1
|
Favila N, Madrigal-Trejo D, Legorreta D, Sánchez-Pérez J, Espinosa-Asuar L, Eguiarte LE, Souza V. MicNet toolbox: Visualizing and unraveling a microbial network. PLoS One 2022; 17:e0259756. [PMID: 35749381 PMCID: PMC9231805 DOI: 10.1371/journal.pone.0259756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand, we introduce a visualization module that incorporates the use of UMAP, a dimensionality reduction technique that focuses on local patterns, and HDBSCAN, a clustering technique based on density; on the other hand, we have included a module that runs an enhanced version of the SparCC code, sustaining larger datasets than before, and we couple the resulting networks with network theory analyses to describe the resulting co-occurrence networks, including several novel analyses, such as structural balance metrics and a proposal to discover the underlying topology of a co-occurrence network. We validated the proposed toolbox on 1) a simple and well described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the improvements of our new version of SparCC. Finally, we showcase the use of the MicNet toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our toolbox is freely available as a github repository (https://github.com/Labevo/MicNetToolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.us-east-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with relative abundance data. This easy-to-use implementation is aimed to microbial ecologists with little to no experience in programming, while the most experienced bioinformatics will also be able to manipulate the source code's functions with ease.
Collapse
Affiliation(s)
- Natalia Favila
- Laboratorio de Inteligencia Artificial, Ixulabs, Mexico City, Mexico
| | - David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Legorreta
- Laboratorio de Inteligencia Artificial, Ixulabs, Mexico City, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
2
|
Ran Q, Yang F, Geng M, Qin L, Chang Z, Gao H, Jiang D, Zou C, Jia C. A mixed culture of Propionibacterium freudenreichii and Lactiplantibacillus plantarum as antifungal biopreservatives in bakery product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Solieri L. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology. World J Microbiol Biotechnol 2021; 37:96. [PMID: 33969449 DOI: 10.1007/s11274-021-03066-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022]
Abstract
Non-conventional yeasts refer to a huge and still poorly explored group of species alternative to the well-known model organism Saccharomyces cerevisiae. Among them, Zygosaccharomyces rouxii and the sister species Zygosaccharomyces bailii are infamous for spoiling food and beverages even in presence of several food preservatives. On the other hand, their capability to cope with a wide range of process conditions makes these yeasts very attractive factories (the so-called "ZygoFactories") for bio-converting substrates poorly permissive for the growth of other species. In balsamic vinegar Z. rouxii is the main yeast responsible for converting highly concentrated sugars into ethanol, with a preference for fructose over glucose (a trait called fructophily). Z. rouxii has also attracted much attention for the ability to release important flavor compounds, such as fusel alcohols and the derivatives of 4-hydroxyfuranone, which markedly contribute to fragrant and smoky aroma in soy sauce. While Z. rouxii was successfully proposed in brewing for producing low ethanol beer, Z. bailii is promising for lactic acid and bioethanol production. Recently, several research efforts exploited omics tools to pinpoint the genetic bases of distinctive traits in "ZygoFactories", like fructophily, tolerance to high concentrations of sugars, lactic acid and salt. Here, I provided an overview of Zygosaccharomyces industrially relevant phenotypes and summarized the most recent findings in disclosing their genetic bases. I suggest that the increasing number of genomes available for Z. rouxii and other Zygosaccharomyces relatives, combined with recently developed genetic engineering toolkits, will boost the applications of these yeasts in biotechnology and applied microbiology.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
4
|
He Z, Fang Y, Li DC, Chen DS, Wu F. Effect of Lactic Acid Supplementation on the Growth and Reproduction of Bombyx mori (Lepidopteria: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6188324. [PMID: 33764365 PMCID: PMC7993161 DOI: 10.1093/jisesa/ieab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Lactic acid is widely used in the food, drugs, cosmetics, and other industries to maintain the microbial stability of low-pH products. However, it is unclear whether lactic acid can affect silkworm (Bombyx mori) growth and reproduction. This study investigated the effects of lactic acid on the growth and reproduction of the silkworm. We analyzed the growth, cocoon quality, and reproductive performance of fifth instar larvae fed on mulberry leaves saturated with different concentrations (0.01, 0.1, 1, and 10%) of lactic acid and the control. Results showed that 0.01, 0.1, and 1% lactic acid supplementation positively affects growth and female cocoon quality, with increased larval weight and female cocoon shell weight compared to the control group. In contrast, 10% lactic acid was toxic to the larvae and significantly decreased growth, leading to larval death. Our study provides a basic reference for the optimal amount of preservatives. In addition, this study can be a desirable intervention for sericulturists and can play an important role in getting high return from silkworm-rearing activities.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, P. R. China
| | - De-Chen Li
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Deng-Song Chen
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| |
Collapse
|
5
|
Arıkan M, Mitchell AL, Finn RD, Gürel F. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. J Food Sci 2020; 85:455-464. [PMID: 31957879 PMCID: PMC7027524 DOI: 10.1111/1750-3841.14992] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023]
Abstract
Kombucha, a fermented tea generated from the co-culture of yeasts and bacteria, has gained worldwide popularity in recent years due to its potential benefits to human health. As a result, many studies have attempted to characterize both its biochemical properties and microbial composition. Here, we have applied a combination of whole metagenome sequencing (WMS) and amplicon (16S rRNA and Internal Transcribed Spacer 1 [ITS1]) sequencing to investigate the microbial communities of homemade Kombucha fermentations from day 3 to day 15. We identified the dominant bacterial genus as Komagataeibacter and dominant fungal genus as Zygosaccharomyces in all samples at all time points. Furthermore, we recovered three near complete Komagataeibacter genomes and one Zygosaccharomyces bailii genome and then predicted their functional properties. Also, we determined the broad taxonomic and functional profile of plasmids found within the Kombucha microbial communities. Overall, this study provides a detailed description of the taxonomic and functional systems of the Kombucha microbial community. Based on this, we conject that the functional complementarity enables metabolic cross talks between Komagataeibacter species and Z. bailii, which helps establish the sustained a relatively low diversity ecosystem in Kombucha.
Collapse
Affiliation(s)
- Muzaffer Arıkan
- Regenerative and Restorative Medicine Research CenterIstanbul Medipol Univ.34810IstanbulTurkey
| | - Alex L. Mitchell
- European Molecular Biology LaboratoryEuropean Bioinformatics Inst. (EMBL‐EBI)Wellcome Trust Genome Campus, HinxtonCambridgeUnited Kingdom
| | - Robert D. Finn
- European Molecular Biology LaboratoryEuropean Bioinformatics Inst. (EMBL‐EBI)Wellcome Trust Genome Campus, HinxtonCambridgeUnited Kingdom
| | - Filiz Gürel
- Molecular Biology and Genetics Dept.Faculty of Science, Istanbul Univ.34134IstanbulTurkey
| |
Collapse
|
6
|
Meldrum AD, Ünlü G, Joyner HS. Dairy protein stabilizers affect both rheological properties and growth of
Zygosaccharomyces parabailii
in lite salad dressings. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gülhan Ünlü
- School of Food Science University of Idaho Moscow Idaho
- School of Food Science Washington State University Pullman Washington
- Department of Biological Engineering University of Idaho Moscow Idaho
| | | |
Collapse
|
7
|
Samapundo S, de Baenst I, Eeckhout M, Devlieghere F. Inhibitory activity of fermentates towards Zygosaccharomyces bailii and their potential to replace potassium sorbate in dressings. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Peyer LC, Axel C, Lynch KM, Zannini E, Jacob F, Arendt EK. Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Kuanyshev N, Ami D, Signori L, Porro D, Morrissey JP, Branduardi P. Assessing physio-macromolecular effects of lactic acid onZygosaccharomyces bailiicells during microaerobic fermentation. FEMS Yeast Res 2016; 16:fow058. [DOI: 10.1093/femsyr/fow058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
|
10
|
Le Lay C, Coton E, Le Blay G, Chobert JM, Haertlé T, Choiset Y, Van Long NN, Meslet-Cladière L, Mounier J. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int J Food Microbiol 2016; 239:79-85. [PMID: 27350657 DOI: 10.1016/j.ijfoodmicro.2016.06.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 12/31/2022]
Abstract
Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition.
Collapse
Affiliation(s)
- Céline Le Lay
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Gwenaëlle Le Blay
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Marc Chobert
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, équipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes Cedex 3, France
| | - Thomas Haertlé
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, équipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes Cedex 3, France
| | - Yvan Choiset
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, équipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes Cedex 3, France
| | - Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Laurence Meslet-Cladière
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
11
|
Ren A, Li XB, Miao ZG, Shi L, Jaing AL, Zhao MW. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer. Biotechnol Lett 2014; 36:2529-36. [DOI: 10.1007/s10529-014-1636-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/06/2014] [Indexed: 12/31/2022]
|
12
|
Crowley S, Mahony J, van Sinderen D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.07.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp., the dominant microbiota of brown shrimp (Crangon crangon) during aerobic storage. Int J Food Microbiol 2013; 166:487-93. [DOI: 10.1016/j.ijfoodmicro.2013.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/10/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
|
14
|
Guerreiro JF, Mira NP, Sá-Correia I. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics 2013; 12:2303-18. [PMID: 22685079 DOI: 10.1002/pmic.201100457] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.
Collapse
Affiliation(s)
- Joana F Guerreiro
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Portugal
| | | | | |
Collapse
|
15
|
The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii. PLoS One 2012; 7:e52402. [PMID: 23285028 PMCID: PMC3532111 DOI: 10.1371/journal.pone.0052402] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022] Open
Abstract
Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.
Collapse
|
16
|
Noseda B, Islam MT, Eriksson M, Heyndrickx M, De Reu K, Van Langenhove H, Devlieghere F. Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets. Food Microbiol 2012; 30:408-19. [DOI: 10.1016/j.fm.2011.12.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 11/26/2022]
|
17
|
Plumed-Ferrer C, von Wright A. Antimicrobial activity of weak acids in liquid feed fermentations, and its effects on yeasts and lactic acid bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1032-1040. [PMID: 21328352 DOI: 10.1002/jsfa.4278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The efficacy of weak organic acids in the control of yeasts in pig liquid feed was studied taking into account the effects on lactic acid bacteria (LAB) responsible for beneficial fermentation. RESULTS The yeast population in pig liquid feed was taxonomically identified. Kazachstania exigua, Debaryomyces hansenii and Pichia deserticola dominated the fermentation in liquid feed and whey. Pichia deserticola was found in whey and foaming liquid feed and dominated the fermentation after incubation. The sensitivity of the isolates against weak acids was measured in culture medium as well as in fermented and non-fermented liquid feed. Formic acid and potassium sorbate successfully reduced the growth of yeasts in all media without interfering with LAB development. Both of these organic acids showed an increased antifungal effect when used in liquid feed fermented by a Lactobacillus plantarum strain. CONCLUSION The loss of energy, reduced palatability and other practical problems due to the high growth of yeasts in fermented liquid diets can be reduced by organic acids without affecting lactic acid fermentation.
Collapse
Affiliation(s)
- Carme Plumed-Ferrer
- Nutrition and Food Biotechnology, Applied Biotechnology, Department of Biosciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| | | |
Collapse
|
18
|
A Predictive Model for the Growth/No Growth Boundary of Zygosaccharomyces bailii at 7 °C and Conditions Mimicking Acidified Sauces. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0548-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|