1
|
Jha RK, Khan RJ, Parthiban A, Singh E, Jain M, Amera GM, Singh RP, Ramachandran P, Ramachandran R, Sachithanandam V, Muthukumaran J, Singh AK. Identifying the natural compound Catechin from tropical mangrove plants as a potential lead candidate against 3CL pro from SARS-CoV-2: An integrated in silico approach. J Biomol Struct Dyn 2022; 40:13392-13411. [PMID: 34644249 DOI: 10.1080/07391102.2021.1988710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a member of beta coronaviruses, is a single-stranded, positive-sense RNA virus responsible for the COVID-19 pandemic. With global fatalities of the pandemic exceeding 4.57 million, it becomes crucial to identify effective therapeutics against the virus. A protease, 3CLpro, is responsible for the proteolysis of viral polypeptides into functional proteins, which is essential for viral pathogenesis. This indispensable activity of 3CLpro makes it an attractive target for inhibition studies. The current study aimed to identify potential lead molecules against 3CLpro of SARS-CoV-2 using a manually curated in-house library of antiviral compounds from mangrove plants. This study employed the structure-based virtual screening technique to evaluate an in-house library of antiviral compounds against 3CLpro of SARS-CoV-2. The library was comprised of thirty-three experimentally proven antiviral molecules extracted from different species of tropical mangrove plants. The molecules in the library were virtually screened using AutoDock Vina, and subsequently, the top five promising 3CLpro-ligand complexes along with 3CLpro-N3 (control molecule) complex were subjected to MD simulations to comprehend their dynamic behaviour and structural stabilities. Finally, the MM/PBSA approach was used to calculate the binding free energies of 3CLpro complexes. Among all the studied compounds, Catechin achieved the most significant binding free energy (-40.3 ± 3.1 kcal/mol), and was closest to the control molecule (-42.8 ± 5.1 kcal/mol), and its complex with 3CLpro exhibited the highest structural stability. Through extensive computational investigations, we propose Catechin as a potential therapeutic agent against SARS-CoV-2. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India.,Department of Chemistry, School of Arts and Sciences, Vinayaka Mission's Research Foundation, AVIT campus, Chennai, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India.,Department of Biotechnology, College of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - Ramesh Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
2
|
Sulaiman M, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Rusdi NA, Seelan JSS, Suleiman M, Zakaria ZA, Wiart C. Antimicrobial Secondary Metabolites from the Mangrove Plants of Asia and the Pacific. Mar Drugs 2022; 20:643. [PMID: 36286466 PMCID: PMC9605323 DOI: 10.3390/md20100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Microbes such as the White Spot Syndrome Virus account for severe losses in the shrimp farming industry globally. This review examines the literature on the mangrove plants of Asia and the Pacific with antibacterial, antifungal, or antiviral activities. All of the available data published on this subject were collected from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1968 to 2022. Out of about 286 plant species, 119 exhibited antimicrobial effects, and a total of 114 antimicrobial natural products have been identified including 12 with MIC values below 1 µg/mL. Most of these plants are medicinal. The mangrove plants of Asia and the Pacific yield secondary metabolites with the potential to mitigate infectious diseases in shrimp aquaculture.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Jaya Seelan Sathya Seelan
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
3
|
Bailly C. Naming of new natural products: Standard, pitfalls and tips-and-tricks. PHYTOCHEMISTRY 2022; 200:113250. [PMID: 35598790 DOI: 10.1016/j.phytochem.2022.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Naming a newly discovered natural product (NP) is a pleasant but difficult exercise. In most cases, the NP name will be given with reference to the species of origin, be it a plant, a marine organism, a mammalian or microbial species. For a long time, the use of biologically-based trivial names has been recommended to identify the parental linkage between the product and the originating genus or species. But the recommendation is not always followed and a multiplicity of trivial names have been attributed to NP, based on locations (country, region, city), foods, music, animals, forenames, etc. Tips-and-tricks associated with the naming of NP are underlined here. Usually, NP are differentiated across a homogeneous chemical series with a letter (from the Latin or Greek alphabet), followed or not with a number. In other cases, the change of a single letter distinguishes a series of NP. Common pitfalls associated with the naming of NP are enumerated, including the complexity of names, use of synonyms, duplicated names, confusing names and inappropriate terminology. The difficulties regularly encountered with the naming of NP are discussed. Four essential recommendations are recalled: (i) a thorough analysis of the existing products to avoid duplicated names and confusion, (ii) the use of a biologically-based trivial name to retrace the origin of the product, (iii) the strict adherence to the codes of chemical nomenclature, and (iv) the preference for simple names to facilitate transmission. Naming a new NP is a rewarding task, which shall be performed with all due skill, care and diligence.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
4
|
Luo J, Sun Y, Li Q, Kong L. Research progress of meliaceous limonoids from 2011 to 2021. Nat Prod Rep 2022; 39:1325-1365. [PMID: 35608367 DOI: 10.1039/d2np00015f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: July 2010 to December 2021Limonoids, a kind of natural tetranortriterpenoids with diverse skeletons and valuable insecticidal and medicinal bioactivities, are the characteristic metabolites of most plants of the Meliaceae family. The chemistry and bioactivities of meliaceous limonoids are a continuing hot area of natural products research; to date, about 2700 meliaceous limonoids have been identified. In particular, more than 1600, including thirty kinds of novel rearranged skeletons, have been isolated and identified in the past decade due to their wide distribution and abundant content in Meliaceae plants and active biosynthetic pathways. In addition to the discovery of new structures, many positive medicinal bioactivities of meliaceous limonoids have been investigated, and extensive achievements regarding the chemical and biological synthesis have been made. This review summarizes the recent research progress in the discovery of new structures, medicinal and agricultural bioactivities, and chem/biosynthesis of limonoids from the plants of the Meliaceae family during the past decade, with an emphasis on the discovery of limonoids with novel skeletons, the medicinal bioactivities and mechanisms, and chemical synthesis. The structures, origins, and bioactivities of other new limonoids were provided as ESI. Studies published from July 2010 to December 2021 are reviewed, and 482 references are cited.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Qiurong Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
5
|
Budiyanto F, Alhomaidi EA, Mohammed AE, Ghandourah MA, Alorfi HS, Bawakid NO, Alarif WM. Exploring the Mangrove Fruit: From the Phytochemicals to Functional Food Development and the Current Progress in the Middle East. Mar Drugs 2022; 20:303. [PMID: 35621954 PMCID: PMC9146169 DOI: 10.3390/md20050303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.
Collapse
Affiliation(s)
- Fitri Budiyanto
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
- National Research and Innovation Agency, Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
| | - Eman A. Alhomaidi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| | - Hajer S. Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Wailed M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| |
Collapse
|
6
|
Kim T, Kwon H, Lee DY, Kim DJ, Jeon Y, Shin H, Kim HS, Hur J, Lim C, Kim EH, Shin D, Kim SH. Concise syntheses and anti-inflammatory effects of isocorniculatolide B and corniculatolide B and C. Bioorg Chem 2021; 116:105398. [PMID: 34628222 DOI: 10.1016/j.bioorg.2021.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023]
Abstract
The first total syntheses of isocorniculatolide B, corniculatolide B, and corniculatolide C, consisting of isomeric corniculatolide skeletons, have been accomplished in a divergent manner. The key features of the synthesis involve the construction of diaryl ether linkages by nucleophilic aromatic substitution, installation of a C14-substituted alkyl side chain via a sequence of Baeyer-Villiger reaction and Claisen rearrangement, and efficient construction of corniculatolide and isocorniculatolide frameworks, including 17-membered (exterior) macrolactone skeletons from a versatile diaryl ether intermediate by Mitsunobu macrolactonization. Moreover, we prepared the structural congeners of isomeric corniculatolides via diverted total synthesis approach including desmethyl analogues and related dimeric macrolides. The anti-inflammatory activities of the synthesized natural products, analogues and synthetic intermediates were also investigated. In particular, corniculatolide B significantly inhibited the protein expression of COX-2 and the mRNA expressions of TNF-α, IL-1β and IL-6 by inhibiting of NF-κB signaling in intestinal epithelial cells induced by lipopolysaccharide treatment. It also significantly inhibited the promoter activity and the phosphorylation of subunits p50 and p65 of NF-κB to the same extent as Bay 11-7082, a potent IκB kinase inhibitor. These results suggest that corniculatolide B might have therapeutic potential in inflammatory bowel disease via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Hyuk Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Dong-Jun Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Yoonsu Jeon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Hyeyoung Shin
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea
| | - Joonseong Hur
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 21999, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, South Korea
| | - Changjin Lim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, South Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambangmoe-ro, Yeonsu-gu, Incheon 21936, South Korea.
| | - Seok-Ho Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, South Korea.
| |
Collapse
|
7
|
Ethnomedicinal Use, Phytochemistry, and Pharmacology of Xylocarpus granatum J. Koenig. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8922196. [PMID: 34504541 PMCID: PMC8423563 DOI: 10.1155/2021/8922196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
The mangrove plants are the potential sources of foods and remedies for people living in the forests and nearby communities. Xylocarpus granatum J. Koenig is traditionally used to treat various diseases including diarrhea, cholera, dysentery, fever, malaria, and viral infections, among others. To summarize critically the taxonomy, ethnomedicinal, phytochemistry, and pharmacological activities of X. granatum, information was collected from different databases. An up-to-date search (till June 2020) was carried out with the help of various scientific web resources from databases such as PubMed, Science Direct, Google Scholar, and various patent offices (e.g., WIPO, CIPO, and USPTO) using the keywords “Xylocarpus granatum” and then paired with ethnomedicinal use and phytochemical, phytochemistry, and pharmacological activity (in vitro, ex vivo, and in vivo studies). Findings revealed that seeds, fruits, stem bark, leaf, and twigs of X. granatum exhibited a wide range of key phytochemicals including limonoids, phragmalin, limonoid-based alkaloids, mexicanolides, protolimonoids, flavonols, and lactones. The plant possessed potent antioxidant, anticancer, antidiabetic, antimicrobial, antimalarial, antifeedant, and neuroprotective activities. No clinical studies have been reported in the databases. Ethnomedicinal assessment indicated the application of X. granatum in various fields of medical science specially to treat various human ailments, and this was attributed to the presence of enormous alkaloids as confirmed by pharmacological studies. However, to understand the mechanism of action in-depth studies are required. In view of these findings, more research is necessary to explore and characterize the chemical compounds and toxicological aspects of this medicinal mangrove plant. Overall, it can be stated that X. granatum may be one of the hopeful medicinal herbs for the treatment of various diseases in human beings.
Collapse
|
8
|
Shen L, Zou XP, Li WS, Mándi A, Kurtán T, Wu J. Granatripodins A-B, limonoids featuring a Tricyclo[3.3.1.0 2,8]nonane motif: Absolute configuration and agonistic effects on human pregnane-X-receptor. Bioorg Chem 2021; 111:104888. [PMID: 33862473 DOI: 10.1016/j.bioorg.2021.104888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
Two unprecedented limonoids incorporating a sterically encumbered cyclopropane ring, named granatripodins A (1) and B (2), featuring the presence of a tricyclo[3.3.1.02,8]nonane motif, were obtained from seeds of the Thai Xylocarpus granatum. The planar structures and absolute configurations of these limonoids were unambiguously established by NMR investigations, TDDFT-ECD and DFT-NMR calculations, and single-crystal X-ray diffraction analysis (Cu Kα). Most notably, granatripodin A (1) exhibited agonistic effects on human pregnane-X-receptor at the concentration of 100.0 nM. The biosynthetic origins of these limonoids via a radical cascade reaction are proposed. This study exemplifies a universal approach for the stereochemical assignment of polycyclic compounds with a cyclopropane-embedded cage scaffold.
Collapse
Affiliation(s)
- Li Shen
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, PR China.
| | - Xiao-Peng Zou
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, PR China
| | - Wan-Shan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, PO Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, PO Box 400, 4002 Debrecen, Hungary
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China; Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Isaka M, Palasarn S, Sakayaroj J, Srichomthong K, Nithithanasilp S, Sappan M. Limonoids from fruiting bodies of the wood-rot basidiomycete Fulvifomes xylocarpicola associated with the mangrove tree Xylocarpus granatum. PHYTOCHEMISTRY 2021; 181:112555. [PMID: 33142147 DOI: 10.1016/j.phytochem.2020.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Three previously undescribed limonoids, fulvifomins A-C, together with two known compounds, 6-deoxydetigloyl-swietenine acetate and methyl angolensate, were isolated from fruiting bodies of the wood-rot fungus Fulvifomes xylocarpicola (Hymenochaetaceae), growing on the mangrove tree Xylocarpus granatum (Meliaceae). The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data, and X-ray crystallographic analysis (for fulvifomin A). A number of similar limonoids have been isolated from higher plants of the family Meliaceae, including X. granatum. The present study represents a unique evidence that the associated basidiomycete also contains these limonoids. Fulvifomin B exhibited moderate antimalarial and antitubercular activites.
Collapse
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| | - Somporn Palasarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Kitlada Srichomthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Sutichai Nithithanasilp
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Malipan Sappan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
10
|
Wu HF, Morris-Natschke SL, Xu XD, Yang MH, Cheng YY, Yu SS, Lee KH. Recent advances in natural anti-HIV triterpenoids and analogs. Med Res Rev 2020; 40:2339-2385. [PMID: 32666531 DOI: 10.1002/med.21708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
Abstract
The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic is one of the world's most serious health challenges. Although combination antiretroviral therapy provides effective viral suppression, current medicines used against HIV cannot completely eradicate the infectious disease and often have associated toxicities and severe side effects in addition to causing drug resistance. Therefore, the continued development of new antiviral agents with diverse structures and novel mechanisms of action remains a vital need for the management of HIV/AIDS. Natural products are an important source of drug discovery, and certain triterpenes and their analogs have demonstrated potential as pharmaceutical precursors for the treatment of HIV. Over the past decade, natural triterpenoids and analogs have been extensively studied to find new anti-HIV drugs. This review discusses the anti-HIV triterpenoids and analogs reported during the period of 2009-2019. The article includes not only a comprehensive review of the recent anti-HIV agent development from the perspective of medicinal chemistry, but also discusses structure-activity relationship analyses of the described triterpenoids.
Collapse
Affiliation(s)
- Hai-Feng Wu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Zhang JC, Liao Q, Shen L, Wu J. Twenty-five limonoids from the Hainan mangrove, Xylocarpus granatum. Bioorg Chem 2020; 100:103903. [DOI: 10.1016/j.bioorg.2020.103903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 11/30/2022]
|
12
|
Antiglycation and Antioxidant Activity from Methanol Extract and Fraction of Xylocarpus granatum Stem. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.1.21-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this research was to determine the antioxidant and antiglycation activity of methanol crude extract of Xylocarpus granatum stem and its fraction. The methanol crude extract was fractioned by liquid-liquid extraction to obtain three fractions, which were n-hexane fraction, ethyl acetate fraction, and methanol fraction. Antioxidant activity was performed using scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH). The antiaging activity was identified based on the ability to inhibit the formation of advanced glycation end products (AGEs). The results of the study showed that methanol crude extract and all fractions had an antioxidant and antiglycation activity that significantly different from each other (P<0.05). The results show that the most active antiglycation and antioxidant activity was the methanol fraction with IC50 were 71.55 ppm and 8.52 ppm, respectively. The methanol fraction contained an alkaloid, flavonoid, phenolic, and triterpenoid compounds. Subsequent fractionation of the methanol fraction guided by bioassay showed that sub-fraction 1 had the best antiglycation and antioxidant activity. Based on the color of the chromatogram obtained at UV 366 nm, the chemical component contained in the most active fraction was the flavonoid group.
Collapse
|
13
|
Olanipekun BE, Ponnapalli MG, Shaik K, Nanubolu JB, Kommalapati VK, Tangutur AD. α-Glucosidase Inhibitory Isomeric Corniculatolides from the Stems of the Indian Mangrove Plant, Xylocarpus granatum. JOURNAL OF NATURAL PRODUCTS 2020; 83:20-25. [PMID: 31895570 DOI: 10.1021/acs.jnatprod.9b00414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three new isomeric corniculatolides (1, 2, and 3) with an unusual caffrane and isocorniculane framework, and five known metabolites were isolated from the chloroform extract of the stems of Xylocarpus granatum. The structures of the new metabolites were deduced as corniculatolide B (1), isocorniculatolide B (2), and corniculatolide C (3) by spectroscopic data analysis and a combination of chemical transformations and supported by single-crystal X-ray crystallographic data of 1 and 3. The isolated compounds were evaluated for their in vitro cytotoxicity and α-glucosidase (Saccharomyces cerevisiae) inhibitory potential. Compound 3 possessed α-glucosidase inhibitory activity with an IC50 value of 24.8 μM, whereas these rare macrolides showed no effect on the mammalian cancer cell lines MIAPaCa-2, DU145, MCF-7, and HTC-116.
Collapse
Affiliation(s)
- Bolatito E Olanipekun
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-IICT Campus , Hyderabad , 500007 , India
- Department of Chemical, Geological and Physical Sciences , Kwara State University Malete , P.M.B. 1530, Malete , Kwara State , Nigeria
| | | | | | | | - Vamsi K Kommalapati
- Applied Biology , CSIR-Indian Institute of Chemical Technology (IICT) , Hyderabad , 500007 , India
| | - Anjana D Tangutur
- Applied Biology , CSIR-Indian Institute of Chemical Technology (IICT) , Hyderabad , 500007 , India
| |
Collapse
|
14
|
Das SK, Samantaray D, Sahoo SK, Pradhan SK, Samanta L, Thatoi H. Bioactivity guided isolation of antidiabetic and antioxidant compound from Xylocarpus granatum J. Koenig bark. 3 Biotech 2019; 9:198. [PMID: 31065498 DOI: 10.1007/s13205-019-1711-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/10/2019] [Indexed: 10/26/2022] Open
Abstract
The present study was designed to identify antidiabetic and antioxidant constituents from ethanol bark extract of a medicinally important mangrove plant Xylocarpus granatum J. Koenig, using in vitro bioactivity-guided fractionation. The repeated fractionation of X. granatum ethanol bark extract (XGEB) by silica gel column chromatography yielded a compound with strong antidiabetic and antioxidant potential. The bioactive compounds likely to be present in the XGEB fraction were identified by FT-IR, 1H & 13C NMR and MS analysis and determined as a limonoid derivative Xyloccensin-I, by comparing spectral data with the literature reports. The isolated compound demonstrated excellent in vitro antidiabetic potential IC50 values of 0.25 and 0.16 mg/ml, respectively for α-amylase and α-glucosidase inhibition study. The antioxidant potential assayed by DPPH, ABTS, superoxide and hydrogen peroxide scavenging studies exhibited that the isolated compound could scavenge these free radicals with IC50 values of 0.041, 0.039, 0.096 and 0.235 mg/ml, respectively. Further, in silico study was performed to find the antidiabetic activity of Xyloccensin-I by docking it against α-glucosidase enzyme. The study demonstrated that Xyloccensin-I have satisfactory interactions and binding energies when docked into target which further confirms the possible mode of antidiabetic action of the isolated compound. The bioactivity assays further asserts the antidiabetic and antioxidant efficacy of the isolated compound which strongly suggests that Xyloccensin-I holds promise in the pharmaceutical industry. The results from this study provide new mechanistic evidence justifying, at least in part, the traditional use of X. granatum extract for antidiabetic and antioxidants activities.
Collapse
|
15
|
Abstract
Mangroves are unique coastal forest ecosystem distributed along the tropical and subtropical region of the world. They are evolutionarily adapted to combat against hostile environmental conditions such as low oxygen, high salinity, and temperature. The adaptive features endowed with novel secondary metabolic pathways and bioactive compounds to sustain in harsh conditions. The novel metabolites are a rich source of the wide range of bioactive compounds and natural products. It includes terpenoids, alkaloids, phenolics, saponins, flavonoids, and steroids. The bioactive and natural compounds may serve as therapeutic precursors and industrial raw materials. Terpenes and polyphenols have antiviral, antibacterial, antifungal, antimalarial, anticancer or combination of activities. To date, several mangroves plants were examined and recognized as a potential source of novel natural product for exploitation in medicine. In fact, most of the isolated compounds are novel and showed promising biological activities such as gastroprotective, cytotoxic, antioxidant, antibacterial, antifungal, antiviral, enzyme activation and inhibition, immunosuppressive, anti-inflammatory, antifeedant effects. In the present review, we have compiled the achievements and progress in mangroves natural products research of the last decade.
Collapse
Affiliation(s)
- Nilesh Lakshman Dahibhate
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Sancoale, Goa 403726, India
| | - Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Sancoale, Goa 403726, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Sancoale, Goa 403726, India
| |
Collapse
|
16
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
17
|
Limonoids Containing a C₁⁻ O⁻C 29 Moiety: Isolation, Structural Modification, and Antiviral Activity. Mar Drugs 2018; 16:md16110434. [PMID: 30400349 PMCID: PMC6266505 DOI: 10.3390/md16110434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 11/17/2022] Open
Abstract
Five new limonoids named thaigranatins A⁻E (1⁻5), containing a C₁⁻O⁻C29 moiety, were isolated from seeds of the Thai Xylocarpus granatum, collected at the mangrove swamp of Trang Province, together with the known limonoid, granatumin L (6). The structures of these compounds were established by HR-ESIMS and extensive NMR spectroscopic data. The absolute configuration of 1 was unequivocally determined by single-crystal X-ray diffraction analysis, conducted with Cu Kα radiation; whereas that of 2 or 6 was established to be the same as that of 1 by the similarity of their electronic circular dichroism (ECD) spectra. In view of the marked antiviral activity of 6, its structure was modified via hydrolysis with alkaline KOH, esterification with diazomethane and various organic acids, and oximization with hydroxyamine. Finally, 18 derivatives, viz. 7⁻10, 8a⁻8i, 9a⁻9b, and 10a⁻10c, were obtained. In vitro antiviral activities of these derivatives against human immunodeficiency virus 1 (HIV-1) and influenza A virus (IAV) were evaluated. Most notably, 8i exhibited marked inhibitory activity against HIV-1 with an IC50 value of 15.98 ± 6.87 μM and a CC50 value greater than 100.0 μM; whereas 10b showed significant inhibitory activity against IAV with an IC50 value of 14.02 ± 3.54 μM and a CC50 value greater than 100.0 μM.
Collapse
|
18
|
Krishnagranatins A–I: New limonoids from the mangrove, Xylocarpus granatum, and NF-κB inhibitory activity. Fitoterapia 2018; 131:96-104. [DOI: 10.1016/j.fitote.2018.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 11/18/2022]
|