. Candida tropicalis-derived vitamin B3 exerts protective effects against intestinal inflammation by promoting IL-17A/IL-22-dependent epithelial barrier function. Gut Microbes 2024; 16:2416922. [PMID: 39462273 PMCID: PMC11524206 DOI: 10.1080/19490976.2024.2416922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Candida tropicalis-a prevalent gut commensal fungus in healthy individuals - contributes to intestinal health and disease. However, how commensal C. tropicalis influences intestinal homeostasis and barrier function is poorly understood. Here, we demonstrated that the reference strain of C. tropicalis (MYA-3404) ameliorated intestinal inflammation in murine models of chemically induced colitis and bacterial infection. Intestinal colonization of C. tropicalis robustly upregulated the expression of IL-17A and IL-22 to increase barrier function and promote proliferation of intestinal epithelial cells in the mouse colon. Metabolomics analysis of fecal samples from mice colonized with C. tropicalis revealed alterations in vitamin B3 metabolism, promoting conversion of nicotinamide to nicotinic acid. Although nicotinamide worsened colitis, treatment with nicotinic acid alleviated disease symptoms and enhanced epithelial proliferation and Th17 cell differentiation. Oral gavage of C. tropicalis mitigated nicotinamide-induced intestinal dysfunction in experimental colitis. Blockade of nicotinic acid production with nicotinamidase inhibitors lowered the protective effects against colitis in mice treated with C. tropicalis. Notably, a clinical C. tropicalis strain isolated from patients with candidemia lacked the protective effects against murine colitis observed with the reference strain. Together, our results highlight a novel role for C. tropicalis in resolving intestinal inflammation through the modulation of vitamin B3 metabolism.
Collapse
Affiliation(s)
- Ha T Doan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Chieh Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Chiu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
26
|
Asghari KM, Dolatkhah N, Ayromlou H, Mirnasiri F, Dadfar T, Hashemian M. The effect of probiotic supplementation on the clinical and para-clinical findings of multiple sclerosis: a randomized clinical trial. Sci Rep 2023; 13:18577. [PMID: 37903945 PMCID: PMC10616192 DOI: 10.1038/s41598-023-46047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelination disease of the central nervous system (CNS). The gut-brain axis involves communication between the nervous, endocrine, and immune systems. Probiotics can positively impact immune and inflammatory responses by regulating gut microbiota. A total of 40 MS patients (average age of 34.38 ± 6.65) were examined to determine the effect of the Saccharomyces boulardii supplement for four months compared to a placebo. The results showed that the Saccharomyces boulardii significantly decreased the inflammatory marker high-sensitivity C-reactive protein (hs-CRP) compared to the placebo (P < 0.001). The serum antioxidant capacity (TAC) also increased significantly in the probiotic group compared to the placebo (p = 0.004). Both the probiotic and placebo groups showed a reduction in the oxidative stress indicator malondialdehyde (MDA), but there was no significant difference between the two groups. Pain intensity (measured by Visual Analogue Scale) and fatigue severity (measured by Fatigue Severity Scale) significantly decreased in the probiotic group compared to the placebo (p = 0.004 and p = 0.01, respectively). The probiotic group experienced significant improvement in some quality of life scales (measured by 36-Item Short Form Survey) and somatic and social dysfunction subscale of General Health Questionnaire scores compared to the placebo group (p = 0.01). The study suggests that the Saccharomyces boulardii probiotic supplement may benefit inflammatory markers, oxidative stress indicators, pain, fatigue, and quality of life in MS patients.
Collapse
Affiliation(s)
- Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran.
| | - Hormoz Ayromlou
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mirnasiri
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Dadfar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, USA
| |
Collapse
|
27
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
28
|
Gopalan S, Ganapathy S, Mitra M, Neha, Kumar Joshi D, Veligandla KC, Rathod R, Kotak BP. Unique Properties of Yeast Probiotic Saccharomyces boulardii CNCM I-745: A Narrative Review. Cureus 2023; 15:e46314. [PMID: 37927652 PMCID: PMC10621882 DOI: 10.7759/cureus.46314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotics, both bacterial and yeast, have long been associated with a beneficial health history and human well-being. Among yeasts, Saccharomyces is a genus that is efficacious in rendering better human health, with Saccharomyces boulardii (S. boulardii) CNCM I-745 being classified as a probiotic agent. The present review highlights the unique properties of S. boulardii and its rolein the prevention of antibiotic-associated diarrhea (AAD) and pediatric acute gastroenteritis (PAGE) in comparison to bacterial probiotics. Its unique properties,such as viability over a wide pH range, inability to acquire antibiotic resistance genes, and property to achieve a steady state rapidly, have given S. boulardii an edge over bacterial probiotics. In AAD patients, prophylactic use of S. boulardii has shown a significantly lower risk of AAD (in comparison to controls) and restored the diversity of gut microbiota. Among Indian children with PAGE, S. boulardii CNCM I-745 was found superior to Lactobacillus rhamnosus GG and four strains of Bacillus clausii in shortening the duration of diarrhea and reducing the length of hospital stay. S. boulardii CNCM I-745 being considered a safe probiotic for use in children and adults also finds recommendations in several international guidelines for the management of acute diarrhea. The current review discusses evidence for the proven efficacy and safety of S. boulardii CNCM I-745 as a probiotic for preventing gastrointestinal disorders.
Collapse
Affiliation(s)
- Sarath Gopalan
- Pediatrics, Madhukar Rainbow Children's Hospital, New Delhi, IND
| | | | - Monjori Mitra
- Pediatrics, Institute of Child Health (ICH), Kolkata, IND
| | - Neha
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | | | | | - Rahul Rathod
- Ideation and Clinical Research/Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Bhavesh P Kotak
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| |
Collapse
|
29
|
Mehaya FM, El-Shazly AI, El-Dein AN, Farid MA. Evaluation of nutritional and physicochemical characteristics of soy yogurt by Lactobacillus plantarum KU985432 and Saccharomyces boulardii CNCMI-745. Sci Rep 2023; 13:13026. [PMID: 37563274 PMCID: PMC10415370 DOI: 10.1038/s41598-023-40207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Nutritional yeast-produced soy yogurt has grown in demand, because of its unique nutritional and health benefits. It has low cholesterol, no lactose, and high levels of protein, probiotic yeast, vitamins, and minerals. In this work, Soymilk (12.5%) was prepared and fermented to produce soy yogurt. Growth curves, probiotic characteristics of Saccharomyces boulardii CNCMI-745 and Lactobacillus plantarum KU985432 were determined. The nutritional value of both yogurts was evaluated, including viable cell count, protein, vitamin B-complex, sugars, phenolic acids, and fatty acids, mineral content, stability, and storage. Analysis of the physicochemical composition of the yogurts included assessment of titratable acidity, antioxidant potential, viscosity, and moisture content. The probiotic viable count of the produced yogurts met the standards for commercial yogurts. S. boulardii CNCMI-745 displayed safety characteristics and high tolerance to heat, acid, and alkaline stress. The produced B vitamins increased in both yogurts. The total saturated fatty acids in Saccharomyces-yogurt decreased, while the unsaturated fatty acids increased. Saccharomyces-yogurt showed high antioxidant activity, phenolic acids, and crude protein content. Both yogurts demonstrated the same tendency for stability during 16 day-storage. In conclusion, using nutritional yeast in the production of soy yogurt increased its nutritional content more than probiotic lactic acid bacteria.
Collapse
Affiliation(s)
- Fathy M Mehaya
- Food Technology Department, National Research Centre, Cairo, Egypt
| | - Asmaa I El-Shazly
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt.
| | - Asmaa Negm El-Dein
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| | - Mohamed A Farid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
30
|
Mierzejewska J, Kowalska P, Marlicka K, Dworakowska S, Sitkiewicz E, Trzaskowski M, Głuchowska A, Mosieniak G, Milner-Krawczyk M. Exploring Extracellular Vesicles of Probiotic Yeast as Carriers of Biologically Active Molecules Transferred to Human Intestinal Cells. Int J Mol Sci 2023; 24:11340. [PMID: 37511103 PMCID: PMC10379187 DOI: 10.3390/ijms241411340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles containing various bioactive cargos-e.g., proteins, RNAs, and lipids-that are released into the environment by all cell types. They are involved in, amongst other functions, intercellular communication. This article presents studies on EVs produced by the probiotic yeast Saccharomyces boulardii CNCM I-745. The size distribution and concentration of EVs in the liquid culture of yeast were estimated. Moreover, the vesicles of S. boulardii were tested for their cytotoxicity against three model human intestinal cell lines. This study did not show any significant negative effect of yeast EVs on these cells under tested conditions. In addition, EVs of S. boulardii were verified for their ability to internalize in vitro with human cells and transfer their cargo. The yeast vesicles were loaded with doxorubicin, an anticancer agent, and added to the cellular cultures. Subsequently, microscopic observations revealed that these EVs transferred the compound to human intestinal cell lines. A cytotoxicity test confirmed the activity of the transferred doxorubicin. Detailed information about the proteins present in EVs might be important in terms of exploring yeast EVs as carriers of active molecules. Thus, proteomic analysis of the EV content was also conducted within the present study, and it allowed the identification of 541 proteins after matching them to the Saccharomyces Genome Database (SGD). Altogether, this study provides strong evidence that the EVs of the probiotic CNCM I-745 strain could be considered a drug delivery system.
Collapse
Affiliation(s)
- Jolanta Mierzejewska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Patrycja Kowalska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Klaudia Marlicka
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Sara Dworakowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biophysics and Biochemistry, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Maciej Trzaskowski
- Center for Advanced Materials and Technology, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Agata Głuchowska
- Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Grażyna Mosieniak
- Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Małgorzata Milner-Krawczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
31
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
32
|
Morard M, Pérez-Través L, Perpiñá C, Lairón-Peris M, Collado MC, Pérez-Torrado R, Querol A. Comparative genomics of infective Saccharomyces cerevisiae strains reveals their food origin. Sci Rep 2023; 13:10435. [PMID: 37369738 DOI: 10.1038/s41598-023-36857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal infections are less studied than viral or bacterial infections and often more difficult to treat. Saccharomyces cerevisiae is usually identified as an innocuous human-friendly yeast; however, this yeast can be responsible for infections mainly in immunosuppressed individuals. S. cerevisiae is a relevant organism widely used in the food industry. Therefore, the study of food yeasts as the source of clinical infection is becoming a pivotal question for food safety. In this study, we demonstrate that S. cerevisiae strains cause infections to spread mostly from food environments. Phylogenetic analysis, genome structure analysis, and phenotypic characterization showed that the key sources of the infective strains are food products, such as bread and probiotic supplements. We observed that the adaptation to host infection can drive important phenotypic and genomic changes in these strains that could be good markers to determine the source of infection. These conclusions add pivotal evidence to reinforce the need for surveillance of food-related S. cerevisiae strains as potential opportunistic pathogens.
Collapse
Affiliation(s)
- Miguel Morard
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Laura Pérez-Través
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Carla Perpiñá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - María Carmen Collado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain.
| |
Collapse
|
33
|
Tenea GN, Anrango Cajas B, Carlosama Sanchez B. Inhibitory-like Substances Produced by Yeasts Isolated from Andean Blueberries: Prospective Food Antimicrobials. Foods 2023; 12:2435. [PMID: 37444173 DOI: 10.3390/foods12132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Natural agents from microorganisms have emerged as suitable options to replace chemical preservatives in foods. In this study, the antibacterial activity of cell-free supernatant (CFS) from five native yeasts (Saccharomyces cerevisiae Lev6 and Lev30, C. pseudointermedia Lev8, Candida intermedia Lev9, C. parapsilosis Lev15) and the reference S. boulardi SSB, was evaluated against some indicator food pathogens. The generation of antimicrobials was reliant on strain-, and sugar-supplemented media, which supported yeast growth established at 30 °C and 200 rpm for 48 h. Treatment with proteinase K and catalase was unable to completely abolish the inhibitory effect, indicating that the active components are likely complex combinations of acids, proteins, hydrogen peroxide, and other metabolites. Although there was no impact on Listeria monocytogenes, exposure to CFS and extracellular fractions obtained through precipitation with methanol (PPm) at 120 °C for 60 min significantly (p < 0.05) increased the inhibitory activity against Escherichia coli, Salmonella enterica, Kosakonia cowanii, and Staphylococcus aureus, indicating that the inhibitory activity was stimulated by heat. Likewise, a synergistic inhibitory action against Listeria was obtained following the pretreatment of PPm with EDTA (ethylenediaminetetraacetic acid). These activities were yeast strain-dependent, with Lev6, Lev8, and Lev30 showing the highest activity. In addition, a heat-stable low-molecular-mass molecule under 5 kDa was detected in Lev30. Further research is required to evaluate the mode of action and characterize the composition of the released molecules in the CFS in order to develop a novel biocontrol agent based on yeasts.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| | - Blanca Anrango Cajas
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| | - Bladimir Carlosama Sanchez
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| |
Collapse
|
34
|
de Miranda NMZ, de Souza AC, de Souza Costa Sobrinho P, Dias DR, Schwan RF, Ramos CL. Novel yeasts with potential probiotic characteristics isolated from the endogenous ferment of artisanal Minas cheese. Braz J Microbiol 2023; 54:1021-1033. [PMID: 37162703 PMCID: PMC10235398 DOI: 10.1007/s42770-023-01002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
Artisanal Minas cheese (QMA) is traditionally elaborate using raw milk and endogenous ferment (pingo - whey or rala - grated ripened cheese). In the present study, 91 yeast strains were isolated and identified from pingo and rala. Eight yeast species were identified by the MALDI-TOF mass spectrometry and confirmed by sequencing of the ITS region. The yeasts' protease and lipase activities were evaluated in addition to probiotic properties such as tolerance to low pH and bile salts, hydrophobicity, autoaggregation, co-aggregation with pathogens, and antimicrobial susceptibility. The rala ferment showed a greater variety of species. Yarrowia lipolytica was the dominant specie (52.7% of isolates), followed by the Kluyveromyces lactis and Kodamaea ohmeri (9.9 and 6.6%, respectively). From the total yeasts evaluated, 74 strains showed positive enzymatic activity: 52 strains showed lipolytic (51 Y. lipolytica and one Trichosporon japonicum) and 44 proteolytic activities (18 Y. lipolytica, 13 K. ohmeri, 11 K. lactis, and 2 Wickerhamiella sp.). All evaluated isolates demonstrated tolerance to pH 2.0, and 69 isolates supported the presence of bile salts. From them, 12 isolates showed the capacity of autoaggregation (> 30%) and hydrophobicity (> 90.0%) and were then selected for co-aggregation and antibiotic resistance assays. All selected isolates showed co-aggregation with Salmonella Enteritidis, Escherichia coli, and Listeria monocytogenes greater than 30%. None of the yeast showed sensibility to the evaluated antibiotics and antagonistic activity against the evaluated pathogens. The results demonstrated that pingo and rala have different yeast composition with different enzymatic activity, which may affect the characteristics of the cheese. Furthermore, some yeast strains: Y. lipolytica (9 strains isolated from rala) and K. ohmeri (3 strains isolated from pingo) demonstrated attractive probiotic potential.
Collapse
Affiliation(s)
- Nayara Martins Zille de Miranda
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valeys, Rodovia MGT 367 - km 583, no. 5000 – Alto da Jacuba - Diamantina, Minas Gerais, 39100-000 Brazil
| | | | - Paulo de Souza Costa Sobrinho
- Department of Nutrition, Federal University of Jequitinhonha and Mucuri Valeys, Diamantina, Minas Gerais 39100-000 Brazil
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Cíntia Lacerda Ramos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valeys, Rodovia MGT 367 - km 583, no. 5000 – Alto da Jacuba - Diamantina, Minas Gerais, 39100-000 Brazil
| |
Collapse
|
35
|
Zhang H, Li Z, Zhang H, Guo Y, Zhang X, Zhang L, Yang L, Li S, Li C, Cui D, Xie R, Li Y, Huang J. Recombinant hemagglutinin displaying on yeast reshapes congenital lymphocyte subsets to prompt optimized systemic immune protection against avian influenza infection. Front Microbiol 2023; 14:1153922. [PMID: 37323887 PMCID: PMC10264594 DOI: 10.3389/fmicb.2023.1153922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Prophylactic vaccination is regarded as the most effective means to control avian flu infection. Currently, there is a need for a universal vaccine that provides broad and long-lasting protection against influenza virus. Meanwhile, although yeast-based vaccines have been used in clinic, studies are still required to further understand the molecular mechanism of yeast-based vaccines under physiological conditions. Methods We generated a yeast-based vaccine against influenza hemagglutinin (HA) of H5, H7 and H9 using surface displaying technology and evaluated the protective efficacy of chickens after exposure to H9N2 influenza virus. Results Oral yeast vaccine provided less clinical syndrome, reduced viral loading and alleviated airway damage significantly. Compared to the commercial inactivated vaccine, yeast vaccine stimulated the activation of splenic NK and APCs cells and boosted TLR7-IRF7-IFN signaling in spleen. Meanwhile, γδ T cells in the bursa of Fabricius were activated and the innate lymphoid cells (ILCs) in the bursa of Fabricius promoted the CILPs to differentiate to ILC3 cells in oral yeast birds. Moreover, the reshaped gut microbiota and a suppressed Th17-IL17-mediated inflammation in intestine was observed in oral yeast chickens, which might facilitate the recovery of intestinal mucosal immunity upon virus infection. Collectively, our findings suggest that oral yeast based multivalent bird flu vaccines provide an attractive strategy to update host defense function via reshapes of multi-systemic immune homeostasis.
Collapse
Affiliation(s)
- Han Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Huixia Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xinyi Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Shujun Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Daqing Cui
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruyu Xie
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, Bai Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel) 2023; 15:polym15102402. [PMID: 37242977 DOI: 10.3390/polym15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Probiotics are beneficial for human health. However, they are vulnerable to adverse effects during processing, storage, and passage through the gastrointestinal tract, thus reducing their viability. The exploration of strategies for probiotic stabilization is essential for application and function. Electrospinning and electrospraying, two electrohydrodynamic techniques with simple, mild, and versatile characteristics, have recently attracted increased interest for encapsulating and immobilizing probiotics to improve their survivability under harsh conditions and promoting high-viability delivery in the gastrointestinal tract. This review begins with a more detailed classification of electrospinning and electrospraying, especially dry electrospraying and wet electrospraying. The feasibility of electrospinning and electrospraying in the construction of probiotic carriers, as well as the efficacy of various formulations on the stabilization and colonic delivery of probiotics, are then discussed. Meanwhile, the current application of electrospun and electrosprayed probiotic formulations is introduced. Finally, the existing limitations and future opportunities for electrohydrodynamic techniques in probiotic stabilization are proposed and analyzed. This work comprehensively explains how electrospinning and electrospraying are used to stabilize probiotics, which may aid in their development in probiotic therapy and nutrition.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
37
|
Ghelardi E, Mazzantini D, Celandroni F, Calvigioni M, Panattoni A, Lupetti A, Bois De Fer B, Perez M. Analysis of the microbial content of probiotic products commercialized worldwide and survivability in conditions mimicking the human gut environment. Front Microbiol 2023; 14:1127321. [PMID: 37234535 PMCID: PMC10208119 DOI: 10.3389/fmicb.2023.1127321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/23/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Probiotics are living microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Adequate number of living microbes, the presence of specific microorganisms, and their survival in the gastrointestinal (GI) environment are important to achieve desired health benefits of probiotic products. In this in vitro study, 21 leading probiotic formulations commercialized worldwide were evaluated for their microbial content and survivability in simulated GI conditions. Methods Plate-count method was used to determine the amount of living microbes contained in the products. Culture-dependent Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry and culture-independent metagenomic analysis through 16S and 18S rDNA sequencing were applied in combination for species identification. To estimate the potential survivability of the microorganisms contained in the products in the harsh GI environment, an in vitro model composed of different simulated gastric and intestinal fluids was adopted. Results The majority of the tested probiotic products were concordant with the labels in terms of number of viable microbes and contained probiotic species. However, one product included fewer viable microbes than those displayed on the label, one product contained two species that were not declared, and another product lacked one of the labeled probiotic strains. Survivability in simulated acidic and alkaline GI fluids was highly variable depending on the composition of the products. The microorganisms contained in four products survived in both acidic and alkaline environments. For one of these products, microorganisms also appeared to grow in the alkaline environment. Conclusion This in vitro study demonstrates that most globally commercialized probiotic products are consistent with the claims described on their labels with respect to the number and species of the contained microbes. Evaluated probiotics generally performed well in survivability tests, although viability of microbes in simulated gastric and intestinal environments showed large variability. Although the results obtained in this study indicate a good quality of the tested formulations, it is important to stress that stringent quality controls of probiotic products should always be performed to provide optimal health benefits for the host.
Collapse
Affiliation(s)
- Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
38
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
39
|
Zhang Z, Guo Q, Wang J, Tan H, Jin X, Fan Y, Liu J, Zhao S, Zheng J, Peng N. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets. Food Funct 2023; 14:3463-3474. [PMID: 36912248 DOI: 10.1039/d2fo03695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Postbiotics are attractive as alternatives to antibiotics for use against post-weaning diarrhea. However, their beneficial mechanisms are largely unknown. In the current study, we first demonstrated that supplementation with 0.5% Pichia kudriavzevii FZ12 postbiotics in the diet significantly reduced diarrhea incidence, promoted growth performance, improved gut health performance, and significantly enriched beneficial bacteria, particularly Lactobacillus spp., in the intestines of weaned piglets. Importantly, we identified a heat- and proteinase K-sensitive component, cytochrome c, of the postbiotics that significantly promoted the growth and biofilm formation of Limosilactobacillus reuteri FP13. We demonstrated the importance of P. kudriavzevii FZ12 postbiotics in improving the intestinal health of a model animal and revealed that cytochrome c is one of the important components of yeast postbiotics. These findings may provide new insights into microbe-postbiotics interplay that can be applied to guidelines for dietary modulation to alleviate weaning-induced diarrhea.
Collapse
Affiliation(s)
- Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China. .,The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Qiujin Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Hongyan Tan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Yurong Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Jiali Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| |
Collapse
|
40
|
Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. SCIENCE ADVANCES 2023; 9:eadc8978. [PMID: 36812317 PMCID: PMC9946363 DOI: 10.1126/sciadv.adc8978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/26/2023] [Indexed: 05/28/2023]
Abstract
A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
42
|
van Thiel I, de Jonge W, van den Wijngaard R. Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain. Gut Microbes 2023; 15:2168992. [PMID: 36723172 PMCID: PMC9897793 DOI: 10.1080/19490976.2023.2168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the gut microbiota consists of bacteria, viruses, and fungi, most publications addressing the microbiota-gut-brain axis in irritable bowel syndrome (IBS) have a sole focus on bacteria. This may relate to the relatively low presence of fungi and viruses as compared to bacteria. Yet, in the field of inflammatory bowel disease research, the publication of several papers addressing the role of the intestinal mycobiome now suggested that these low numbers do not necessarily translate to irrelevance. In this review, we discuss the available clinical and preclinical IBS mycobiome data, and speculate how these recent findings may relate to earlier observations in IBS. By surveying literature from the broader mycobiome research field, we identified questions open to future IBS-oriented investigations.
Collapse
Affiliation(s)
- Iam van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Wj de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Rm van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,CONTACT RM van den Wijngaard Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 69-71, Amsterdam1105 BK, The Netherlands
| |
Collapse
|
43
|
Angulo M, Ramos A, Reyes-Becerril M, Guerra K, Monreal-Escalante E, Angulo C. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech 2023; 13:28. [PMID: 36590244 PMCID: PMC9797638 DOI: 10.1007/s13205-022-03442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1β) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Abel Ramos
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Martha Reyes-Becerril
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Kevyn Guerra
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| |
Collapse
|
44
|
Mercer EM, Arrieta MC. Probiotics to improve the gut microbiome in premature infants: are we there yet? Gut Microbes 2023; 15:2201160. [PMID: 37122152 PMCID: PMC10153018 DOI: 10.1080/19490976.2023.2201160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Gut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants.
Collapse
Affiliation(s)
- Emily M. Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. In vitro assessment of probiotic attributes for strains contained in commercial formulations. Sci Rep 2022; 12:21640. [PMID: 36517529 PMCID: PMC9751119 DOI: 10.1038/s41598-022-25688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Although probiotics are often indiscriminately prescribed, they are not equal and their effects on the host may profoundly differ. In vitro determination of the attributes of probiotics should be a primary concern and be performed even before clinical studies are designed. In fact, knowledge on the biological properties a microbe possesses is crucial for selecting the most suitable bacteriotherapy for each individual. Herein, nine strains (Bacillus clausii NR, OC, SIN, T, Bacillus coagulans ATCC 7050, Bifidobacterium breve DSM 16604, Limosilactobacillus reuteri DSM 17938, Lacticaseibacillus rhamnosus ATCC 53103, and Saccharomyces boulardii CNCM I-745) declared to be contained in six commercial formulations were tested for their ability to tolerate simulated intestinal conditions, adhere to mucins, and produce β-galactosidase, antioxidant enzymes, riboflavin, and D-lactate. With the exception of B. breve, all microbes survived in simulated intestinal fluid. L. rhamnosus was unable to adhere to mucins and differences in mucin adhesion were evidenced for L. reuteri and S. boulardii depending on oxygen levels. All microorganisms produced antioxidant enzymes, but only B. clausii, B. coagulans, B. breve, and L. reuteri synthesize β-galactosidase. Riboflavin secretion was observed for Bacillus species and L. rhamnosus, while D-lactate production was restricted to L. reuteri and L. rhamnosus. Our findings indicate that the analyzed strains possess different in vitro biological properties, thus highlighting the usefulness of in vitro tests as prelude for clinical research.
Collapse
Affiliation(s)
- Diletta Mazzantini
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy ,grid.5395.a0000 0004 1757 3729Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. THE LANCET. MICROBE 2022; 3:e969-e983. [PMID: 36182668 DOI: 10.1016/s2666-5247(22)00203-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
The gut mycobiome (fungi) is a small but crucial component of the gut microbiome in humans. Intestinal fungi regulate host homoeostasis, pathophysiological and physiological processes, and the assembly of the co-residing gut bacterial microbiome. Over the past decade, accumulating studies have characterised the gut mycobiome in health and several pathological conditions. We review the compositional and functional diversity of the gut mycobiome in healthy populations from birth to adulthood. We describe factors influencing the gut mycobiome and the roles of intestinal fungi-especially Candida and Saccharomyces spp-in diseases and therapies with a particular focus on their synergism with the gut bacterial microbiome and host immunity. Finally, we discuss the underappreciated effects of gut fungi in clinical implications, and highlight future microbiome-based therapies that harness the tripartite relationship among the gut mycobiome, bacterial microbiome, and host immunity, aiming to restore a core gut mycobiome and microbiome and to improve clinical efficacy.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Dominik Aschenbrenner
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
| | - Ji Youn Yoo
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yatsen University, Sun Yat-sen University, Guangzhou, China; Laboratory Animals Centre, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China.
| |
Collapse
|
47
|
Co-Expression of Pig IL-2 and Fusion Bovine Cathelicidin Gene by Recombinant Plasmids in Yeast and Their Promotion of Mouse Antibacterial Defense. BIOLOGY 2022; 11:biology11101491. [PMID: 36290395 PMCID: PMC9598770 DOI: 10.3390/biology11101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
In order to develop an effective and safe immunomodulator to enhance the antimicrobial bioactivity and immunity of animals against infectious bacterial diseases, a recombinant plasmid pGAPZαA-IL2-B co-expressing pig interleukin-2 (PIL-2) and fused bovine cathelicidin (FBC) genes were constructed using the 2A self-cleavage technique. After being expressed in Pichia pastoris strain SMD1168, the recombinant yeast was administered orally to 5-week-old female ICR mice. The control mice were similarly dosed with P. pastoris with a blank plasmid or FBC recombinant plasmid alone. At 28 days post-treatment, the mice were challenged intraperitoneally with virulent strains of either E. coli or S. aureus. Compared with the control groups, the mice that received recombinant yeast co-expressing PIL-2/FBC manifested significant increases in the number of leukocytes, CD4+ and CD8+ T cells, IgG, and the gene expressions of TLRs(TLR1,4,6,9), antimicrobial peptides(CRP4 and CRAMP) and cytokines (IL-2, 4, 6, 7, 12, 15, 23, IFN-γ, and TNF-α) in the blood. Furthermore, the treated mice displayed significantly higher survival than the other two control groups after the challenge. These results suggest that the antimicrobial activity and immunity of animals can be effectively enhanced by the in vivo co-expression of IL-2 and the FBS gene, which can facilitate the development of new immunopotentiation molecules to overcome the infection of antibiotic-resistant bacteria.
Collapse
|
48
|
Lata P, Kumari R, Sharma KB, Rangra S, Savitri. In vitro evaluation of probiotic potential and enzymatic profiling of Pichia kudriavzevii Y33 isolated from traditional home-made mango pickle. J Genet Eng Biotechnol 2022; 20:132. [PMID: 36083419 PMCID: PMC9463414 DOI: 10.1186/s43141-022-00416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022]
Abstract
Background Fermented foods are the results of metabolic activities of various microorganisms. People have traditionally known how to culture desirable microorganisms, primarily lactic acid bacteria, yeasts, and filamentous molds, for the manufacture of edible foods. Yeast isolated from home-made mango pickle from Hamirpur, Himachal Pradesh, was assessed for probiotic properties and their enzymatic profiling. Results Four yeast isolates were isolated out of which P. kudriavzevii Y33 was selected on the basis of high acid tolerance as well as broadest antimicrobial activity. The selected isolate was observed to have high acid tolerance at pH 2 and show strong antimicrobial activity against all the pathogens examined. P. kudriavzevii Y33 can also withstand high bile concentration and showed high viability index, i.e., 95% at concentration of 2% of bile. The isolate was able to demonstrate high cholesterol assimilation in medium containing ox bile and taurocholate, at 88.58 and 86.83%, respectively. The autoaggregation ability of isolate increases with increasing the time of incubation and showed 87% of autoaggregation after 24 h of incubation. P. kudriavzevii Y33 exhibited resistance towards different antibiotics, found to be positive for exopolysaccharide production and showed no hemolytic activity. The isolate was observed to produce several enzymes such as β-galactosidase, protease, amylase, phytase, and lipase. Conclusions The results of the current study revealed that P. kudriavzevii Y33 has various beneficial qualities that suggest it could be used as probiotics. Enzymes produced by yeast isolate help in improving flavor and mineral availability in the fermented products.
Collapse
Affiliation(s)
- Prem Lata
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Reena Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Kiran Bala Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Shailja Rangra
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India.
| |
Collapse
|
49
|
Dou W, Abdalla HB, Chen X, Sun C, Chen X, Tian Q, Wang J, Zhou W, Chi W, Zhou X, Ye H, Bi C, Tian X, Yang Y, Wong A. ProbResist: a database for drug-resistant probiotic bacteria. Database (Oxford) 2022; 2022:6665407. [PMID: 35962763 PMCID: PMC9375527 DOI: 10.1093/database/baac064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
Drug resistance remains a global threat, and the rising trend of consuming probiotic-containing foods, many of which harbor antibiotic resistant determinants, has raised serious health concerns. Currently, the lack of accessibility to location-, drug- and species-specific information of drug-resistant probiotics has hampered efforts to combat the global spread of drug resistance. Here, we describe the development of ProbResist, which is a manually curated online database that catalogs reports of probiotic bacteria that have been experimentally proven to be resistant to antibiotics. ProbResist allows users to search for information of drug resistance in probiotics by querying with the names of the bacteria, antibiotic or location. Retrieved results are presented in a downloadable table format containing the names of the antibiotic, probiotic species, resistant determinants, region where the study was conducted and digital article identifiers (PubMed Identifier and Digital Object Identifier) hyperlinked to the original sources. The webserver also presents a simple analysis of information stored in the database. Given the increasing reports of drug-resistant probiotics, an exclusive database is necessary to catalog them in one platform. It will enable medical practitioners and experts involved in policy making to access this information quickly and conveniently, thus contributing toward the broader goal of combating drug resistance.
Collapse
Affiliation(s)
- Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hemn Barzan Abdalla
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xu Chen
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Changyi Sun
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuefei Chen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuechen Tian
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| |
Collapse
|
50
|
Dong Y, Xu T, Xiao G, Hu Z, Chen J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front Bioeng Biotechnol 2022; 10:909591. [PMID: 36032720 PMCID: PMC9399643 DOI: 10.3389/fbioe.2022.909591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, chronic intestinal inflammatory disorder that primarily includes Crohn’s disease (CD) and ulcerative colitis (UC). Although traditional antibiotics and immunosuppressants are known as the most effective and commonly used treatments, some limitations may be expected, such as limited efficacy in a small number of patients and gut flora disruption. A great many research studies have been done with respect to the etiology of IBD, while the composition of the gut microbiota is suggested as one of the most influential factors. Along with the development of synthetic biology and the continuing clarification of IBD etiology, broader prospects for novel approaches to IBD therapy could be obtained. This study presents an overview of the currently existing treatment options and possible therapeutic targets at the preclinical stage with respect to microbial synthesis technology in biological therapy. This study is highly correlated to the following topics: microbiota-derived metabolites, microRNAs, cell therapy, calreticulin, live biotherapeutic products (LBP), fecal microbiota transplantation (FMT), bacteriophages, engineered bacteria, and their functional secreted synthetic products for IBD medical implementation. Considering microorganisms as the main therapeutic component, as a result, the related clinical trial stability, effectiveness, and safety analysis may be the major challenges for upcoming research. This article strives to provide pharmaceutical researchers and developers with the most up-to-date information for adjuvant medicinal therapies based on synthetic biology.
Collapse
Affiliation(s)
- Yumeng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Suzhou U-Synbio Co., Ltd., Suzhou, China
| | - Tiangang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guozheng Xiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Jingyu Chen,
| |
Collapse
|