1
|
Huang S, Chen J, Liu X, Xing C, Zhao L, Chan K, Lu G. Evaluation of the Pharmaceutical Activities of Chuanxiong, a Key Medicinal Material in Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1157. [PMID: 39338320 PMCID: PMC11434844 DOI: 10.3390/ph17091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Szechwan lovage rhizome (SLR, the rhizome of Ligusticum chuanxiong Hort., Chuanxiong in Chinese transliteration) is one Chinese materia medica (CMM) commonly used to activate blood circulation and remove blood stasis. SLR is applicable to most blood stasis syndromes. It has significant clinical efficacy in relation to human diseases of the cardiocerebrovascular system, nervous system, respiratory system, digestive system, urinary system, etc. Apart from China, SLR is also used in Singapore, Malaysia, the European Union, and the United States of America. However, the current chemical markers in pharmacopeia or monography for the quality assessment of SLR are not well characterized or specifically characterized, nor do they fully reflect the medicinal efficacy of SLR, resulting in the quality of SLR not being effectively controlled. CMM can only have medicinal efficacy when they are applied in vivo to an organism. The intensity of their pharmaceutical activities can more directly represent the quality of CMM. Therefore, the chemical constituents and pharmacological actions of SLR are reviewed in this paper. In order to demonstrate the medicinal efficacy of SLR in promoting blood circulation and removing blood stasis, bioassay methods are put forward to evaluate the pharmaceutical activities of SLR to improve hemorheology, hemodynamics, and vascular microcirculation, as well as its anti-platelet aggregation and anticoagulation properties. Through comprehensive analyses of these pharmaceutical properties, the quality and therapeutic value of SLR are ascertained.
Collapse
Affiliation(s)
- Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunxin Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Zhao
- Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, China;
| | - Kelvin Chan
- Centre for Natural Products Discovery, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 1797, Australia
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Niu C, Zhang P, Zhang L, Lin D, Lai H, Xiao D, Liu Y, Zhuang R, Li M, Ma L, Ye J, Pan Y. Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis. Medicine (Baltimore) 2023; 102:e35106. [PMID: 37773840 PMCID: PMC10545342 DOI: 10.1097/md.0000000000035106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Guanxinning tablet (GXNT), a Chinese patent medicine, is composed of salvia miltiorrhiza bunge and ligusticum striatum DC, which may play the role of endothelial protection through many pathways. We aimed to explore the molecular mechanisms of GXNT against atherosclerosis (AS) through network pharmacology and molecular docking verification. METHODS The active ingredients and their potential targets of GXNT were obtained in traditional Chinese medicine systems pharmacology database and analysis platform and bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. DrugBank, TTD, DisGeNET, OMIM, and GeneCards databases were used to screen the targets of AS. The intersection targets gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed in DAVID database. GXNT-AS protein-protein interaction network, ingredient-target network and herb-target-pathway network were constructed by Cytoscape. Finally, we used AutoDock for molecular docking. RESULTS We screened 65 active ingredients of GXNT and 70 GXNT-AS intersection targets. The key targets of protein-protein interaction network were AKT1, JUN, STAT3, TNF, TP53, IL6, EGFR, MAPK14, RELA, and CASP3. The Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling pathway were the main pathways. The ingredient-target network showed that the key ingredients were luteolin, tanshinone IIA, myricanone, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone. The results of molecular docking showed that tanshinone IIA, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone all had good binding interactions with AKT1, EGFR and MAPK14. CONCLUSION The results of network pharmacology and molecular docking showed that the multiple ingredients within GXNT may confer protective effects on the vascular endothelium against AS through multitarget and multichannel mechanisms. AKT1, EGFR and MAPK14 were the core potential targets of GXNT against AS.
Collapse
Affiliation(s)
- Chaofeng Niu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiyu Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dingfeng Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Lai
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Di Xiao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Liu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhuang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liyong Ma
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Ye
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Wang M, Dai L. A Review of Traditional Chinese Medicine, Buyang Huanwu Decoction for the Treatment of Cerebral Small Vessel Disease. Front Neurosci 2022; 16:942188. [PMID: 35844225 PMCID: PMC9278698 DOI: 10.3389/fnins.2022.942188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is often referred to as “collaterals disease” in traditional Chinese medicine (TCM), and commonly includes ischemic and hemorrhagic CSVD. TCM has a long history of treating CSVD and has demonstrated unique efficacy. Buyang Huanwu Decoction (BHD) is a classical TCM formula that has been used for the prevention and treatment of stroke for hundreds of years. BHD exerts its therapeutic effects on CSVD through a variety of mechanisms. In this review, the clinical and animal studies on BHD and CSVD were systematically introduced. In addition, the pharmacological mechanisms, active components, and clinical applications of BHD in the treatment of CSVD were reviewed. We believe that an in-depth understanding of BHD, its pharmacological mechanism, disease-drug interaction, and other aspects will help in laying the foundation for its development as a new therapeutic strategy for the treatment of CSVD.
Collapse
|
4
|
Li Z, Hao J, Chen K, Jiang Q, Wang P, Xing X, Wang J, Zhang Y, Xiao Y, Zhang L. Identification of key pathways and genes in carotid atherosclerosis through bioinformatics analysis of RNA-seq data. Aging (Albany NY) 2021; 13:12733-12747. [PMID: 33973530 PMCID: PMC8148499 DOI: 10.18632/aging.202943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/31/2021] [Indexed: 01/22/2023]
Abstract
While acknowledging carotid atherosclerosis (CAS) as a risk factor for ischemic stroke, reports on its pathogenesis are scarce. This study aimed to explore the potential mechanism of CAS through RNA-seq data analysis. Carotid intima tissue samples from CAS patients and healthy subjects were subjected to RNA-seq analysis, which yielded, 1,427 differentially expressed genes (DEGs) related to CAS. Further, enrichment analysis (Gene Ontology, KEGG pathway, and MOCDE analysis) was performed on the DEGs. Hub genes identified via the protein-protein interaction network (PPI) were then analyzed using TRRUST, DisGeNET, PaGenBase, and CMAP databases. Results implicated inflammation and immunity in the pathogenesis of CAS. Also, lung disease was associated with CAS. Hub genes were expressed in multiple diseases, mainly regulated by RELA and NFKB1. Moreover, three small-molecule compounds were found via the CMAP database for management of CAS; hub genes served as potential targets. Collectively, inflammation and immunity are the potential pathological mechanisms of CAS. This study implicates CeForanide, Chenodeoxycholic acid, and 0317956-0000 as potential drug candidates for CAS treatment.
Collapse
Affiliation(s)
- Zhongchen Li
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Kun Chen
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Qunlong Jiang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Peijian Wang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Xiaohui Xing
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Yinjiang Zhang
- School of Pharmacy, Minzu University of China, Zhongguancun, Beijing 100081, P.R. China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| |
Collapse
|
5
|
The Protective Effects and Potential Mechanisms of Ligusticum chuanxiong: Focus on Anti-Inflammatory, Antioxidant, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8205983. [PMID: 33133217 PMCID: PMC7591981 DOI: 10.1155/2020/8205983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Ligusticum chuanxiong (LC) is a Chinese materia medica which is widely used in clinical settings to treat headaches, blood extravasation, and arthritis. Recent studies demonstrate that LC possesses versatile pharmacological functions, including antiatherosclerosis, antimigraine, antiaging, and anticancer properties. Moreover, LC also shows protective effects in the progression of different diseases that damage somatic cells. Oxidative stress and inflammation, which can induce somatic cell apoptosis, are the main factors associated with an abundance of diseases, whose progresses can be reversed by LC. In order to comprehensively review the molecular mechanisms associated with the protective effects of LC, we collected and integrated all its related studies on the anti-inflammatory, antioxidant, and antiapoptotic effects. The results show that LC could exhibit the mentioned biological activities by modulating several signaling pathways, specifically the NF-κB, Nrf2, protein kinase, and caspase-3 pathways. In future investigations, the pharmacokinetic properties of bioactive compounds in LC and the signaling pathway modulation of LC could be focused.
Collapse
|
6
|
Comparative Study on Pharmacokinetics of Four Active Compounds in Rat Plasma after Oral Administration of Raw and Wine Processed Chuanxiong Rhizoma. Molecules 2019; 25:molecules25010093. [PMID: 31881790 PMCID: PMC6982718 DOI: 10.3390/molecules25010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
In Chinese medicine, the effect of promoting blood circulation and removing stasis could be enhanced after Chuanxiong Rhizoma is processed by wine. However, the relevant mechanism remains unclear. In this manuscript, a rapid and sensitive quantification method employing ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established and validated to simultaneously determine butylidenephthalide, ligustilide, senkyunolide A and ferulic acid in rat plasma after oral administration of raw Chuanxiong Rhizoma (RCR) and wine-processed Chuanxiong Rhizoma (WCR) respectively. All analytes were extracted from plasma by proteins precipitation with methanol. Chromatographic separation was carried out on a Hypersil GOLD C18 column by using a gradient mobile phase system of acetonitrile and water with 0.01% formic acid, the flow rate was 0.3 mL/min. For exact mass detecting, quick switching mode was used, positive and negative ions could be detected in one injection. The pharmacokinetic profiles of four components in the two groups were evaluated and compared. The results showed that, compared to the RCR group, the Vd and AUC0→t values of four active compounds were increased and decreased respectively in WCR group, which revealed the effect of wine processing to Chuanxiong Rhizoma: the stronger the effect, the wider the distribution.
Collapse
|
7
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
8
|
Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE−/− mice. Food Funct 2019; 10:4001-4009. [DOI: 10.1039/c9fo00396g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde is a flavor isolated from the bark of Cinnamomum cassia Presl and exerts anti-inflammation effects in various diseases.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenbing Zhi
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
- Shaanxi Academy of Traditional Chinese Medicine
| | - Jinmeng Zhao
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenqi Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Lulu Zang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Fang Liu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Xiaofeng Niu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| |
Collapse
|
9
|
Zhao H, Zhao Y, Li X, Xu L, Jiang F, Hou W, Dong L, Cao J. Effects of Antioxidant Tempol on Systematic Inflammation and Endothelial Apoptosis in Emphysematous Rats Exposed to Intermittent Hypoxia. Yonsei Med J 2018; 59:1079-1087. [PMID: 30328323 PMCID: PMC6192890 DOI: 10.3349/ymj.2018.59.9.1079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Obstructive sleep apnea and chronic obstructive pulmonary disease are independent risk factors of cardiovascular disease (CVD), and their coexistence is known as overlap syndrome (OS). Endothelial dysfunction is the initial stage of CVD; however, underlying mechanisms linking OS and CVD are not well understood. The aim of this study was to explore whether OS can lead to more severe inflammation and endothelial apoptosis by promoting endothelial dysfunction, and to assess the intervention effects of antioxidant tempol. MATERIALS AND METHODS Male Wistar rats (n=66) were exposed to normal oxygen [normal control (NC) group], intermittent hypoxia (IH group), cigarette smoke (CH group), as well as cigarette smoke and IH (OS group). Tempol intervention was assessed in OS group treated with tempol (OST group) or NaCl (OSN group). After an 8-week challenge, lung tissues, serum, and fresh blood were harvested for analysis of endothelial markers and apoptosis. RESULTS The levels of intracellular adhesion molecule-1, vascular cellular adhesion molecule-1, and apoptosis in circulating epithelial cells were the highest in OS group and the lowest in NC group. These levels were all greater in IH group than in CH group, and were lower in OST group than in OS and OSN groups (all p<0.001). CONCLUSION Synergistic effects of IH with cigarette smoke-induced emphysema produce a greater inflammatory status and endothelial apoptosis. OS-related inflammation and endothelial cell apoptosis may play important roles in promoting cardiovascular dysfunction, and antioxidant tempol could achieve a partial protective effect.
Collapse
Affiliation(s)
- Haiyan Zhao
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China
| | - Yaping Zhao
- Respiratory Department of Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xin Li
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China
| | - Leiqian Xu
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China
| | - Fangxin Jiang
- Department of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanju Hou
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China
| | - Lixia Dong
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China.
| | - Jie Cao
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
10
|
Wang G, Dai G, Song J, Zhu M, Liu Y, Hou X, Ke Z, Zhou Y, Qiu H, Wang F, Jiang N, Jia X, Feng L. Lactone Component From Ligusticum chuanxiong Alleviates Myocardial Ischemia Injury Through Inhibiting Autophagy. Front Pharmacol 2018; 9:301. [PMID: 29651246 PMCID: PMC5884868 DOI: 10.3389/fphar.2018.00301] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
The dysregulation of autophagy is associated with a series of cardiovascular diseases, such as myocardial ischemia injury. Lactone component from Ligusticum chuanxiong (LLC) is the major constituent of the traditional Chinese herb L. chuanxiong Hort., which has been reported to hold potential cardioprotective effects. In this study, to determine whether LLC protects the heart through regulation of autophagy, we explored the effects of LLC on cardioprotection and autophagy in myocardial ischemia injured rats and H9c2 cardiomyocytes. Our results showed that LLC significantly reduced infarct size and serum levels of lactate dehydrogenase, creatine kinase, and cardiac troponin and ameliorated histological features in a dose-dependent manner. Similar protections were observed in cardiomyocytes subjected to oxygen-glucose deprivation (OGD). Meanwhile, LLC inhibited autophagy induced by myocardial ischemia injury, characterized by increased autophagic vacuoles, LC3-II/LC3-I ratio and the expression of Beclin 1, whereas decreased the expression of p62. Additionally, LLC combined with a lysosomal inhibitor chloroquine (CQ) reduced LC3-II/LC3-I ratio in cardiomyocytes compared with CQ alone. Furthermore, LLC-afforded cardioprotection was abolished by a specific PI3K inhibitor LY294002. Collectively, these findings demonstrated that cardioprotective effects of LLC were related to restoration of autophagic flux through the activation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Wang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Song
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Maomao Zhu
- Nanjing Institute of Product Quality Inspection, Nanjing, China
| | - Ying Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xuefeng Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Zhongcheng Ke
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Yuanli Zhou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Huihui Qiu
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Fujing Wang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Nan Jiang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xiaobin Jia
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Feng
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol 2018; 119:309-325. [PMID: 29486278 DOI: 10.1016/j.fct.2018.02.050] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Chuanxiong Rhizome (called Chuanxiong, CX in Chinese), the dried rhizome of Ligusticum chuanxiong Hort, is an extremely common traditional edible-medicinal herb. As a widely used ethnomedicine in Asia including China, Japan and Korea, CX possesses ideal therapeutic effect on cardiovascular and cerebrovascular diseases, and is also used as a major ingredient in soups for regular consumption to benefit health. Based on the traditional perception, amounts of investigations on different aspects have been done for CX in the past decades. However, no literature systematic review about these achievements have been compiled. Herein, the aim of this review is to present the up-to-date information on the ethnobotany, ethnopharmacological uses, phytochemicals, pharmacological activities, toxicology of this plant to identify their therapeutic potential and directs future research opportunities. So far, about 174 compounds has been isolated and identified from CX, in which phthalides and alkaloids would be the main bioactive ingredients for its pharmacological properties, such as anti-cerebral ischemia, anti-myocardial ischemia, blood vessel protection, anti-thrombotic, anti-hypertensive, anti-atherosclerosis, anti-spasmodic, anti-inflammatory, anti-cancer, anti-oxidant, and anti-asthma effects. Even so, due to the incomplete standardized planting, unstable herbal quality, and outdated preparation techniques, the industrial progress of CX is still less developed.
Collapse
|
12
|
Sun LF, An DQ, Niyazi GL, Ma WH, Xu ZW, Xie Y. Effects of Tianxiangdan Granule treatment on atherosclerosis via NF‑κB and p38 MAPK signaling pathways. Mol Med Rep 2017; 17:1642-1650. [PMID: 29257205 PMCID: PMC5780105 DOI: 10.3892/mmr.2017.8067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/07/2017] [Indexed: 01/26/2023] Open
Abstract
The present study aimed to determine the effects of Tianxiangdan Granule on nuclear factor (NF)-κB p65 and p38 mitogen-activated protein kinase (MAPK) inflammatory signaling pathways, and explored the possible mechanism underlying the effects of Tianxiangdan Granule on prevention and treatment of atherosclerosis. A total of 48 apolipoprotein E−/− mice (age, 8 weeks) were selected and divided into two groups: The normal control group (n=12) and the modeling group (n=36). In the modeling group, mice were fed a high-fat diet and were maintained in an artificial climate box, in order to stimulate the climate and eating habit characteristics of Xinjiang. Every morning, ApoE−/− mice in the modeling group were placed in the artificial climate box at 10:00 am and were taken out at 09:00 pm and placed back in the room temperature environment. The temperature of the artificial climate box was set at 6±2°C, relative humidity was controlled at 25–32.8% and the light-dark cycle was 12 h/day. The purpose of this method was to establish the Huizhuo Tanzu type atherosclerosis model. Following successful generation of the model, mice in the modeling group were randomly divided into three groups: Model group (n=10), Tianxiangdan group (n=10) and atorvastatin group (n=10). After 12 weeks, mice were sacrificed and the serum levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in each group were detected. Furthermore, the expression levels of NF-κB p65 and p38 MAPK in aortic tissue were detected. The results indicated that the concentrations of IL-1β and TNF-α were significantly higher in mice in the model group compared with in the normal control group (P<0.01), whereas the concentrations of IL-1β and TNF-α were lower in the Tianxiangdan and atorvastatin groups compared with in the model group (P<0.01). Furthermore, the protein expression levels of phosphorylated (p)-NF-κB p65 and p-p38 MAPK protein were higher in aortic tissues from the model group compared with in the normal control group (P<0.01), p-NF-κB p65 and p-p38 MAPK protein expression was reduced in the atorvastatin and Tianxiangdan groups compared with in the model group. The present study indicated that the mechanism underlying the effects of Tianxiangdan Granule on the prevention and treatment of atherosclerosis may be as follows: Tianxiangdan Granule may decrease the expression of the inflammatory cytokines IL-1β and TNF-α, and suppress activation of the NF-κB p65 and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Long-Fei Sun
- Coronary Care Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Dong-Qing An
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinnjiang 830011, P.R. China
| | - Gu-Lijiamali Niyazi
- Rehabilitation Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Wen-Hui Ma
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinnjiang 830011, P.R. China
| | - Zheng-Wei Xu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinnjiang 830011, P.R. China
| | - Yang Xie
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinnjiang 830011, P.R. China
| |
Collapse
|
13
|
Donkor PO, Chen Y, Ding L, Qiu F. Locally and traditionally used Ligusticum species - A review of their phytochemistry, pharmacology and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:530-548. [PMID: 27729283 DOI: 10.1016/j.jep.2016.10.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum species (Umbelliferae) have been widely used in traditional Chinese medicine, Korean folk medicine and Native American medicine for their medicinal and nutritional value. Decoctions of the rhizomes are used in treatment and prophylaxis of migraine, anemia and cardiovascular conditions including stroke. AIM OF STUDY This review is intended to fully compile the constituents of locally and traditionally used Ligusticum species, present their bioactivities and highlight potential leads for future drug design, and thus, provide a reference for further research and application of these species. Emphasis is also placed on current trends in the pharmacokinetic studies of the major constituents. METHODS The literature discussed is derived from readily accessible papers spanning the early 1990s to the end of 2015. Information was collected from journals, books and online searches (Google Scholar, PubMed, ScienceDirect, SciFinder, Springerlink and CNKI). RESULTS The major phytoconstituents, 154 of which are presented in this review, include alkaloids, phthalides and phenolic acids. The crude extracts and isolated constituents have exhibited a wide range of in vitro and in vivo pharmacologic effects, including cardioprotective, antioxidant, anti-inflammatory and neuroprotective activities. The bioactive alkaloid tetramethylpyrazine (TMP) has attracted the most attention for its potent effect on calcium channels, anti-platelet as well as anti-inflammatory effects. Pharmacokinetic studies of major constituents have also been summarized. CONCLUSION The pthalides, organic acids and alkaloids of Ligusticum species have emerged as a good source of traditional medicines for the management of cardio- and cerebrovascular conditions, inflammation and neurogenerative disorders. The species discussed in this review have demonstrated wide pharmacological actions and have great potential to yield multipotent drugs if challenges such as poor bioavailability, solubility and toxicological profiles are addressed. Apart from the rhizomes, pharmacological activities of other botanical parts also need to be studied further. Expansion of research to cover other species in the Ligusticum genus would provide more opportunities for the discovery of new bioactive principles.
Collapse
Affiliation(s)
- Paul Owusu Donkor
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; University of Ghana School of Pharmacy, P.O. Box KB 52, Korle-Bu, Ghana
| | - Ying Chen
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liqin Ding
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
14
|
Xiang L, Wang J, Zhang G, Rong L, Wu H, Sun S, Guo Y, Yang Y, Lu L, Qu L. Analysis and identification of two similar traditional Chinese medicines by using a three-stage infrared spectroscopy: Ligusticum chuanxiong, Angelica sinensis and their different extracts. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Niu J, Han L, Gong F. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores. Med Sci Monit 2016; 22:2871-7. [PMID: 27523814 PMCID: PMC4988363 DOI: 10.12659/msm.897032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. Material/Methods From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. Results Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. Conclusions Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junzhi Niu
- Department of Information, Jining No.1 People's Hospital, Jining, Shandong, China (mainland)
| | - Lin Han
- Department of Nursing, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Fen Gong
- Department of Surgical Outpatient, Jining No.1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
16
|
Hung HY, Wu TS. Recent progress on the traditional Chinese medicines that regulate the blood. J Food Drug Anal 2016; 24:221-238. [PMID: 28911575 PMCID: PMC9339571 DOI: 10.1016/j.jfda.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/13/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
In traditional Chinese medicine, the herbs that regulate blood play a vital role. Here, nine herbs including Typhae Pollen, Notoginseng Root, Common Bletilla Tuber, India Madder Root and Rhizome, Chinese Arborvitae Twig, Lignum Dalbergiae Oderiferae, Chuanxiong Rhizoma, Corydalis Tuber, and Motherwort Herb were selected and reviewed for their recent studies on anti-tumor, anti-inflammatory and cardiovascular effects. Besides, the analytical methods developed to qualify or quantify the active compounds of the herbs are also summarized.
Collapse
Affiliation(s)
- Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
17
|
Screening bioactive compounds from Ligusticum chuanxiong by high density immobilized human umbilical vein endothelial cells. Anal Bioanal Chem 2015; 407:5783-92. [DOI: 10.1007/s00216-015-8764-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023]
|
18
|
Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Adv Clin Chem 2015; 70:1-30. [PMID: 26231484 DOI: 10.1016/bs.acc.2015.03.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall with lipid-laden lesions, involving a complex interaction between multiple different cell types and cytokine networks. Inflammatory responses mark all stages of atherogenesis: from lipid accumulation in the intima to plaque formation and eventual rupture. One of the most important regulators of inflammation is the transcription factor nuclear factor-κB (NF-κB), which is activated through the canonical and noncanonical pathways in response to various stimuli. NF-κB has long been regarded as a proatherogenic factor, because it is implicated in multiple pathological processes during atherogenesis, including foam cell formation, vascular inflammation, proliferation of vascular smooth muscle cells, arterial calcification, and plaque progression. In contrast, inhibition of NF-κB signaling has been shown to protect against atherosclerosis. This chapter aims to discuss recent progress on the roles of NF-κB in lipid metabolism and atherosclerosis and also to highlight its potential therapeutic benefits.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Chao-Ke Tang
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China.
| |
Collapse
|