1
|
Zhu F, Mao H, Du S, Zhou H, Zhang R, Li P, Xing J. CYP3A4-mediated metabolism of artemisinin to 10β-hydroxyartemisinin with comparable anti-malarial potency. Malar J 2024; 23:328. [PMID: 39501261 PMCID: PMC11539713 DOI: 10.1186/s12936-024-05163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The most widely used anti-malarial drug artemisinin (ART) is metabolized extensively, but the therapeutic capacity of its major metabolite remains unknown. Whether the major metabolite of ART (ART-M) contributes to its antiplasmodial potency was investigated in this study. METHODS The metabolite identification and enzyme phenotyping of ART were performed using human liver microsomes (HLMs). The stereostructure of the major metabolite ART-M was elucidated by spectroscopic and X-ray crystallographic analysis. The anti-malarial activity of ART-M against two reference Plasmodium strains (Pf3D7 and PfDd2) was evaluated. The pharmacokinetic profiles of ART and its metabolite ART-M were investigated in healthy Chinese subjects after a recommended two-day oral dose of ART plus piperaquine. Pharmacodynamic parameters based on minimum inhibitory concentration (MIC50) and free plasma concentration were employed to evaluate the therapeutic potency of ART-M, including fAUC0-t/MIC50, fCmax/MIC50 and T > MIC50. RESULTS A major metabolite 10β-hydroxyartemisinin (ART-M) was found for ART in human, and CYP3A4/3A5 was the major enzymes responsible for ART 10β-hydroxylation. Compared with ART (MIC50, 10.1 nM against Pf3D7), weaker antiplasmodial activity was found for ART-M (MIC50, 61.4 nM against Pf3D7). However, a 3.5-fold higher maximal free plasma concentration was achieved for ART-M (fCmax, 180.0 nM vs. 51.8 nM for ART). ART-M displayed comparable antiplasmodial potency to ART, in terms of fAUC0-t/MIC50 (12.5 h), fCmax/MIC50 (2.8) and T > MIC50 (5 h). CONCLUSIONS The major metabolite 10β-hydroxyartemisinin contributes to the antiplasmodial efficacy of ART, which should be considered when evaluation of ART dosing regimens and/or clinical outcomes.
Collapse
Affiliation(s)
- Fanping Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Huixiu Mao
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Shanshan Du
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hongchang Zhou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Rui Zhang
- Qilu Hospital, Shandong University, Jinan, China
| | - Pingli Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
3
|
Bai Y, Zhao Y, Gao X, Zhang D, Ma Y, Yang L, Sun P. A Novel Antimalarial Metabolite in Erythrocyte From the Hydroxylation of Dihydroartemisinin by Cunninghamella elegans. Front Chem 2022; 10:850133. [PMID: 35559220 PMCID: PMC9086495 DOI: 10.3389/fchem.2022.850133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dihydroartemisinin (DHA) is a sesquiterpene endoperoxide with prominent antimalarial efficacy, which was discovered by Professor Youyou Tu through the reduction of artemisinin in the 1970s. It is always a challenging work for scientists to investigate the metabolites of DHA in the red blood cells due to the complicated matrix background. As a bottleneck, the investigation of metabolites, especially exploring the pharmacodynamic material in the red blood cell, is necessary and significant for metabolism research of antimalarial agent. Recently, microbial transformation provides a green and economical means for mimicking mammal metabolism and synthesis active metabolites, based on which is one efficient route for drug discovery. In this study, a strain from Cunninghamella was employed as an efficient tool to explore active metabolites of DHA in erythrocyte. Microbial transformation products of DHA by Cunninghamella elegans CICC 40250 were detected and analyzed by ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-quadrupole time-of-flight (Q-TOF)-mass spectrometry (MSE), and the main products were isolated and identified. The antimalarial activity of the isolated products was also screened in vitro. Totally, nine products were discovered through UPLC-ESI-QTOF-MSE, and three main products with novel chemical structures were isolated for the first time, which were also detected in red blood cells as the metabolites of DHA. After evaluation, 7β-hydroxydihydroartemisinin (M1) exhibited a good antimalarial activity with an IC50 value of 133 nM against Plasmodium falciparum (Pf.) 3D7. The structure and stereo-configuration of novel compound M1 were validated via X-ray single crystal diffraction. Microbial transformation was firstly employed as the appropriate model for metabolic simulation in erythrocyte of DHA. Three novel metabolites in erythrocyte were obtained for the first time through our microbial model, and one of which was found to show moderate antimalarial activity. This work provided a new research foundation for antimalarial drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Yue Ma
- *Correspondence: Yue Ma, ; Lan Yang, ; Peng Sun,
| | - Lan Yang
- *Correspondence: Yue Ma, ; Lan Yang, ; Peng Sun,
| | - Peng Sun
- *Correspondence: Yue Ma, ; Lan Yang, ; Peng Sun,
| |
Collapse
|
4
|
Biotransformation of artemisinin to a novel derivative via ring rearrangement by Aspergillus niger. Appl Microbiol Biotechnol 2022; 106:2433-2444. [PMID: 35355096 PMCID: PMC8989930 DOI: 10.1007/s00253-022-11888-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 11/27/2022]
Abstract
Abstract Artemisinin is a component part of current frontline medicines for the treatment of malaria. The aim of this study is to make analogues of artemisinin using microbial transformation and evaluate their in vitro antimalarial activity. A panel of microorganisms were screened for biotransformation of artemisinin (1). The biotransformation products were extracted, purified and isolated using silica gel column chromatography and semi-preparative HPLC. Spectroscopic methods including LC-HRMS, GC–MS, FT-IR, 1D and 2D NMR were used to elucidate the structure of the artemisinin metabolites.1H NMR spectroscopy was further used to study the time-course biotransformation. The antiplasmodial activity (IC50) of the biotransformation products of 1 against intraerythrocytic cultures of Plasmodium falciparum were determined using bioluminescence assays. A filamentous fungus Aspergillus niger CICC 2487 was found to possess the best efficiency to convert artemisinin (1) to a novel derivative, 4-methoxy-9,10-dimethyloctahydrofuro-(3,2-i)-isochromen-11(4H)-one (2) via ring rearrangement and further degradation, along with three known derivatives, compound (3), deoxyartemisinin (4) and 3-hydroxy-deoxyartemisinin (5). Kinetic study of the biotransformation of artemisinin indicated the formation of artemisinin G as a key intermediate which could be hydrolyzed and methylated to form the new compound 2. Our study shows that the anti-plasmodial potency of compounds 2, 3, 4 and 5 were ablated compared to 1, which attributed to the loss of the unique peroxide bridge in artemisinin (1). This is the first report of microbial degradation and ring rearrangement of artemisinin with subsequent hydrolysis and methoxylation by A.niger. Key points • Aspergillus niger CICC 2487 was found to be efficient for biotransformation of artemisinin • A novel and unusual artemisinin derivative was isolated and elucidated • The peroxide bridge in artemisinin is crucial for its high antimalarial potency • The pathway of biotransformation involves the formation of artemisinin G as a key intermediate Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11888-0.
Collapse
|
5
|
Aminudin NI, Ridzuan M, Susanti D, Zainal Abidin ZA. Biotransformation of sesquiterpenoids: a recent insight. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:103-145. [PMID: 33783284 DOI: 10.1080/10286020.2021.1906657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Sesquiterpenoids have been identified as natural compounds showing remarkable biological activities found in medicinal plants. There is great interest in developing methods to obtain sesquiterpenoids derivatives and biotransformation is one of the alternative methods for structural modification of complex sesquiterpenes structures. Biotransformation is a great drug design tool offering high selectivity and green method. The present review describes a comprehensive summary of biotransformation products of sesquiterpenoids and its structural modification utilizing a variety of biocatalysts including microorganisms, plant tissue culture and enzymes. This review covers recent literatures from 2007 until 2020 and highlights the experimental conditions for each biotransformation process.
Collapse
Affiliation(s)
- Nurul Iman Aminudin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang 25200, Malaysia
| | - Munirah Ridzuan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang 25200, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang 25200, Malaysia
| | - Zaima Azira Zainal Abidin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang 25200, Malaysia
| |
Collapse
|
6
|
Pandey RP, Dhakal D, Thapa SB, Bashyal P, Kim TS, Sohng JK. UPLC-PDA coupled HR-TOF ESI/MS 2 -based identification of derivatives produced by whole-cell biotransformation of epothilone A using Nocardia sp. CS692 and a cytochrome P450 overexpressing strain. Biotechnol Appl Biochem 2021; 69:1723-1732. [PMID: 34415071 DOI: 10.1002/bab.2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Epothilone A, a microtubule-stabilizing agent used as therapeutics for the treatment of cancers, was biotransformed into three metabolites using Nocardia sp. CS692 and recombinant Nocardia overexpressing a cytochrome P450 from Streptomyces venezuelae (PikC). Among three metabolites produced in the biotransformation reaction mixtures, ESI/MS2 analysis predicted two metabolites (M1 and M2) as novel hydroxylated derivatives (M1 is hydroxylated at the C-8 position and M2 is hydroxylated at C-10 position), each with an opened-epoxide ring in their structure. Interestingly, metabolite M3 lacks an epoxide ring and is known as deoxyepothilone A, which is also called epothilone C. Metabolite M1 was produced only in PikC overexpressing strain. The endogenous enzymes of Nocardia sp. catalyzed hydroxylation of epothilone A to produce metabolite M2 and removed epoxide ring to produce metabolite M3. All the metabolites were identified based on UV-vis analysis and rigorous ESI/MS2 fragmentation based on epothilone A standard. The newly produced metabolites are anticipated to display novel cytotoxic effects and could be subjects of further pharmacological studies.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Samir Bahadur Thapa
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Puspalata Bashyal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Tae-Su Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
7
|
Cano-Flores A, Gómez J, S. Escalona-Torres I, Velasco-Bejarano B. Microorganisms as Biocatalysts and Enzyme Sources. Microorganisms 2020. [DOI: 10.5772/intechopen.90338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
8
|
Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science 2020; 368:604-607. [PMID: 32381716 DOI: 10.1126/science.aba0478] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecules from symbiotic microorganisms pervasively infiltrate almost every organ system of a mammalian host, marking the initiation of microbial-host mutualism in utero, long before the newborn acquires its own microbiota. Starting from in utero development, when maternal microbial molecules can penetrate the placental barrier, we follow the different phases of adaptation through the life events of birth, lactation, and weaning, as the young mammal adapts to the microbes that colonize its body surfaces. The vulnerability of early-life mammals is mitigated by maternal detoxification and excretion mechanisms, the protective effects of maternal milk, and modulation of neonatal receptor systems. Host adaptations to microbial exposure during specific developmental windows are critical to ensure organ function for development, growth, and immunity.
Collapse
Affiliation(s)
- Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Mathias W Hornef
- Institute for Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Andrew J Macpherson
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
| |
Collapse
|
9
|
Bai Y, Zhang D, Sun P, Zhao Y, Chang X, Ma Y, Yang L. Evaluation of Microbial Transformation of 10-deoxoartemisinin by UPLC-ESI-Q-TOF-MS E. Molecules 2019; 24:molecules24213874. [PMID: 31661766 PMCID: PMC6864820 DOI: 10.3390/molecules24213874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
10-deoxoartemisinin is a semisynthetic derivative of artemisinin that lacks a lactone carbonyl group at the 10-position, and has stronger antimalarial properties than artemisinin. However, 10-deoxoartemisinin has limited utility as a therapeutic agent because of its low solubility and bioavailability. Hydroxylated 10-deoxoartemisinins are a series of properties-improved derivatives. Via microbial transformation, which can hydroxylate 10-deoxoartemisinin at multiple sites, the biotransformation products of 10-deoxoartemisinin have been investigated in this paper. Using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MSE) combined with UNIFI software, products of microbial transformation of 10-deoxoartemisinin were rapidly and directly analyzed. The hydroxylation abilities of nine microorganisms were compared using this method. All of the microorganisms evaluated were able to hydroxylate 10-deoxoartemisinin, and a total of 35 hydroxylated products were identified. These can be grouped into dihydroxylated 10-deoxoartemisinins, monohydroxylated 10-deoxoartemisinins, hydroxylated dehydrogenated 10-deoxoartemisinins, and hydroxylated hydrogenated 10-deoxoartemisinins. Cunninghamella echinulata and Cunninghamella blakesleeana are able to hydroxylate 10-deoxoartemisinin, and their biotransformation products are investigated here for the first time. Cunninghamella elegans CICC 40250 was shown to most efficiently hydroxylate 10-deoxoartemisinin, and could serve as a model organism for microbial transformation. This method could be used to generate additional hydroxylated 10-deoxoartemisinins for further research.
Collapse
Affiliation(s)
- Yue Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yifan Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaoqiang Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yue Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lan Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
A Microbial Transformation Model for Simulating Mammal Metabolism of Artemisinin. Molecules 2019; 24:molecules24020315. [PMID: 30654552 PMCID: PMC6358782 DOI: 10.3390/molecules24020315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/04/2023] Open
Abstract
Artemisinin (ART) is a highly effective antimalarial agent isolated from the traditional Chinese herb Qinghao. Metabolism of ART and its derivatives in the body is one of the most pressing issues for pharmaceutical scientists. Herein, an efficient in vitro microorganism model for simulation of metabolism of ART in vivo was developed employing Cunninghamella elegans. Metabolites in the microbial transformation system and plasma of mice pre-administrated ART orally were analyzed by ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-quadrupole time-of-flight (Q-TOF)-mass spectrometry (MSE) combined with UNIFI software. Thirty-two metabolites were identified in vitro and 23 were identified in vivo. After comparison, 16 products were found to be common to both models including monohydroxylated ART, dihydroxylated ART, deoxyartemisinin, hydroxylated deoxyartemisinin, hydroxylated dihydroartemisinin (DHA), and hydroxylated deoxy-DHA. These results revealed that C. elegans CICC 40250 functioned as an appropriate model to mimic ART metabolism in vivo. Moreover, an overall description of metabolites of ART from C. elegans CICC 40250 has been provided. Notably, DHA was detected and identified as a metabolite of ART in mouse plasma for the first time.
Collapse
|
11
|
Lin L, Mao X, Sun Y, Cui H. Antibacterial mechanism of artemisinin / beta-cyclodextrins against methicillin-resistant Staphylococcus aureus ( MRSA ). Microb Pathog 2018. [DOI: 10.1016/j.micpath.2018.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:190-213. [PMID: 29175684 DOI: 10.1016/j.envpol.2017.11.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 05/26/2023]
Abstract
Due to recalcitrance of some pharmaceutically active compounds (PhACs), conventional wastewater treatment is not able to remove them effectively. Therefore, their occurrence in surface water and potential environmental impact has raised serious global concern. Biological transformation of these contaminants using white-rot fungi (WRF) and their oxidoreductase enzymes has been proposed as a low cost and environmentally friendly solution for water treatment. The removal performance of PhACs by a fungal culture is dependent on several factors, such as fungal species, the secreted enzymes, molecular structure of target compounds, culture medium composition, etc. In recent 20 years, numerous researchers tried to elucidate the removal mechanisms and the effects of important operational parameters such as temperature and pH on the enzymatic treatment of PhACs. This review summarizes and analyzes the studies performed on PhACs removal from spiked pure water and real wastewaters using oxidoreductase enzymes and the data related to degradation efficiencies of the most studied compounds. The review also offers an insight into enzymes immobilization, fungal reactors, mediators, degradation mechanisms and transformation products (TPs) of PhACs. In brief, higher hydrophobicity and having electron-donating groups, such as amine and hydroxyl in molecular structure leads to more effective degradation of PhACs by fungal cultures. For recalcitrant compounds, using redox mediators, such as syringaldehyde increases the degradation efficiency, however they may cause toxicity in the effluent and deactivate the enzyme. Immobilization of enzymes on supports can enhance the performance of enzyme in terms of reusability and stability. However, the immobilization strategy should be carefully selected to reduce the cost and enable regeneration. Still, further studies are needed to elucidate the mechanisms involved in enzymatic degradation and the toxicity levels of TPs and also to optimize the whole treatment strategy to have economical and technical competitiveness.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, B3J 1Z1, Nova Scotia, Canada
| | - Mausam Verma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R Y Surampalli
- Global Institute for Energy, Environment and Sustainability, P.O. Box 14354, Lenexa, KS 66285, USA
| |
Collapse
|