1
|
Wang L, Wang S, Wang Q, Wang Y, Liang H, Zhang Q, Tu P. Anthraquinones from the root of Arnebia euchroma (Royle) I. M. Johnst. and their cytotoxic activities. PHYTOCHEMISTRY 2024; 232:114368. [PMID: 39694396 DOI: 10.1016/j.phytochem.2024.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Twenty-one anthraquinones were discovered from the petroleum ether soluble fraction of the crude ethanol extract of Arnebia euchroma (Royle) I. M. Johnst. for the first time. 15 previously undescribed 1,4-dihydroxy-9,10-anthraquinone derivatives (1a-14), as well as 6 known anthraquinones (15a-18) were obtained from A. euchroma. Their structures and absolute configurations were determined by comprehensive analysis of HRESIMS, NMR spectra, and ECD spectra. All isolated compounds were tested for their cytotoxic activities against MCF-7, HepG2, and A549 cell lines. Compounds 2 and 16a showed moderate cytotoxic activities against MCF-7 and HepG2 cells with IC50 values of 10.00 and 13.12 μM, of 10.84 and 12.85 μM, respectively.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| | - Shuhui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| | - Qiqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| | - Yuqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| | - Hong Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| | - Qingying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutica Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhao LH, Guo XY, Yan HW, Jiang JS, Zhang X, Yang YN, Yuan X, Sun H, Zhang PC. A class of geranylquinol-derived polycyclic meroterpenoids from Arnebia euchroma against heart failure by reducing excessive autophagy and apoptosis in cardiomyocytes. Bioorg Chem 2024; 151:107691. [PMID: 39116524 DOI: 10.1016/j.bioorg.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Ten new B-ring aromatized 6/6/6-tricyclic dearomatized benzocogeijerene-based meroterpenoids with unusual methyl 1,2-shift or demethylation (2-9b), and two new geranylquinol derivatives (1 and 10), together with two known compounds (11 and 12), were isolated from the roots of Arnebia euchroma. Their structures were elucidated by extensive spectroscopic methods, X-ray diffraction crystallography, and ECD calculations. The plausible biosynthetic pathways including the unusual methyl 1,2-shfit and demethylation for B-ring aromatized 6/6/6-tricyclic meroterpenoids were discussed. Compounds 1, 2, 5, 6, 11, and 12 showed significant cardioprotective activities comparable to diltiazem against isoprenaline (ISO)-induced H9C2 cell damage in vitro. Compound 11 probably exerted heart-protective effect on ISO-induced H9C2 cells by modulating the PI3K-AKT-mTOR pathway, reducing excessive autophagy, and decreasing myocardial apoptosis.
Collapse
Affiliation(s)
- Ling-Hao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin-Yi Guo
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hua Sun
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
4
|
Fei Z, Xu Y, Zhang G, Liu Y, Li H, Chen L. Natural products with potential hypoglycemic activity in T2DM: 2019-2023. PHYTOCHEMISTRY 2024; 223:114130. [PMID: 38714289 DOI: 10.1016/j.phytochem.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
As currently the most common metabolic disease, type 2 diabetes mellitus (T2DM) has shown a continuous increase in the number of patients in recent decades. Most anti-T2DM drugs tend to cause some side effects. Given the pathogenesis of T2DM, natural products have emerged as an important source of anti-T2DM drugs. This article reviews natural products with potential hypoglycemic activity from 2019 to 2023. A total of 200 previously natural products were discovered on SciFinder, PubMed and Web of Science. These products were categorized based on their structural frameworks and their biological activities were summarized. Although the mechanisms of action of most compounds are unclear, these compounds could still serve as candidates for the development of lead compounds. Therefore, further structure and activity research of natural products will significantly contribute to the development of potential anti-T2DM drugs.
Collapse
Affiliation(s)
- Zhang Fei
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guoyu Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Wu Z, Song J, Zhang Y, Yuan X, Zhao J. Inhibitory and preventive effects of Arnebia euchroma (Royle) Johnst. root extract on Streptococcus mutans and dental caries in rats. BDJ Open 2024; 10:15. [PMID: 38431610 PMCID: PMC10908817 DOI: 10.1038/s41405-024-00196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Dental caries is one of the prevalent conditions that threaten oral health. Arnebia euchroma (Royle) Johnst. root (AR) extracts exhibit anti-inflammatory, anti-cancer, and antibacterial properties. This study was designed to investigate the antibacterial impact of AR extract on Streptococcus mutans (S. mutans) UA159 and the anti-caries effect on rats. METHODS The antibacterial activity of AR extract against S. mutans and its biofilm was determined using the bacterial sensitivity test, the biofilm sensitivity test, and the live-dead staining technique. By fluorescently tagging bacteria, the influence of bacterial adhesion rate was determined. Using a rat caries model, the anti-caries efficacy and safety of AR extract were exhaustively investigated in vivo. RESULTS AR extract inhibit not only the growth of S. mutans, but also the generation of S. mutans biofilm, hence destroying and eliminating the biofilm. Moreover, AR extract were able to inhibit S. mutans' adherence to saliva-encapsulated hydroxyapatite (HAP). Further, in a rat model of caries, the AR extract is able to greatly reduce the incidence and severity of caries lesions on the smooth surface and pit and fissure of rat molars, while exhibiting excellent biosafety. CONCLUSIONS AR extract exhibit strong antibacterial activity against S. mutans and can lower the incidence and severity of dental cavities in rats. These findings suggest that Arnebia euchroma (Royle) Johnst. could be utilized for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Jie Song
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Yangyang Zhang
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Xiyu Yuan
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Jin Zhao
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China.
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China.
| |
Collapse
|