1
|
Pan Z, Wang J, He S, Zhao H, Dong X, Feng T, Meng Y, Li X. Enhancing Seed Germination of Cremastra appendiculata: Screening and Identification of Four New Symbiotic Fungi in the Psathyrellaceae Family. J Microbiol 2024; 62:671-682. [PMID: 38940992 DOI: 10.1007/s12275-024-00148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024]
Abstract
Several coprinoid fungi have been identified as promotors of Cremastra appendiculata seed germination, while others appear ineffective. This study aimed to discern which genera within the Psathyrellaceae family exhibit this capability and to identify the most effective coprinoid fungi for the cultivation of C. appendiculata. We collected 21 coprinoid fungi from diverse sources and symbiotically cultured them with C. appendiculata seeds. 9 fungi were found to induce seed germination and support seed development, specifically within the genera Coprinellus, Tulosesus, and Candolleomyces. In contrast, fungi that failed to promote germination predominantly belonged to the genera Coprinopsis and Parasola. Notably, four fungi-Coprinellus xanthothrix, Coprinellus pseudodisseminatus, Psathyrella singeri, and Psathyrella candolleana-were documented for the first time as capable of enhancing C. appendiculata seed germination. Strain 218LXJ-10, identified as Coprinellus radians, demonstrated the most significant effect and has been implemented in large-scale production, underscoring its considerable practical value. These findings contribute vital scientific insights for the conservation and sustainable use of C. appendiculata resources.
Collapse
Affiliation(s)
- Zhangneng Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Jing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Shanshan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Haiyang Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xinyue Dong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| | - Yanyan Meng
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| | - Xiaojun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
2
|
Feng T, Deng WQ, Liu JK. Two highly conjugated ergosterols from the fungus Psathyrella rogueiana and their anti-inflammatory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:52-58. [PMID: 37947812 DOI: 10.1080/10286020.2023.2279539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Two previously undescribed ergosterols containing a highly conjugated ring system, psathrosterols A and B (1 and 2), have been isolated from the fungus Psathyrella rogueiana. Their structures with absolute configurations were established by extensive spectroscopic methods, as well as single crystal X-ray diffraction. Compounds 1 and 2 showed inhibitory activity against NO production with IC50 values of 22.3 and 16.4 μM, respectively.
Collapse
Affiliation(s)
- Tao Feng
- State Key Laboratory of Applied Microbiology Southern China; Institute of Microbiology, Guandong Academy of Scinces, Guangzhou 510070, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wang-Qiu Deng
- State Key Laboratory of Applied Microbiology Southern China; Institute of Microbiology, Guandong Academy of Scinces, Guangzhou 510070, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Yin X, Han L, Zheng W, Cai L, Qin M, He Z, Kang J. Global regulatory factor AaLaeA upregulates the production of antitumor substances in the endophytic fungus Alternaria alstroemeria. J Basic Microbiol 2022; 62:1402-1414. [PMID: 36041052 DOI: 10.1002/jobm.202200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
The global regulatory factor LaeA has been shown to be involved in the biosynthesis of secondary metabolites in various fungi. In a previous work, we isolated an endophytic fungus from Artemisia annua, and its extract had a significant inhibitory effect on the A549 cancer cell line. Phylogenetic analysis further identified the strain as Alternaria alstroemeria. Overexpression of AalaeA gene resulted in significantly increased antitumor activity of this strain's extract. The 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay results showed that the inhibition rate of the AalaeAOE29 mutant extract on A549 cancer cells was significantly higher than that of the WT extract, as the IC50 decreased from 195.0 to 107.4 μg/ml, and the total apoptosis rate was enhanced. Overexpression of the AalaeA gene significantly increased the contents of myricetin, geraniol, ergosterol, and 18 other antitumor compounds as determined by metabolomic analysis. Transcriptomic analysis revealed significant changes in 95 genes in the mutant strain, including polyketide synthases, nonribosomal peptide synthases, cytochrome P450s, glycosyltransferases, acetyl-CoA acetyltransferases, and others. These results suggested that AaLaeA mediated the antitumor activity of the metabolites in A. alstroemeria by regulating multiple metabolic pathways.
Collapse
Affiliation(s)
- Xuemin Yin
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| | - Long Han
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| | - Wen Zheng
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| | - Lu Cai
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| | - Min Qin
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| | - Zhangjiang He
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| | - Jichuan Kang
- College of Pharmacy, Guizhou University, Guiyang, The People's Republic of China.,Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, The People's Republic of China
| |
Collapse
|
4
|
An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp. SEPARATIONS 2022. [DOI: 10.3390/separations9070176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A reliable chromatographic strategy is crucial for the extraction of target compounds from natural sources as it is related to the preparation efficiency, as well as the purity of the compounds. In this study, medium-pressure normal-phase liquid chromatography and high-pressure reverse-phase liquid chromatography were combined to prepare and purify ergosterol from Tulasnellaceae sp. of Gymnadenia orchidis. First, Tulasnellaceae sp. was extracted three times (2.0 L and 2 h each time) with ethyl acetate, and the 6.0 L of extract solution was concentrated under reduced pressure to yield 2.2 g of crude sample. Then, the crude sample was pretreated utilizing silica gel medium-pressure liquid chromatography to enrich the target ingredient (586.0 mg). Finally, high-pressure reversed-phase liquid chromatography was used to purify the target compound, and the compound was characterized as ergosterol (purity > 95%) using spectral data. Overall, the simple and reproducible integrated chromatographic strategy developed in this study has the potential for the large-scale purification of steroids for laboratory and even industrial research. To the best of our knowledge, this is also the first report of ergosterol in Tulasnellaceae sp.
Collapse
|
5
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|