1
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|
2
|
Intraspecific diversity and fermentative properties of Saccharomyces cerevisiae from Chinese traditional sourdough. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Saubin M, Devillers H, Proust L, Brier C, Grondin C, Pradal M, Legras JL, Neuvéglise C. Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures. Front Microbiol 2020; 10:2960. [PMID: 32010076 PMCID: PMC6974558 DOI: 10.3389/fmicb.2019.02960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
Hanseniaspora, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species H. uvarum, H. opuntiae, H. guilliermondii, and H. pseudoguilliermondii. Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, H. guilliermondii strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between H. opuntiae and H. pseudoguilliermondii. Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that Hanseniaspora genomes are not only fast evolving but also highly dynamic.
Collapse
Affiliation(s)
- Méline Saubin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucas Proust
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cathy Brier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cécile Grondin
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
4
|
Wang X, Glawe DA, Weller DM, Okubara PA. Real-time PCR assays for the quantification of native yeast DNA in grape berry and fermentation extracts. J Microbiol Methods 2019; 168:105794. [PMID: 31783049 DOI: 10.1016/j.mimet.2019.105794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Abstract
Native yeasts comprise part of the microbial community in grape vineyards and play roles in alcoholic fermentation and wine quality. Monitoring populations of native yeast in vineyards, during fermentation and after bottling will provide viticulturalists and oenologists with information needed to help control spoilage and to enhance desirable wine properties. This is especially crucial for low-intervention winemaking, in which fermentation is driven by native rather than starter microbes. In this study, we report real-time polymerase chain reaction (qPCR) assays for rapid quantification of seven grape yeast species or species combinations that occur in vineyards of Washington State and throughout the world. The assays targeted Candida californica, Curvibasidium pallidicorallinum, Metschnikowia spp., Meyerozyma caribbica/Me. guilliermondii, and Saccharomyces cerevisiae/S. bayanus. We also developed assays for the spoilage yeast Brettanomyces bruxellensis, and the yeast-like fungus Aureobasidium pullulans. Primers were designed for sequences in the internal transcribed spacer (ITS) and large ribosome subunit (LSU) gene. Known populations of yeast cells, added to fermentation extract, were significantly correlated to amounts of purified DNA in picograms (pg) for most of the yeasts; exceptions were A. pullulans and Cu. pallidicorallinum. The utility of the Metschnikowia, Meyerozyma and Saccharomyces assays was further validated by good correlations (R2 = 0.75-0.83) between the number of target sequences and pg of DNA from qPCR for selected vineyard and fermentation samples. Overall, the assays will aid in species identification and monitoring of specific yeasts from cultures, vineyards and fermentation samples. Topics: Food Microbiology, Microbiological Method.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dean A Glawe
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - David M Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, Washington 99164-6430, USA.
| | - Patricia A Okubara
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, Washington 99164-6430, USA.
| |
Collapse
|
5
|
Hart RS, Jolly NP, Ndimba BK. Characterisation of hybrid yeasts for the production of varietal Sauvignon blanc wine – A review. J Microbiol Methods 2019; 165:105699. [DOI: 10.1016/j.mimet.2019.105699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
6
|
Eeom YJ, Son SY, Jung DH, Hur MS, Kim CM, Park SY, Shin WC, Lee SJ, Auh JH, Kim GW, Park CS. Diversity analysis of Saccharomyces cerevisiae isolated from natural sources by multilocus sequence typing (MLST). Food Sci Biotechnol 2018; 27:1119-1127. [PMID: 30263842 DOI: 10.1007/s10068-018-0335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 11/28/2022] Open
Abstract
We used multilocus sequence typing (MLST) to analyze the diversity of natural isolates of Saccharomyces cerevisiae, the most important microorganism in alcoholic fermentation. Six loci, ADP1, RPN2, GLN4, ACC1, MET4, and NUP116, in S. cerevisiae genome were selected as MLST markers. To investigate genetic diversity within S. cerevisiae, 42 S. cerevisiae isolated from natural sources in Korea as well as six S. cerevisiae obtained from Genbank and four industrial S. cerevisiae were examined using MLST. Twenty-six polymorphic sites were found in the six loci. Among them, ACC1 had the most genetic variation with eight polymorphic sites. MLST differentiated the 52 strains into three clades. Alcohol fermentation results revealed that S. cerevisiae in Clade III produced less alcohol than those in Clades I and II. These results suggested that MLST is a powerful tool to differentiate S. cerevisiae and can potentially be used to select S. cerevisiae suitable for industrial use.
Collapse
Affiliation(s)
- You-Jung Eeom
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Korea
| | - Su-Yeong Son
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Korea
| | - Dong-Hyun Jung
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Korea
| | - Moon-Suk Hur
- 2Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689 Korea
| | - Chang-Mu Kim
- 2Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689 Korea
| | - Sun-Young Park
- Research Institute, Kooksoondang Brewery Co. Ltd., Seongnam, 13202 Korea
| | - Woo-Chang Shin
- Research Institute, Kooksoondang Brewery Co. Ltd., Seongnam, 13202 Korea
| | - Sang-Jin Lee
- 4College of Pharmacy, Sookmyung Women's University, Seoul, 04310 Korea
| | - Joong-Hyuck Auh
- 5Department of Food Science and Technology, Chung-Ang University, Ansung, 17546 Korea
| | - Gye-Won Kim
- 6Brewing Research Center, Academic Industry Cooperation, Hankyong National University, Anseong, 17579 Korea
| | - Cheon-Seok Park
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Korea
| |
Collapse
|
7
|
Jacques N, Mallet S, Laaghouiti F, Tinsley CR, Casaregola S. Specific populations of the yeastGeotrichum candidumrevealed by molecular typing. Yeast 2016; 34:165-178. [DOI: 10.1002/yea.3223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Noémie Jacques
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Sandrine Mallet
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Fatima Laaghouiti
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Colin R. Tinsley
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Serge Casaregola
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
8
|
|
9
|
Pfliegler W, Sipiczki M. Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping ofSaccharomyces cerevisiaestrains. Lett Appl Microbiol 2016; 63:406-411. [DOI: 10.1111/lam.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- W.P. Pfliegler
- Department of Genetics and Applied Microbiology; University of Debrecen; Debrecen Hungary
| | - M. Sipiczki
- Department of Genetics and Applied Microbiology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
10
|
Kopecká J, Němec M, Matoulková D. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast. J Appl Microbiol 2016; 120:1561-73. [PMID: 26929399 DOI: 10.1111/jam.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/05/2016] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
AIMS Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. METHODS AND RESULTS A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. CONCLUSIONS PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. SIGNIFICANCE AND IMPACT OF THE STUDY It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique.
Collapse
Affiliation(s)
- J Kopecká
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Němec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - D Matoulková
- Department of Microbiology, Research Institute of Brewing and Malting, Praha, Czech Republic
| |
Collapse
|
11
|
Posttreatment Antifungal Resistance among Colonizing Candida Isolates in Candidemia Patients: Results from a Systematic Multicenter Study. Antimicrob Agents Chemother 2015; 60:1500-8. [PMID: 26711776 DOI: 10.1128/aac.01763-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
The prevalence of intrinsic and acquired resistance among colonizing Candida isolates from patients after candidemia was investigated systematically in a 1-year nationwide study. Patients were treated at the discretion of the treating physician. Oral swabs were obtained after treatment. Species distributions and MIC data were investigated for blood and posttreatment oral isolates from patients exposed to either azoles or echinocandins for <7 or ≥ 7 days. Species identification was confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and internal transcribed spacer (ITS) sequencing, susceptibility was examined by EUCAST EDef 7.2 methodology, echinocandin resistance was examined by FKS sequencing, and genetic relatedness was examined by multilocus sequence typing (MLST). One hundred ninety-three episodes provided 205 blood and 220 oral isolates. MLST analysis demonstrated a genetic relationship for 90% of all paired blood and oral isolates. Patients exposed to azoles for ≥ 7 days (n = 93) had a significantly larger proportion of species intrinsically less susceptible to azoles (particularly Candida glabrata) among oral isolates than among initial blood isolates (36.6% versus 12.9%; P < 0.001). A similar shift toward species less susceptible to echinocandins among 85 patients exposed to echinocandins for ≥ 7 days was not observed (4.8% of oral isolates versus 3.2% of blood isolates; P > 0.5). Acquired resistance in Candida albicans was rare (<5%). However, acquired resistance to fluconazole (29.4%; P < 0.05) and anidulafungin (21.6%; P < 0.05) was common in C. glabrata isolates from patients exposed to either azoles or echinocandins. Our findings suggest that the colonizing mucosal microbiota may be an unrecognized reservoir of resistant Candida species, especially C. glabrata, following treatment for candidemia. The resistance rates were high, raising concern in general for patients exposed to antifungal drugs.
Collapse
|
12
|
|
13
|
Huys G, Botteldoorn N, Delvigne F, De Vuyst L, Heyndrickx M, Pot B, Dubois JJ, Daube G. Microbial characterization of probiotics--advisory report of the Working Group "8651 Probiotics" of the Belgian Superior Health Council (SHC). Mol Nutr Food Res 2013; 57:1479-504. [PMID: 23801655 PMCID: PMC3910143 DOI: 10.1002/mnfr.201300065] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/22/2013] [Accepted: 02/20/2013] [Indexed: 12/17/2022]
Abstract
When ingested in sufficient numbers, probiotics are expected to confer one or more proven health benefits on the consumer. Theoretically, the effectiveness of a probiotic food product is the sum of its microbial quality and its functional potential. Whereas the latter may vary much with the body (target) site, delivery mode, human target population, and health benefit envisaged microbial assessment of the probiotic product quality is more straightforward. The range of stakeholders that need to be informed on probiotic quality assessments is extremely broad, including academics, food and biotherapeutic industries, healthcare professionals, competent authorities, consumers, and professional press. In view of the rapidly expanding knowledge on this subject, the Belgian Superior Health Council installed Working Group "8651 Probiotics" to review the state of knowledge regarding the methodologies that make it possible to characterize strains and products with purported probiotic activity. This advisory report covers three main steps in the microbial quality assessment process, i.e. (i) correct species identification and strain-specific typing of bacterial and yeast strains used in probiotic applications, (ii) safety assessment of probiotic strains used for human consumption, and (iii) quality of the final probiotic product in terms of its microbial composition, concentration, stability, authenticity, and labeling.
Collapse
Affiliation(s)
- Geert Huys
- Laboratory for Microbiology & BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Blein-Nicolas M, Albertin W, Valot B, Marullo P, Sicard D, Giraud C, Huet S, Bourgais A, Dillmann C, de Vienne D, Zivy M. Yeast proteome variations reveal different adaptive responses to grape must fermentation. Mol Biol Evol 2013; 30:1368-83. [PMID: 23493259 DOI: 10.1093/molbev/mst050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae and S. uvarum are two domesticated species of the Saccharomyces sensu stricto clade that diverged around 100 Ma after whole-genome duplication. Both have retained many duplicated genes associated with glucose fermentation and are characterized by the ability to achieve grape must fermentation. Nevertheless, these two species differ for many other traits, indicating that they underwent different evolutionary histories. To determine how the evolutionary histories of S. cerevisiae and S. uvarum are mirrored on the proteome, we analyzed the genetic variability of the proteomes of domesticated strains of these two species by quantitative mass spectrometry. Overall, 445 proteins were quantified. Massive variations of protein abundances were found, that clearly differentiated the two species. Abundance variations in specific metabolic pathways could be related to phenotypic traits known to discriminate the two species. In addition, proteins encoded by duplicated genes were shown to be differently recruited in each species. Comparing the strain differentiation based on the proteome variability to those based on the phenotypic and genetic variations further revealed that the strains of S. uvarum and some strains of S. cerevisiae displayed similar fermentative performances despite strong proteomic and genomic differences. Altogether, these results indicate that the ability of S. cerevisae and S. uvarum to complete grape must fermentation arose through different evolutionary roads, involving different metabolic pathways and duplicated genes.
Collapse
|
15
|
Genetic diversity of dairy Geotrichum candidum strains revealed by multilocus sequence typing. Appl Microbiol Biotechnol 2013; 97:5907-20. [PMID: 23467823 DOI: 10.1007/s00253-013-4776-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 01/20/2023]
Abstract
The introduction of multilocus sequence typing (MLST) for strain characterization provided the first sequence-based approach for genotyping many fungi, leading to reproducible, reliable, and exchangeable data. A MLST scheme based on the analysis of six housekeeping genes was developed for genotyping Geotrichum candidum. The scheme was first developed using 18 isolates for which the complete sequences of the alanyl-tRNA synthetase (ALA1), pyruvate kinase (CDC19), acetyl-coA acetyltransferase (ERG10), glutaminyl-tRNA synthase (GLN4), phosphoglucoisomerase (PGI1), and phosphoglucomutase (PGM2) housekeeping genes were determined. Multiple sequence alignments of these genes were used to define a set of loci showing, as closely as possible, the same phylogenetic resolution level as complete gene sequences. This scheme was subsequently validated with 22 additional isolates from dairy and non-dairy sources. Overall, 58 polymorphic sites were indexed among 3,009 nucleotides analyzed. Depending on the loci, four to eight alleles were detected, generating 17 different sequence types, of which ten were represented by a single strain. MLST analysis suggested a predominantly clonal population for the 40 G. candidum isolates. Phylogenetic analysis of the concatenated sequences revealed a distantly related group of four isolates. Interestingly, this group diverged with respect to internal transcribed spacers 1 (ITS1), 5.8S, and ITS2 analysis. The reproducibility of the MLST approach was compared to random amplification of microsatellites by PCR (RAM-PCR), a gel profiling method previously proposed for G. candidum strain typing. Our results found MLST differentiation to be more efficient than RAM-PCR, and MLST also offered a non-ambiguous, unique language, permitting data exchange and evolutionary inference.
Collapse
|
16
|
Kunicka-Styczyńska A, Rajkowska K. Phenotypic and genotypic diversity of wine yeasts used for acidic musts. World J Microbiol Biotechnol 2012; 28:1929-40. [PMID: 22593628 PMCID: PMC3332385 DOI: 10.1007/s11274-011-0994-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/20/2011] [Indexed: 12/01/2022]
Abstract
The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains.
Collapse
Affiliation(s)
- Alina Kunicka-Styczyńska
- Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Wólczańska 171/173, 90-924 Lodz, Poland.
| | | |
Collapse
|
17
|
Detection and identification of microorganisms in wine: a review of molecular techniques. J Ind Microbiol Biotechnol 2011; 38:1619-34. [DOI: 10.1007/s10295-011-1020-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
18
|
Kunicka-Styczyńska A, Rajkowska K. Physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex. J Appl Microbiol 2011; 110:1538-49. [PMID: 21438966 DOI: 10.1111/j.1365-2672.2011.05009.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to examine the physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex subjected to acidic stress during fermentation. METHODS AND RESULTS Laboratory-constructed yeast hybrids, one intraspecific Saccharomyces cerevisiae × S. cerevisiae and three interspecific S. cerevisiae × Saccharomyces bayanus, were subcultured in aerobic or anaerobic conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes and mitochondrial DNA profiles of the segregates were assessed after 50-190 generations. All yeast segregates showed a tendency to increase the range of the tested compounds utilized as sole carbon sources. Interspecific hybrids were alloaneuploid and their genomes tended to undergo extensive rearrangement especially during fermentation. The karyotypes of segregates lost up to four and appearance up to five bands were recorded. The changes in their mtDNA patterns were even broader reaching 12 missing and six additional bands. These hybrids acquired the ability to sporulate and significantly changed their biochemical profiles. The alloaneuploid intraspecific S. cerevisiae hybrid was characterized by high genetic stability despite the phenotypic changes. L-malic acid was not found to affect the extent of genomic changes of the hybrids, which suggests that their demalication ability is combined with resistance to acidic stress. CONCLUSIONS The results reveal the plasticity and extent of changes of chromosomal and mitochondrial DNA of interspecific hybrids of industrial wine yeast especially under anaerobiosis. They imply that karyotyping and restriction analysis of mitochondrial DNA make it possible to quickly assess the genetic stability of genetically modified industrial wine yeasts but may not be applied as the only method for their identification and discrimination. SIGNIFICANCE AND IMPACT OF THE STUDY Laboratory-constructed interspecific hybrids of industrial strains may provide a model for studying the adaptive evolution of wine yeasts under fermentative stress.
Collapse
Affiliation(s)
- A Kunicka-Styczyńska
- Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Lodz, Poland.
| | | |
Collapse
|
19
|
Zhou J, Liu L, Chen J. Method to purify mitochondrial DNA directly from yeast total DNA. Plasmid 2010; 64:196-9. [PMID: 20600282 DOI: 10.1016/j.plasmid.2010.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/13/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
During the purification of total DNA from yeast, both nuclear and mitochondrial DNA (mtDNA) molecules are obtained. Here, we describe a simple enzymatic method using a combination of λ exonuclease and RecJ(f) to obtain pure and intact mtDNA by removing linear DNA from total DNA isolated from yeast cells. The combination of the two enzymes efficiently removed linear DNA from the total DNA of Candida (Torulopsis) glabrata, leaving the mtDNA intact. The purity and integrity of mtDNA was assayed by PCR amplification of ARG1/2/5/8, URA3 and COX1, and by RFLP analysis, respectively. This method can be used to prepare mtDNA for PCR amplification or RFLP analysis without the need for purification of mitochondria by gradient ultracentrifugation or fractional precipitation. The method was also successfully applied to the yeast species Saccharomyces cerevisiae, Candida utilis, Pichia pastoris and Yarrowia lypolytica.
Collapse
Affiliation(s)
- Jingwen Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | |
Collapse
|
20
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|