1
|
Li XY, Jiang J, Shu B, Huang RL, Yang HX, Chen YL, Tang W, Ye WC, Wang Y, Huang XJ, Song JG. Anti-inflammatory naphthoquinone-monoterpene adducts and neolignans from Eugenia caryophyllata. Fitoterapia 2024; 175:105982. [PMID: 38685512 DOI: 10.1016/j.fitote.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A phytochemical investigation on the buds of edible medicinal plant, Eugenia carvophyllata, led to the discovery of seven new compounds, caryophones A-G (1-7), along with two biogenetically-related known ones, 2-methoxy-7-methyl-1,4-naphthalenedione (8) and eugenol (9). Compounds 1-3 represent the first examples of C-5-C-1' connected naphthoquinone-monoterpene adducts with a new carbon skeleton. Compounds 4-7 are a class of novel neolignans with unusual linkage patterns, in which the C-9 position of one phenylpropene unit coupled with the aromatic core of another phenylpropene unit. The chemical structures of the new compounds were determined based on extensive spectroscopic analysis, X-ray diffraction crystallography, and quantum-chemical calculation. Among the isolates, compounds (-)-2, 3, 6, and 9 showed significant in vitro inhibitory activities against respiratory syncytial virus (RSV)-induced nitric oxide (NO) production in RAW264.7 cells.
Collapse
Affiliation(s)
- Xue-Yi Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Beiyi Shu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Rui-Li Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hai-Xia Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ya-Li Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
2
|
Wang G, Xu J, Ma H, Mu Y, Xu W, Yan N, Liu W, Zheng D, Huang X, Li L. Phenolipid JE improves metabolic profile and inhibits gluconeogenesis via modulating AKT-mediated insulin signaling in STZ-induced diabetic mice. Pharmacol Res 2023; 187:106569. [PMID: 36427798 DOI: 10.1016/j.phrs.2022.106569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Phenolipids are characteristic phytochemicals of Syzygium genus. However, the antidiabetic potential and underlying molecular mechanism of these components are not fully elucidated. Herein, we studied the anti-diabetic effects of jambone E (JE), a phenolipid from S. cumini, with in vitro and in vivo models. Data from current study showed that JE enhanced glucose consumption and uptake, promoted glycogen synthesis, and suppressed gluconeogenesis in insulin resistant (IR)-HepG2 cells and primary mouse hepatocytes. JE also attenuated streptozotocin-induced hyperglycemia and hyperlipidemia in type 1 diabetic (T1D) mice. Eleven metabolites (e.g. trimethylamine n-oxide, 4-pyridoxic acid, phosphatidylinositol 39:4, phenaceturic acid, and hippuric acid) were identified as potential serum biomarkers for JE's antidiabetic effects by an untargeted metabolomics approach. The further molecular mechanistic study revealed that JE up-regulated phosphorylation levels of protein kinase B (AKT), glycogen synthase kinase 3 beta, and forkhead box O1 (FoxO1), promoted nuclear exclusion of FoxO1 whilst decreased gene expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, phosphoenolpyruvate carboxykinase and glucose 6-phosphatase in IR-HepG2 cells and T1D mice. Our data suggested that JE might be a potent activator for AKT-mediated insulin signaling pathway, which was confirmed by the usage of AKT inhibitor and AKT-target siRNA interference, as well as the cellular thermal shift assay. Findings from the current study shed light on the anti-diabetic effects of phenolipids in the Syzygium species, which supports the use of medicinal plants in the Syzygium genus for potential pharmaceutical applications.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, PR China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wen Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Na Yan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
3
|
Wisetsai A, Choodej S, Ngamrojanavanich N, Pudhom K. Fatty acid acylated flavonol glycosides from the seeds of Nephelium lappaceum and their nitric oxide suppression activity. PHYTOCHEMISTRY 2022; 201:113262. [PMID: 35660550 DOI: 10.1016/j.phytochem.2022.113262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Five undescribed fatty acid esters of flavonol glycosides, nephelosides A-E, along with eight known compounds, were isolated from the seeds of Nephelium lappaceum L. The structures were elucidated by extensive analysis of spectroscopic data in combination with GC-MS analysis. Potency of compounds toward nitric oxide suppression was assessed by monitoring the inhibition of lipopolysaccharide-stimulated nitric oxide production in J744.A1 macrophage cells. Nepheloside D, kaempferol and kaempferol 7-O-α-L-rhamnopyranoside showed significant activity with IC50 values of 26.5, 11.6 and 12.0 μM, respectively.
Collapse
Affiliation(s)
- Awat Wisetsai
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwattra Choodej
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Li J, Ni G, Liu Y, Wang R, Yu D. Long-chain fatty acid acylated derivatives of isoflavone glycosides from the rhizomes of Iris domestica. PHYTOCHEMISTRY 2022; 193:112977. [PMID: 34715401 DOI: 10.1016/j.phytochem.2021.112977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/19/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Six undescribed long-chain fatty acid esters of isoflavone glycosides were obtained from the rhizomes of Iris domestica (L.). Their structures were elucidated by comprehensive spectroscopic data, alkaline hydrolysis, and acid hydrolysis. This is the first report of the long-chain (C14-C18) fatty acid derivatives of isoflavone glycosides from natural products. Belamcandnoate B and D exhibited moderate cytotoxic activities against HCT-116, HepG2, and BGC823 cell lines with IC50 values of 1.69-6.86 μM. Belamcandnoate B and E exhibited 72.27 and 58.98% inhibitory activities, respectively, against Fe2+/cysteine-induced liver microsomal lipid peroxidation at a concentration of 10 μM.
Collapse
Affiliation(s)
- Jiayuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Gang Ni
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yanfei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Renzhong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dequan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|